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Abstract— A method to compute an exact cell decomposition
and corresponding connectivity graph of the configuration space
(C-space) of a planar closed chain manipulator moving among
point obstacles is developed. By studying the global properties
of the loop closure and collision constraint set, a cylindrical
decomposition of the collision-free portion of C-space (C-free) is
obtained without translating the constraints into polynomials as
required by Collins’ method [1]. Once the graph is constructed,
motion planning proceeds in the usual way; graph search
followed by path construction. Experimental results demonstrate
the effectiveness of the algorithm.

I. INTRODUCTION

Because of their speed and stiffness, parallel manipulators
have recently attracted the interest of robotics researchers and
industrial users. However, their closed loop structure gives rise
to joint variable dependencies, which manifest in a topologi-
cally complex configuration space. An important consequence
of this is that, in general, the C-space cannot be globally
(and smoothly) parameterized by a single set of d variables
(for example a subset of the joint displacements), where d

is the number of degrees of freedom of the manipulator. In
other words, any d-dimensional atlas of C-space will contain
multiple charts. This fact generally makes motion planning
more challenging for parallel manipulators than it is for serial
manipulators.

A. Previous Work

It is well known that general exact motion planning algo-
rithms for serial manipulators are highly complex [5], [6], [7],
[8], [16]. In fact, the most efficient exact planning algorithm
is Canny’s, whose worst-case time complexity is exponential
in the dimension of C-space [6]. In principle, exact algorithms
can be applied to systems with holonomic equality constraints
such as those imposed by the closed kinematic loops in
parallel manipulators “by defining convenient charts and man-
aging them” (see [7], page 411). However, the difficulty of
implementing exact algorithms for general systems fueled a
paradigm shift to sample-based algorithms [9], [10], [11].

Sample-based algorithms build a graph that approximates
the global structure of the collision-free portion of C-space
(C-free). The graph has nodes that correspond to selected
points of C-free and arcs between nodes that indicate path
connectedness between the corresponding points. The graph
can be thought of a network of highways, or a roadmap, of

C-free. The roadmap becomes suitable for motion planning
when the following two attributes are attained: (1) there is a
one-to-one correspondence between components of the graph
and components of C-free, and (2) given a point in C-free, it
is easy to find a path connecting it to the graph. At this point,
motion planning is essentially reduced to graph searching.

Sample-based algorithms have been quite successful for
systems whose C-space can be parameterized by a single chart
with number of coordinates equal to the number of degrees
of freedom of the system, but less successful otherwise [12],
[17]. Even though one can always generate an ambient space
parameterizable by a single chart by choosing more parameters
than the dimension of C-space, the number of sample points
needed to construct a good roadmap grows exponentially with
the dimension of the ambient space, because the number of
connected components of the collision-free portion of this
space grows exponentially with its dimension. Second, for
most parallel manipulators of interest, parameterization of
C-space using the minimal number of coordinates requires
multiple charts. These can be difficult to define and to choose
suitable metrics to obtain globally “well distributed” sample
points. Although the RLG method [13] provides partial reme-
dies to traditional sample-based algorithms by estimating the
motion range of each joint of the linkage that obeys the loop
closure constraint, the algorithm fails to sample the boundary
and narrow passages, and thus may give a wrong answer for
some path queries.

The difficulties associated with applying sample-based mo-
tion planning methods to parallel manipulators and the avail-
ability of new results in topology led to renewed interest in
exact planning algorithms for closed kinematic chains (see
Figure 1) [18], [19], [20]. Trinkle and Milgram derived some
global topological properties of the C-space (the number of
components and the structures of the components) of single-
loop closed chains with spherical joints in a workspace without
obstacles [18]. These properties drove the design of a complete
motion planning algorithm that works roughly as follows.

