
A polynomial-time algorithm to design push plans
for sensorless parts sorting

Mark de Berg∗, Xavier Goaoc∗ and A. Frank van der Stappen†
∗ Department of Mathematics and Computer Science

TU Eindhoven, Eindhoven, The Netherlands.
Email: m.t.d.berg@tue.nl, goaoc@loria.fr

† Department of Information and Computing Sciences
Utrecht University, PO Box 80089, 3508 TB Utrecht, The Netherlands.

Email: frankst@cs.uu.nl

Abstract— We consider the efficient computation of sequences
of push actions that simultaneously orient two different poly-
gons. Our motivation for studying this problem comes from
the observation that appropriately oriented parts admit simple
sensorless sorting. We study the sorting of two polygonal parts
by first putting them in properly selected orientations. We
give an O(n2 log n)-time algorithm to enumerate all pairs of
orientations for the two parts that can be realized by a sequence
of push actions and admit sensorless sorting. We then propose an
O(n4 log2 n)-time algorithm for finding the shortest sequence of
push actions establishing a given realizable pair of orientations
for the two parts. These results generalize to the sorting ofk
polygonal parts.

I. I NTRODUCTION

Designers of robotic manipulators for factory environments
have long been inspired by human arms and hands. The wish
for a level of flexibility comparable to that of a human arm
and hand led to robotic manipulators that were often found
to be too complex to have a chance to stand up in a real
industrial environment [18]. In the late 80s and early 90s,
Whitney [44] and others argued that effective factory robots
need far less flexibility than human beings. As more flexibility
incurs an increase of design and maintenance costs, risk of
failure, and complexity of control, it is justified to be cautious
about excess flexibility. Inspired by Whitney’s recommen-
dations that industrial robots should have simple actuators
and sensors Canny and Goldberg [13], [14] proposed the
Reduced Intricacy in Sensing and Control (RISC) paradigm
for the design of manipulation systems. The paradigm favors
easily-reconfigurable simple hardware elements performing
simple actions over overly flexible general-purpose hardware,
and prefers simple or no sensors. The authors argued that
such systems are cheaper, more reliable and better suited for
automated planning.

RISC implies a shift of the complexity of system design
to computer science, as the fundamental question becomes
algorithmic in nature: configure, or plan, a sequence of simple
physical actions that accomplishes a higher level manipulation

Part of this research has been funded by the Dutch BSIK/BRICKS
project. Mark de Berg and Xavier Goaoc were supported by the Netherlands’
Organisation for Scientific Research (NWO) under project no. 639.023.301.

task on a given part or collection of parts. Over the past
years researchers have explored the suitability of sequences
of actions such as pushing [1], [2], [4], [5], [7], [10], [16],
[23], [25], [27], [30], [31], [45] squeezing [11], [15], [19],
[34], [32], [33], [35], toppling [24], [46], pulling [6], tapping
[21], dropping [20], [22], [29] wobbling [17], rolling [26],
and vibrating [8], [9], [37] by simple hardware elements to
accomplish a common task like feeding (or orienting) parts.
Considerable attention has also been given to the design
of modular fixtures [12], [38], [39], [40], [43], [41], [42],
[47] which hold parts using simple reuable elements whose
placements are constrained to a grid of holes. Much less
has been done on some of the other challenges listed in the
paper by Canny and Goldberg [14]. In this paper we study
their open problem concerning the existence of a polynomial-
time algorithm for sorting parts with a frictionless parallel-jaw
gripper capable of performing push and squeeze actions [18].

We consider the following completely sensorless sorting
scenario for convex polygonal parts of two different typesP
andQ that can be in any orientation. We have a conveyor belt
that forks into two smaller sub-belts, as in Figure 1, and we
want to employ push actions by a single jaw of the parallel-
jaw gripper to establish that parts of typeP continue on one
sub-belt at the split while those of typeQ continue on the
other sub-belt. Which sub-belt a part goes depends on the
position of its center of mass with respect to the line through
the split and parallel to the sides of (the wide part of) the
belt. As a result, our sorting scenario is successful if we can
find a sequence of push actions, orpush plan, that—at the
same time—puts the center of mass of parts of typeP on
one side of a horizontal line and of parts of typeQ on the
other side. (We assume that the parts are sufficiently far apart
when they travel down the belt, so that the orientations are not
disturbed by any collisions.) We will concentrate on push plans
that additionally bring parts of the same type into the same
orientation. Our goal is therefore to find the shortest push plan
that simultaneously putsP andQ into given orientationsφ and
ψ respectively; for our application, the orientationsφ andψ
should be such that the distances from the jaw to the centers
of mass ofP andQ are different. OnceP andQ are in their



respective orientations, a single push by the jaw suffices to
put P andQ onto the belt, after which the split will take care
of the sorting. Non-convex parts traveling with a cavity facing
the split may get stuck at the joint corner of the sub-belts.
We can easily identify the orientations in which a part can
get stuck beforehand and eliminate those from consideration
in the planning phase.