1) Choose a subset A of the links that can be positioned
arbitrarily, and yet the remaining links can close the
loop;

2) Move the links in A to their goal orientations along an
arbitrary path while maintaining loop closure;

3) Permanently fix the orientations of the links in A;



4) Repeat until all links are fixed.
The main result that guided the algorithm’s design is Theo-
rem 2 in [18]. In essence, the C-space is the union of manifolds
that are products of spheres and intervals. The joint coordinates
corresponding to the spheres are those that can contribute to
the subset A mentioned above and the structure of the C-space
suggests a local parameterization (i.e., “convenient chart”) for
each step.

The planning algorithm for closed chains in [18] was not
designed to handle obstacles. In [19], [20], point obstacles
were added to the workspace of a planar manipulator, but the
closed chain constraint was relaxed. The portion of C-space
corresponding to collisions between the manipulator and the
obstacles (the C-obstacle) was analyzed in detail, to reveal that
C-free locally fibres over a lower-dimensional base manifold
with fibers composed of open intervals (called local component
sheaves). “Gluing” together the sheaves produces cells of C-
free, whose boundaries are determined by their critical points.

B. Contribution

In this paper, the concepts used in [18], [19], [20] are
brought together to design an algorithm to construct an exact
cell-decomposition of C-free of an m-link planar closed chain
moving among point obstacles. The main steps are:

1) Partition C-space into two pieces embedded in two (m-
3)-dimensional tori;

2) Compute the boundary of the loop closure constraint
variety to identify the reachable portions of C-space;

3) Compute the collision varieties in each torus and con-
struct a connectivity graph of C-free while ignoring the
loop closure constraint;

4) Use the boundary of the loop closure variety to refine
the graphs and to determine their connectivity.

The key step of our approach is Step 2 since boundary variety
plays an important role in determining the global connectivity
of C-space as well as identifying its reachable portions. In
our approach, the structure of the boundary is obtained via
the C-spaces of a set of recursively constructed planar closed
chains.

As a byproduct of the approach, it is trivial to determine
cell membership and reachability of an arbitrary point in C-
space. Given this fact and the graph, one can easily test motion
planning problems for path existence and then construct a path
if one exists.

II. BASIC NOTATION AND TERMINOLOGY

Imagine a planar serial chain of m− 1 links connected by
revolute joints, with one end free, and the other connected to
the ground. The ground is regarded as link m and is referred
to as the base of the chain. Relative to the base, the open
chain has m−1 degrees of freedom and its C-space is simply
a product of m− 1 circles, (i.e., C = (S1)m−1). A closed m-
chain can be constructed by attaching the distal end of the open
chain to the base as shown in Figure 1. Mathematically, this
attachment imposes two algebraic equality constraints, causing
the C-space of the closed chain to become a compact, closed,
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Fig. 1. A closed 6-chain among point obstacles (shown as small discs).

real, variety of dimension m − 3. This variety is a manifold
as long as the distance between the two base connections is
not equal to one of the 2m−2 critical lengths [18].

To fix notation, let {l1, · · · , lm} denote the fixed link lengths
and {φ1, · · · , φm} denote their angles measured counterclock-
wise from the vector from the center of joint 1 to the center
of joint m. Since our interest is in motions of the closed chain
relative to the base, φm is set to zero.

Suppose that there is a finite set O of point obstacles
{p1, · · · , pn} that the closed m-chain may not touch. The set
of configurations for which a link intersects a point obstacle
forms an arrangement of (m-4)-dimensional varieties. The
union of these varieties is the C-obstacle Cobst. If link-link
collisions are also to be avoided, Cobst becomes the union
of the (m-4)-dimensional collision varieties and an (m-3)-
dimensional link-link collision set. C-free, denoted by Cfree,
is the compliment of Cobst in C.

Finally, the path planning problem can be stated as fol-
lows: given φinit = (φ1, · · · , φm)init ∈ Cfree and φfinal =
(φ1, · · · , φm)final ∈ Cfree determine a continuous map τ ∈
[0, 1] 7→ (φ1(τ), · · · , φm(τ)) ∈ Cfree such that φ(0) = φinit
and φ(1) = φfinal, or report that no such path exists.