Fig. 1. A conveyor belt forking into two sub-belts and two parts that will
be sorted.

Goldberg [19] showed that a single polygonal part withn
vertices can be oriented, i.e., brought into any priorly specified
orientation, by a push plan; he also showed that the shortest
such plan can be computed inO(n2) time. Chen and Ierardi
[15] proved that the length of the shortest plan isO(n).
Although a concatenation of separate plans for partsP and
Q puts both parts into a known orientation, these results
do not provide a way of finding theshortest sequence of
push actions that simultaneously putsP andQ into specified
orientationsφ and ψ. In fact, one of the first results in this
paper shows that it is not always possible to putP and
Q in any desired combination of orientations. For polygons
P and Q with at mostn vertices, we therefore present an
O(n2 log n)-time algorithm to determine all combinations of
orientations for polygonsP and Q that can be realized by
applying an oblivious push plan to both. If none of these
combinations separates the centers of mass then no push plan
exists that sorts the parts. The main result of our paper is an
algorithm that finds the shortest push plan that putsP andQ
in a given realizable pair(φ, ψ) of orientations. The algorithm
runs inO(n4 log2 n), so we have a polynomial-time algorithm
for sorting using a pushing jaw and a forking conveyor belt.
The availability of all realizable pairs of orientations offers
the practical advantage of being able to choose the pair that
maximizes the separation between the centers of mass, as such
a pair is likely to be less sensitive to control errors and part
imprecision.

The algorithms for determining all realizable combinations
of orientations and for computing the shortest plan for a given
realizable combination generalize tok parts. The running times
of these generalizations areO(nk log n) andO(n2k log2k n)
respectively. All of our algorithms use a multi-dimensional
generalization of a simplified version of the push function
(see e.g. [19], [34]). The problems at hand are translated into

geometric queries that are solved efficiently using geometric
data structures [3].

Our work is closest in spirit to two papers by Rao and
Goldberg [32], [36]. In [32] these authors considered the
problem of recognizing a part from a given set of parts, by
means of a sequence of width measurements by a squeezing
instrumented parallel jaw gripper. Rao and Goldberg proposed
an O(n42n)-time algorithm for computing the shortest se-
quence of measurements, and anO(n2 log n)-time algorithm
for computing a sub-optimal sequence, wheren is the total
number of stable diameters, which is upper bounded by the
total number of edges of all parts. This sorting scenario differs
from ours in several aspects. Besides that we use push instead
of squeeze actions, we have replaced the instrumentation of
the gripper (facilitating the width measurements) by a forking
conveyor belt. This replacement of sensing functionality by an
additional piece of hardware opens the way to a polynomial-
time algorithm for finding the shortest sequence of actions.
Still, we could apply our algorithm to the instrumented parallel
jaw gripper of Rao and Goldberg. If we choose the final
orientations to be such that a squeeze action of the gripper
leads to different width measurements for the two parts, then
our algorithm computes inO(n4 log2 n) time the shortest
sequence of push actions followed by a squeeze that orients
and sorts the parts.

In [36], Rao and Goldberg studied the registration mark
problem. Given a single polygon withn vertices and a set of
k possible poses of that polygon, it asks to locate a mark on
the polygon that maximizes the minimum separation between
the placements of the mark in thek poses. The computed
location will provide maximum insensitivity to sensor noise
when distinguishing the poses with a computer vision system.
The registration mark problem is in a way almost dual to
our problem. Whereas the registration mark problem asks to
determine the optimal distinguishing aspect, the mark, of a
given set of poses, our problem is to determine the poses (and
the actions that lead to these poses) that optimize the ability to
distinguish on the basis of a given aspect, the center of mass.
Of course another crucial difference is that we are dealing with
two (or more) parts, whereas the work of Rao and Goldberg
deals with a single part.