III. C-SPACE OF PLANAR CLOSED CHAINS

Here we summarize three results from topological ap-
proaches to motion planning that were crucial to the work
presented here. The first result is about the connectivity of the
C-space of a planar closed chain. We need a concept called
“long links” [18] which is defined as a subset L of the links
such that the sum of the lengths of every pair of distinct links
in L is strictly greater than half of the sum of the lengths of
all m links. Due to the strict inequality in the definition, the
number of long links |L| must be 0, 2, or 3. If |L| is equal to
3, the C-space has two components; otherwise, it has one.

The second result gives the topology of the C-space. It says
that for given lengths {l1, · · · , lm−1} and base length lm that
is generic with respect to those m− 1 lengths, the C-space is
the boundary of a manifold with boundary, which is given as
the union of sub-manifolds of the form (S1)k× Im−2−k [18],
where Id denotes the interval of dimension d.

To clarify the above conclusion, consider Figure 2, which
shows a horizontal base link and three moveable links an-
chored at the center of four concentric circles. These circles
are the critical circles (not drawn to scale) of the open 3-chain.
If the end point of the 3-chain is anchored at any point in the
shaded annular region, its C-space is that of a closed 4-chain.
If the anchor point is interior to one of the three reachable
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Fig. 2. Construction of C-space of closed chains via critical circles of an
open chain.

annuli, that C-space is one circle or two disjoint circles (as
indicated by the small circles at the 12 o’clock position of the
concentric circles).

Assume that the end point of the open 3-chain is connected
to an open chain based at the left end of the base link, and
further, assume that as a result of the connection, the end-point
of the previously open 3-chain has one degree of freedom, thus
effectively creating a closed 5-chain. Two possible workspaces
for the end-point of the open 3-chain are shown: the curve
segment γ1 and the circle γ2.

The C-space of the newly-formed closed chain can be
determined by “gluing” together all the C-spaces at each point
as we move along γj from one end to the other. For example,
begin at the left end of curve γ1 and traverse it to its other
end. Initially, the C-space over each point of γ1 is empty, since
the open 3-chain cannot reach those points. At the intersection
with the outer-most circle, the C-space of the closed chain is a
point, but the workspace segment lying inside the outer-most
annular region generates a tube. At the point where the curve
intersects the next critical circle, the C-space of the closed
5-chain is a figure eight. This signifies a bifurcation of the
tube into two tubes. The two tubes coalesce into a single tube
at the next crossing of the same critical circle. Finally, at the
end of the curve, C-space is a circle. Thus the C-space of the
mechanism with the end of the open 3-chain constrained to
lie on γ1 is a tube pinched closed at one end, open at the
other, and with a hole through the tube somewhere between
the two ends. Applying the same logic to the closed 5-chain
that would result from connecting the end of the open 3-chain
to the link shown as a dashed line, one finds that the C-space
of the closed 5-chain is a sphere.

Following this approach, one can show by constructing
circles and base links of various sizes that a closed 5-chain
has up to six types of C-spaces, among which those shown
in Figure 3 are connected. The sixth type of C-space is the
disjoint union of two copies of T 2. Here S2 and T 2 represent
the two-dimensional sphere and torus, respectively, and #
denotes the connected sum of two spaces.

The third result pertains to the parametrization of the C-
space. Since the C-space of a generic closed m-chain is an
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Fig. 3. Five types of connected C-spaces of closed 5-chains.

(m-3)-dimensional manifold, C-space can be locally parame-
terized by a set of m − 3 joint angles. However, fixing the
orientations of m − 3 links (in addition to the fixed base),
does not fix the configuration of the closed chain. Returning
to Figure 1, fixing φ3, φ4 and φ5 still allows elbow-up and
elbow-down postures of links 1 and 2.