II. PRELIMINARIES

In this section we briefly review pushing of a single polygon
P by a jaw of a parallel-jaw gripper. We assume zero friction
between the part and the jaw. Letc be the center-of-mass of
P . As a jaw always touches the part at its convex hull we
assume thatP is convex. For the sake of simplicity of our
analysis, we add the weak assumption that no line through a
vertexv of P is perpendicular to the two edges incident tov.
This prevents so-called meta-stable edges.

We assume that a fixed coordinate frame is attached toP .
Directions are expressed relative to this frame. Thecontact
direction of a tangentl of P is uniquely defined as the
direction of the vector perpendicular tol and pointing into
P (see Figure 2 for a tangent with contact directionπ.). As in



Mason [27], we define theradius functionρ : [0, 2π) → R+

of P with center of massc; ρ maps a directionφ onto the
distance from thec to the tangent ofP with contact direction
φ. The radius function is continuous. It determines the push
function, which, in turn, determines the final orientation of a
part that is being pushed.

Throughout this paper, parts are pushed by a single jaw
that moves in a direction perpendicular to itself. Brost [11]
was the first to model parallel-jaw gripper motions in this
manner. Thepush directionof a single jaw is the direction of
its motion. The push direction of a jaw pushing a part equals
the contact direction of the jaw. In most cases, parts will start
to rotate when pushed. If pushing in a certain direction does
not cause the part to rotate, then we refer to the corresponding
direction as anequilibrium (push) directionor orientation.
Equilibrium orientations play a key role throughout this paper.
If pushing does change the orientation, then this rotation
changes the orientation of the pushing jaw with respect to
the frame attached to the part. We assume a push action to be
a reorientation of the jaw followed by an actual push on the
object that continues until the part stops rotating and settles
in a stable equilibrium pose.

The push functionp : [0, 2π) → [0, 2π) links every
orientationφ to the orientationp(φ) in which the partP settles
after being pushed by a jaw with push directionφ (relative to
the frame attached toP ). The final orientationp(φ) of the part
is the contact direction of the jaw after the part has settled.
The equilibrium push directions are the fixed points of the
push functionp.

The push functionp for a polygonal part consist ofsteps,
which are open intervalsI ⊂ [0, 2π) on which p(φ) is
constant, and isolated fixed points. Each step of the push
function intersects the diagonal line through the origin at the
equilibrium orientation corresponding to the step. The steps of
the push function are easily constructed [19] from the radius
functionρ, using its local extrema; the orientations correspond-
ing to local extrema are the equilibrium push orientations. If
the part is pushed in a direction that is not a local extremum
of the radius function then the part will rotate in the direction
in which the radius decreases until it finally settles in an
orientation corresponding to a local minimum of the radius
function. As a result, all points in the open intervalI bounded
by two consecutive local maxima of the radius functionρ map
onto the orientationφ ∈ I corresponding to the unique local
minimum ofρ on I. (Note thatφ itself maps ontoφ because it
is a local extrema.) The fixed points of the steps are thestable
equilibrium orientations. Besides the steps and ramps there
are isolated points satisfyingp(φ) = φ in the push function,
corresponding to local maxima of the radius function. The
isolated fixed points are theunstableequilibrium orientations.

Projecting the steps of the push function on the horizontal
axis we get thepush diagram: a partition of the range[0, 2π)
into open intervals by the unstable equilibrium orientations
along with a collection of stable equilibriums, one per interval.
A push action can be visualized in the push diagram by
applying to the original orientation of the part a translation and

a snap rounding. The length of the translation is the pushing
angle and the rounding brings the translated point to the stable
equilibrium of the interval that contains it. Figure 2 shows
an example of a radius function and the corresponding push
function.

0

0

0

π

π

π 2π

2π

2π

π

2π

φ

φ

ρ(φ)

p(φ)

c

Fig. 2. A part, its radius function, the corresponding push function and
the simplified push diagram. The vector emanating from the center-of-massc
shows the zero contact direction for supporting lines.

In the rest of this paper,P andQ denote two polygonal
shapes, withp and q vertices respectively. To simplify the
bounds somewhat, we will express them in terms ofn =
max(p, q). Observe that after one push any shape is in some
stable equilibrium orientation. To simplify the exposition, we
denote a stable equilibrium orientation of an object astable
orientationand a pair of stable equilibrium orientations of two
objects astable pair.