This last result suggests partitioning C-space into an elbow-
up piece and an elbow-down piece as follows. Break the closed
chain at the third joint, thus creating an open 2-chain and an
open (m-3)-chain based at opposite ends of the base link. The
C-space of the second open chain is the (m-3)-dimensional
torus. For an arbitrary point in this space, the chain can be
closed in 0, 1, or 2 configurations of the 2-chain. When there
are two configurations, they are labeled elbow-up and elbow-
down. Since there are never more than two configurations that
close the loop, two copies of the torus suffice to represent
the C-space of the closed chain. When there is only one
configuration, the elbow-up and elbow-down configurations
have converged, so at these points, the tori are connected.
These configurations form a variety referred to as the boundary
variety that is the subject of the next section.

IV. BOUNDARY VARIETY AND ITS DECOMPOSITION

In this section, we outline a recursive projection method
(similar to the approach in [19], [20]) to determine the struc-
ture and a cell decomposition of the boundary variety. The kth

level of recursion will be denoted by appending “(k)” to the
expression in question. Refer to Figure 1. As described above,
let us break the closed m-chain into an open 2-chain CH1(1)
with link lengths {l1, l2}, and an open (m-3)-chain CH2(1)
with link lengths {l3, · · · , lm−1} based at the point (lm, 0).
Choose the joint angles of CH2(1) as the parameterization of
the elbow-up and elbow-down tori. Further, let f(1) be the
forward kinematic map of CH2(1).

The boundary variety B(1) is the set of all configurations for
which the endpoints of the two open chains can be connected
when the links of the open 2-chain are collinear. With the
constraint of collinearity, the space of possible end point
locations Σ(1) of the 2-chain in the workspace is a pair of
concentric circles of radii l1 + l2 and |l1 − l2| centered at the
origin. The boundary variety can now be defined as follows:

B(1) = f(1)−1(Σ(1)).



Note that B(1) is the union of the C-space of the two
closed (m-1)-chains M1(1) and M2(1) with link lengths
{l1+ l2, l3, · · · , lm} and {|l1− l2|, l3, · · · , lm}. Also, B(1)
is empty if and only if the intersection between Σ(1) and the
annulus centered at (lm, 0) with radii

∑m−1

i=3 li and min(‖l3±
· · ·±lm−1‖) is empty, in which case, C-space is not connected.

The process described above is repeated for each of the
two closed (m-1)-chains. That is, each of these closed chains
is assumed to have their third joints removed, which gives rise
to 22 critical circles centered on the origin with radii |l1± l2±
l3| and whose union is Σ(2). Similar to B(1), the boundary
variety B(2), is given as B(2) = f(2)−1(Σ(2)), where f(2)
is the forward kinematic map of the {l4, · · · , lm−1} open (m-
4)-chain CH2(2) based at the point (lm, 0). By construction,
it is clear that B(2) is the union of the C-spaces of the four
closed (m-2)-chains each with first link length equal to one of
the four critical radii. B(2) is also the set of critical values, or
skeleton of the projection of B(1) onto the (m-4)-dimensional
torus with coordinates {φ4, · · · , φm−1}.

Recursion continues until B(m−3) is defined. In this case,
Σ(m−3) is the union of 2m−3 concentric circles centered
at the origin. The boundary variety B(m−3) is the set of
values of φm−1 where the circle of radius lm−1 centered
at (lm, 0) intersects the circles comprising Σ(m− 3). With
{B(1), · · · , B(m−3)} defined, C-space can now be decom-
posed into reachable and unreachable cells which are (m-3)-
dimensional cylinders.

Example: Consider a closed 6-chain, with link lengths,
{0.5512, 1.9457, 1.2131, 2.9482, 4.5684, 5.7815}. The C-
space of this chain is connected, since there are only two long
links. It is contained in two three-dimensional tori that are con-
nected through the boundary variety B(1). B(1) is the union
of the C-spaces of two closed 5-chains M1(1) and M2(1) with
the last four link lengths {1.2131, 2.9482, 4.5684, 5.7815}
and the first link of length equal to one of the critical lengths
{1.3945, 2.4969} of the circles composing Σ(1). Using the
approach described in Figure 2, the C-spaces of each of
M1(1) and M2(1) is a bitorus, T 2#T 2 (see Figure 3). This
is consistent with the fact that each of of M1(1) and M2(1)
have two long links.

To draw B(1), it is convenient to represent a 3-torus as a
three-cube with edge length 2π and opposite faces identified.
In this space, a bitorus (qualitatively like those composing
B(1)) is shown in Figure 4. Note that the bold girth curve
and the two circles where the bitorus is cut (recall that the top
and bottom circles are identified) is the skeleton of the bitorus
under the projection map onto the (φ4-φ5)-space.
B(2) is the skeleton of B(1) under the vertical projection

onto the (φ4-φ5)-face of the cube. In Figures 6 and 7, B(2)
is plotted in thin solid closed curves. Note that B(2) consists
of six circles; two pairs of small “concentric” circles and one
pair of large concentric circles containing the other two pairs.
The large circles are the projections of the girth curves of the
bitori of B(1). The two pairs of small circles are the small
circular skeletal curves like those shown in Figure 4. The fact

Fig. 4. A bitorus drawn in a cubical represenation of C-space. The skeleton
of this bitorus under a vertical projection map (drawn bold), is three circles.

that these pairs of circles are concentric implies that the two
bitori of B(1) are “nested” in C-space.

The last step is to project the skeleton of B(2) to an
edge of the cube. This is shown by the 12 dashed verti-
cal lines (three are covered by other vertical lines) in Fig-
ures 6 and 7. Using the approach discussed in Figure 2,
one can show that six of the eight critical circles with
the radii {6.6582, 5.5558, 4.2320, 3.1296, 2.7668, 1.6644} are
intersected transversally by the workspace of the end point of
the open 1-chain CH2(3). These correspond to the 12 critical
values of φ5.

V. COLLISION VARIETIES

Let V j
pi

, j = 1, · · · ,m − 1, denote the (m-1)-dimensional
variety corresponding to pi lying on link j. The union of these
varieties over all links gives the contribution of pi to the C-
obstacle:

Vpi
=

m−1⋃

j=1

V j
pi
.

The union of the Vpi
over all point obstacles in O is denoted

by V :

V =

n⋃

i=1

Vpi
.

To study the global structure of these varieties, the closed
chain is again broken into the open 2-chain CH1(1) and the
open (m-3)-chain CH2(1). The contact varieties of CH2(1)
are already understood from previous work [20]. However,
our interest is in V j

pi
for j = m−1, · · · , 3, and i = 1, · · · , n),

which can be viewed as the contact varieties of CH2(1) clipped
by the B(1). The portions of the constraint varieties of CH2(1)
lying on the unreachable side of B(1) are eliminated. Figure 5
shows a cylinder with rectangular cross section in a three-
dimensional C-space. The cylinder is cut by Vp1

, Vp2
and

two patches of B(1), labeled B1(1) and B2(1). Assuming the
top and bottom of the rectangular column are identified and
ignoring B(1), there are two cells in the cylinder. Assuming
that the region above the top patch and below the bottom patch
of B(1) are unreachable, a portion of Vp2

is clipped and there
are three cells.

The topological properties of the remaining varieties, V 1
pi

and V 2
pi
, i = {1, · · · n}, are determined by the technique

developed in [18] and described in the discussion of Figure 2.



These varieties can be expressed as follows:

V 1
pi

= f(1)−1(γi
1) (1)

V 2
pi

= f(1)−1(γi
2) (2)

where γi
j is the workspace of the end-point (always a closed

loop) of CH1(1) when link j is in contact with pi and f(1) is
the forward kinematic map of CH2(1). Again it is important
to understand the intersection of these contact varieties with
B(1). Since the boundary constraint requires links 1 and 2 to
be colinear, the intersections of V 1

pi
and V 2

pi
with B(1) can be

seen to be the C-spaces of two closed (m-2)-chains formed
by replacing links 1 and 2 by a single link of length |l1 ± l2|
and fixing this link in contact with pi.