III. E NUMERATING REALIZABLE PAIRS OF ORIENTATIONS

We are interested in finding push plans that bringP andQ
into a fixed stable pair no matter what their initial orientation
is. A stable pair for which this can be done is said to be
realizable.

For the purpose of separating shapes some realizable stable
pairs may be more interesting than others. For example, a pair
that maximizes the separation of the centers of mass is more
likely to be tolerant to faults or imprecisions. In this section
we consider the problem of enumerating all realizable stable
pairs, which allows finding the best separating pair for simple
criteria.

A. Generalized push diagram

Let us first introduce the generalized push diagram, a
tool to visualize the effect of a push operation on a pair
of orientations. We partition the set[0, 2π) × [0, 2π) of all
possible orientations ofP and Q by vertical lines at every
instable equilibrium ofP and horizontal lines at every instable
equilibrium of Q. Let S be the set of points of[0, 2π) ×
[0, 2π) corresponding to stable pairs. The couple(I,S) is
the generalized push diagram(GPD) of the two partsP and
Q (see Figure 3 for an example of such a generalized push
diagram). There is exactly one point ofS in each cell ofI.

P

Q

0 2π

0

2π

2π

0 2π

P

Q

Fig. 3. Two parts, their respective push diagrams and the generalized push
diagram of the pair.

Suppose that a push operation of angleβ is applied to parts
P and Q, initially in respective orientationsφ and ψ. The
resulting orientations of the shapes are the stable pair in the
cell containing the point(φ+β, ψ+β). Thus, a push operation
with angleβ corresponds in the push diagram to a diagonal
translation1 of lengthβ

√
2 followed by a snap-rounding oper-

ation to the stable pair of the cell (c.f. Figure 4). Since angles
are represented modulo2π the diagonal translation may wrap
around, namely whenφ+ β > 2π or ψ + β > 2π.

B. Realizable pairs

In the GPD, the stable pairs reachable by one push from a
specified pair of orientations(φ, ψ) are exactly those contained

1Whenever we use the termdiagonal, we mean the main diagonal direction
(of slope 1). Thus adiagonal translationis a translation in direction of the
vector (1, 1)T , and thediagonal through a pointis the line through that
point of slope 1. Notice that a diagonal usually consists of two segments in
the square[0, 2π)2 due to the wrap around effect.

β

β

(φ, ψ) (φ, ψ)

Fig. 4. In the generalized push diagrams, a push operation becomes a
translation (possibly involving a wrap around as in the right example) followed
by a snap-rounding.

in cells intersected by the diagonal through(φ, ψ). The pre-
image of a stable pair(φ, ψ) is the set of stable pairs that
are mapped to(φ, ψ) by some push; it corresponds in the
GPD to the set of stable pairs contained in the union of the
diagonal lines intersecting the cell of(φ, ψ) (the shaded zone
in Figure 5). Since a stable pair may have empty pre-image
(as in Figure 5) it may not be realizable.

0

2π

2π

P

Q

Fig. 5. The push diagram of a pair having a non-realizable pair of
orientations.

However, there always exists one realizable pair and such
a pair can be computed in timeO(n2). Indeed, Goldberg
[19] and Chen and Ierardi [15] proved that one shape can be
oriented usingO(n) push operations that can be computed in
O(n2) time. Once a part has been brought from any orientation
into some fixed orientation, any additional push operation
leaves it in some (possibly different) fixed orientation. We
can thus compute a push plan orientingP and a push plan
orienting Q in O(n2) time; the concatenation of these two
push plans brings bothP andQ into a stable pair irrespective
of their initial orientations, yielding a realizable stable pair.

C. Enumerating realizable pairs

The transition graphis the directed graph whose nodes are
stable pairs and whose edges connect a node to stable pairs it
can reach by one push action.

Lemma 1:Let (φ, ψ) be a realizable stable pair. A pair
(φ′, ψ′) is realizable if and only if it is reachable from(φ, ψ)
in the transition graph.

Proof: Omitted.



The enumeration problem thus reduces to computing a
realizable stable pair and performing a breadth-first search
(BFS) in the transition graph. Computing a realizable stable
pair can be done in timeO(n2) as mentioned in Section III-
B. The transition graph has sizeO(n3) since it hasO(n2)
nodes and each node hasO(n) out-going edges. Thus, using
standard graph techniques it is possible to enumerate all
realizable stable pairs in timeO(n3). Taking advantage of the
geometry of the problem, we can prune the transition graph
more efficiently as we perform a BFS.