Example continued: We introduce two point obstacles,
p1 = (4, 2) and p2 = (3, 1). Note that it is impossible
for link 1 or 2 to touch either point, so the corresponding
varieties are empty. Consequently, only the contact varieties
of links 3, 4, and 5 appear in Figures 6 and 7. Note that
the two thickest vertical lines at φ5 ≈ ±1.38, define extreme
points of the boundary variety B(1). By these figures, one
can also determine the structure of V 5

pi
, which projects to the

two second thickest vertical lines in the Figures. Take V 5
p2

as
an example. The projection of V 5

p2
is the line φ5 ≈ −0.345

whose intersection with the interior between the pair of large
concentric circles of B(2) is two separated line segments,
and with the interior of the inner pair of circles an interval.
This reveals that the cross-section of V 5

p2
in the horizontal

plane of each 3-torus changes from two separated segments
to one segment, and then back to two separated segments
(recall that opposite faces of each 3-torus are identified). The
boundary of the cross-section is either four or two separated
points, the union of which gives B(1)

⋂
V 5

p2
. Gluing the

two pieces of V 5
p2

in the elbow-up and elbow-down tori
along B(1)

⋂
V 5

p2
yields the surface T 2#T 2. This result can

also be obtained using the approach described in Figure 2
for the corresponding closed 5-chain of V 5

p2
with the link

lengths {0.5512, 1.9457, 1.2131, 2.9482, 2.1415), which has
two long links. Using the same analysis method, we can see
that V 5

p1
is a torus T 2 (in Figures 6 and 7, the line of V 5

p1

has no intersection with the interior between the inner pair of
circles).

VI. GRAPH REPRESENTATION OF C-FREE

The recursive decomposition of the elbow-up and elbow-
down tori makes the construction of a connectivity graph
straight forward. In essence, the graph construction process
is recursive, starting with the one-dimensional circle parame-
terized by φm−1 and working up to the full (m-3)-dimensional
C-space. Referring to Figure 6, the circle in T 2

u parameterized
by φ5 has 12 distinct critical points. Removal of these points
from the φ5 circle defines a set of 12 open intervals. Some
of the two-dimensional cells above these points could be
disconnected at these points, but whether or not this is the case
is only revealed as the method proceeds. Therefore, initially,
these intervals and the cells above them are assumed to be

disconnected at the critical points. Thus, at this stage, the graph
of the space of φm−1 is simply 12 disconnected nodes. The
same decomposition occurs in T 2

d as shown in Figure 7, but
no attempt is made to connect the two graphs yet.

The next step is to “lift” the graphs so that they represent
the cell structure of the two 2-tori parameterized by φm−1 and
φm−2. The intervals identified in the first step serve as the base
manifolds for the second step. If one fixes φm−1, then φm−2

lies on a circle. For the critical values of φm−1, the circle
is drawn as a dashed vertical line (9 of the 12 are visible).
Between the critical circles are two-dimensional cylindrical
cells. For example, consider the two critical circles straddling
φ5 = 1 in Figure 6. This portion of C-space is a or tube that
is cut in four places by the projected skeleton of the boundary
variety. This identifies four two-dimensional cells. The tube
just to the right is cut in only two places, yielding two cells.
However, in the (φm−1,φm−2)-space some of the cells in the
two tubes are connected. After merging the connected cells,
three possibly disconnected cells remain.

The graphs are again lifted, this time into the
(φm−1, φm−2, φm−3)-space. Figure 5 shows a cell in the
(φm−1-φm−2)-space. Above it is the (φm−1, φm−2, φm−3)-
space with two-dimensional constraints and boundary
varieties. The locus of critical points are those in the
intersection of the surfaces. Its projection onto the cell is
the curve D, which splits the cell into two. Above each
non-critical point in the two cells, there are four constraint
surfaces. Assuming that the space above B1(1) and below
B2(1) violates the loop closure constraint, then the four
surfaces define two reachable cylindrical cells above the
cell (a,D) and three cells above (D,b). Further the two cells
bounded below by B2(1) are connected, as are those bounded
below by the surface labeled “2.” Merging yields three cells
in (φm−1, φm−2, φm−3)-space above the original cell in
(φm−1,φm−2)-space.

Analyzing all adjacent cells in (φm−1,φm−2)-space in
the same way yields all connected components of the
(φm−1, φm−2, φm−3)-space, and the process continues until
all connected components of dimension m− 3 are identified.

VII. EXPERIMENTAL RESULTS

Our method for closed 5-chains and 6-chains was imple-
mented in Matlab and tested for many planning problems.
Typically, a closed 5-chain moving among 4 point obstacles
required about 160 seconds, and a closed 6-chain moving
among 2 point obstacles required about 210 seconds.

Example further continued: A connectivity graph of C-
free was constructed according to the approach described
above. Then a motion planning problem was specified by the
following configurations:

φinit=(−0.6363,−1.2183, 0.0416, 1.9416,−0.1416, 0)

φgoal=(−0.9063, 0.8648, 0.0416,−2.0416, 0.3416, 0).

One of the configurations was in the elbow-up torus; the
other was in the elbow-down torus. The computed path was
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Fig. 5. A rectangular cell in (φ4,φ5)-space onto which the critical points of
constraint varieties in (φ4,φ5,φ6)-space are projected.

projected onto the two two-dimensional tori shown in Figures
6 and 7. (Note that in these lower-dimensional spaces, one
should not expect the path to jump from the elbow-up to the
elbow-down spaces through the projection of B(1)). While
it is difficult to see in a three-dimensional plot, the path in
the full C-space crosses through the boundary variety B(1).
Animation of the motion in this example can be found in
ftp://6bar:6bar@143.89.47.18.

VIII. COMPLEXITY ANALYSIS

The complexity of any algorithm that performs cell decom-
position on C-free is bounded from below by the number of
connected components. While we have not proven this, there is
evidence that suggests that this lower bound is Ω(nm−3), m ≥
5. We also conjecture an upper bound, by considering the
polynomial representation of the collision and loop closure
varieties. Assuming that the highest degree of these polyno-
mials is δ, then Halperin’s cell complexity results [21] applied
to our approach imply that each connected component of C-
free could be composed of O(nm−4δ) cells. Since each of
these cells must be computed, the worst-case complexity of
our decomposition algorithm is O(n2m−7), m ≥ 5.

To provide insight into our conjecture, we show how to
obtain these results for the case of m = 5 with n point
obstacles. The C-space is two-dimensional and the contact
varieties are one-dimensional curves in C-space. An upper
bound on the number of components can be obtained by
imposing three conditions: (1) all elbow-up and elbow-down
configurations are valid, (2) all contact varieties are closed, and
(3) all possible intersections among varieties occur and they
occur in general position. These conditions can be satisfied
only if:

l5 = 0, l1 = l4, l2 = l3, l2 > 2l1 (3)
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which defines a degenerate closed chain with base link of
length zero. The result is effectively a closed four-chain with
base link pinned at one end rather than both. One can see that
it is always possible to move φ4 and φ3 arbitrarily and that for
every φ4 and φ3 there are two configurations of the other two
links; elbow-up and elbow-down. Thus C-space is two copies
of T 2, T 2

u and T 2
d , glued along the two circles corresponding

to configurations where all the links are colinear.

φ2 = φ1 ∈ [−π, π] (4)
φ2 = φ1 + π ∈ [−π, π], (5)

i.e., T 2
u ∩ T

2
d is the disjoint union of two circles.