Theorem 2:The realizable pairs of orientations of two parts
P andQ can be enumerated inO(n2 log n) time andO(n2)
space.

Proof: The basic step in the breadth-first search is this:
given a node (which is in our case a stable pair, that is, a grid
point in the push diagram), report all other nodes to which
there is an out-going edge and that have not been visited
before. The basic idea behind our algorithm is to build a data
structure that allows us to quickly retrieve the nodes to which
there is an outgoing edge. This data structure should support
deletions so that we can delete a node from it as soon as it is
reached for the first time. Hence, we will always only report
nodes that have not been reached before.

Now consider a pair(φ, ψ) of stable orientations or, in
other words, a grid point in the push diagram. We have seen
before that there is an edge from(φ, ψ) to (φ′, ψ′) iff the
diagonal through(φ, ψ) intersects the cell of(φ′, ψ′). Hence,
we need a data structure (allowing deletions) for the following
queries: given a query line of slope 1, the diagonal through
the point(φ, ψ), report all cells intersected by that line. Since
the query line always have slope 1, we can project everything
orthogonally onto a line with slope -1. The cells now become
intervals, the query line becomes a point, and we wish to
report all intervals containing the query point. This problem
can be solved using an interval tree. An interval tree uses
linear storage—in our case this isO(n2) since we have that
many cells—and deletions takeO(log n) time. Reporting all
intervals containing a query point can be done inO(log n+A)
time, whereA is the number of reported intervals.

Since any interval is reported and deleted at most once, and
the interval tree can be built inO(n2 log n) time, the total time
to do the BFS isO(n2 log n).

IV. D ESIGNING PUSH PLANS

In this section we give a polynomial time algorithm to find
an optimal sequence of push actions bringing any partsP
andQ into some prescribed realizable stable pair, irrespective
of their initial orientations. We first show how this problem
reduces to computing a shortest path in some directed graph
and then improve that computation by using the geometry of
the problem.

An antecedentof a set of stable pairsA is any set of stable
pairs B for which there exists a push action bringing any
pair in B to some pair inA. The antecedent graphis the
directed graph whose nodes are all sets of stable pairs and
whose directed edges connect each node to all its antecedents.

Fig. 6. The projections of the cells on the second diagonal.

A push plan that brings any shapeP orQ into some prescribed
realizable stable pair(φ, ψ) corresponds, in the antecedent
graph, to a path fromA1 = {(φ, ψ)} to the setAt of all stable
pairs. Then, an optimal push plan is simply such a path with
minimal length. The antecedent graph has order2n2

nodes
which make it too large to be computed in practice.

The circular ordering on the angles induces a similar order-
ing on the stable orientations of a shape. Let acircular interval
denote a set of stable orientations that are consecutive for this
ordering (see Figure 7 for some examples). The product of two

0 2π
1 2 3 4

Fig. 7. Push diagram having for example{1, 2, 3} or {3, 4, 1} as circular
intervals.

circular intervals corresponds, in the GPD, to a set of stable
pairs whose cells make up a rectangle2. We call a product
of two circular intervals acircular rectangle. The reduced
antecedent graphis obtained from the antecedent graph by
deleting all nodes that are not circular rectangles and their
associated edges.

Lemma 3:The reduced antecedent graph contains{(φ, ψ)},
the set of all orientations and at least one shortest path of the
antecedent graph between them.

Proof: Obviously{(φ, ψ)} and the set of all orientations
are circular rectangles. Let(A,B) be an edge in the antecedent
graph with A being a circular rectangle. LetB′ be the smallest
circular rectangle that containsB. By monotonicity of the push
function, any push action sendingB in A also sendsB′ in
A. Thus,B′ is also an antecedent ofA. Consider a shortest
path A1 → . . . → At from A1 = {(φ, ψ)} to the setAt

of all orientations. By induction there exists a pathA1 →
B2 → . . . → Bt−1 → At such thatAi ⊂ Bi and theBi are
circular rectangles. This path is thus contained in the reduced
antecedent graph and has the same length as a shortest path.

2The wrap around effect can split it into four rectangles in the region
[0, 2π)2.