Given an m-dimensional manifold Q, define Hk(Q) the k-
dimensional homology group of Q. The dimension of Hk(Q)
can be interpreted as the number of k-dimensional generators
of Q. For example, for T 2 it can be shown that H0(T

2) = R
1,

H1(T
2) = R

2 for T 2 = S1 × S1, and H2(T
2) = R

1. The
geometric interpretation is that the torus has one connected
component, two one-dimensional generators (T 2 = S1 × S1),
and one two-dimensional generator (the space inside the torus).
Also, given an (m − 1)-dimensional closed submanifold Qs

of Q, the m-dimensional relative homology group of Q with
respect to Qs, defined as Hm(Q,Qs), gives the number of
components of Q−Qs.

Each contact variety V j
pi

is a union of two closed curves,
each in one torus, with two points in common. However, V 1

pi

and V 4
pi

are common at coincident circles corresponding to
the case where all the links are collinear, as are V 2

pi
and

V 3
pi

. Thus the C-obstacle, V =
⋃

i,j V
j
pi

, is the union of 6n
circles. We then compute the number of intersections between
these 6n circles. Under the general position assumption about
the obstacle set O,1 we can show that the total number of
intersections is 14n2 − 11n.

Let V denote the disjoint union of 6n circles in V . The
set of intersection points among the 6n circles is denoted X .
It is obvious that H1(V ) = R

6n, H0(V ) = R
6n, H0(X) =

R
14n2

−11n, and H0(V ) = R
1. What is left to compute is

H1(V ), for which we can use the following exact sequence:

0→ H1(V )→ H1(V ,X)→ H0(X)→ H0(V )→ 0

from which we obtain H1(V ,X) = H1(V ) = R
14n2

−11n.
Substituting into another exact sequence

0→ H2(C)→ H2(C, V )→ H1(V )→ H1(C)→ 0

yields H2(C, V ) = R
14n2

−11n. This shows that the number of
components of the C-free is 14n2 − 11n.

Since in our algorithm each component is decomposed into
at least one cell, the number of cells in a graph with the worst-
case number of components is at least 14n2−11n. This gives
the asymptotic lower bound of Ω(n2). On the other hand,
notice that the number of cells in our graph for C-free is

1No three points are in the same line, no two points and the origin are in
the same line, and no two lines each passing through a different pair of points
intersect at the same point in the circle centered at the origin and with the
radius l1.

bounded by the product of the number of critical points and
the number of collision curves. Let δ be the degree of the
polynomials of collision curves. Then the number of cells in
our graph is bounded by (14n2−11n+6nδ)×(6nδ) = O(n3)
is the asymptotic upper bound of the worst-case complexity.

IX. CONCLUSION

This paper presents a method for an exact cell decomposi-
tion of the collision-free portion (C-free) of the configuration
space (C-space) of a planar closed chain with m links moving
among n point obstacles. This method combines the results
on the topology of C-spaces of planar closed chains and the
decomposition method proposed in [20]. First, the C-space is
covered using only two charts. Then, each piece is imbedded
in an (m-3)-dimensional torus. The structure of the collision
set is used to decompose both tori into cells of collision-free
configurations and to construct graphs representing the struc-
ture of C-free. The global graph is then established by joining
graphs of the two tori if they are connected, as indicated by
the analysis of the boundary of the loop closure constraint. A
benefit of the decomposition method is that it is very easy to
determine cell membership of a given configuration. This fact
combined with the exact graph representation of C-free allows
one to check path existence by graph search. If a path exists,
the cylindrical structure of the free cells facilitates easy path
construction.

The proposed algorithm is complete, yet time consuming. In
future work, we plan to develop an algorithm that implements
an efficient trade-off between sample-based methods and our
complete method. Namely, we will refine current sampling
approaches so that the sampling density is highest in the
regions that are critical to the global topological properties
of C-free. These regions are the union of singular loci, which
reflect the global structure of the C-space, in particular, the
narrow passages. It is expected that by applying refined
sampling the computation speed will be enhanced, and the
fault probability be reduced.
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