The reduced antecedent graph hasO(n4) nodes, each having
O(n2) out-going edges3. The size of the graph is thusO(n6)
and standard graph techniques allows for a computation of
an optimal push plan for a specified realizable pair inO(n6)
time and space. Again, this result can be improved by using
the GPD.

Consider a copy of a circular rectangleA sliding positively
along the diagonal in the GPD. The circular rectangles that are
antecedents ofA correspond to the rectangles contained in that
copy at the positions where it has at least one stable pair on
its lower or left boundary. Therefore, there is an edge(A,B)
in the reduced antecedent graph iff there exists a translation of
B along the diagonal mapping the stable pairs ofB to A with
at least one being mapped to the lower or left boundary ofA.
We thus organize all the rectangles over the generalized push
diagram in a data structure that allows for efficient answers to
such queries.

Theorem 4:An optimal push plan achieving a specified
realizable pair of orientations can be found inO(n4 log2 n)
time and space.

Proof: Assume we are looking for rectanglesB with
at least one equilibrium point mapped toA’s left boundary;
the rectangles with an equilibrium point mapped toA’s bottom
side can be found with a similar data structure. It is not difficult
to see that now the query translates to the following: find all
rectanglesB such that (a) the left side ofB is contained in the
left side ofA when both sides are projected orthogonally onto
a line of slope -1, and (b) the length ofB’s horizontal sides is
less than or equal to the length ofA’s horizontal sides. Again
we can solve this using a suitable geometric data structure.
More precisely, the above query can be transformed to a 3-
dimensional range query. Using a 3-dimensional range tree
and dynamic fractional cascading (with only deletions) [28],
we obtain a data structure usingO(s log2 n) storage and
preprocessing, and withO(log2 n) update and query time
(plus, for queries,O(1) time for each reported answer), where
s is the number of objects stored in the structure.

V. SORTING k PARTS

Most of our results generalize to any number of polygonal
shapes. Let{P1, . . . , Pk} be a set of polygonal parts having
O(n) equilibrium points each. The problem now becomes to
find a sequence of push actions that brings any shape into
some fixed orientation such that the resulting positions of the
centers of mass of thek shapes are pairwise separated. The
two fundamental questions remain the design of algorithms
to enumerate all realizable families of orientations, as some
families may obviously not be realizable, and to compute an
optimal push plan for a given realizable family.

Theorem 5:The realizable families of orientations ofk
polygonal parts(P1, . . . , Pk) with O(n) equilibrium points
each can be enumerated inO(nk log n) time.

3In fact, one can argue that the total number of edges inO(n5), but the
running time of the algorithm we will present does not depend on the number
of edges, so we do not go into the argument here.

Proof: By the same reasoning as in Section III-B a
realizable family can be computed in timeO(kn2). Gener-
alizing the transition graph introduced in Section III-C tok
parts is straightforward and the problem of enumerating all
the realizable families also translates to a breadth-first search
in some graph, which now hasO(nk) nodes. The families of
orientations accessible from a given familyF correspond to
the k-dimensional boxes whose projection on the hyperplane
orthogonal to the main diagonal contain the projection of
F . The dynamic data structure that supports the BFS now
becomes somewhat more involved: it will be a multi-level data
structure [3], whose firstk − 2 levels are segment trees and
whose last level is an interval tree. Such a data structure ons
boxes usesO(s logk−2 s) storage,O(s logk−1 s) preprocessing
time, and queries and deletions can be done inO(logk−1 s)
time (plusO(A) time for reporting the answers in case of
a query.) For lack of space, we omit the (standard) details.
Since we haves = O(nk) cells, the running time of the entire
algorithm isO(nk logk−1 n).

Our algorithm to compute an optimal push plan generalizes
in a similar way:

Theorem 6:An optimal push plan for a separating families
of orientations ofk polygonal parts(P1, . . . , Pk) with O(n)
equilibrium points each can be found inO(n2k log2k n) time.

Proof: Omitted.

VI. CONCLUSION

We presented a polynomial-time algorithm to design a push
plan for putting two types of parts into such orientations
that they can be sorted using a simple sensorless device. Our
approach generalizes to non-polygonal parts with finitely many
equilibrium orientations, that is any shape whose boundary
does not contain a circular arc centered at the center of mass.

Fence designs gained considerable attention recently as they
can replace push mechanisms for certain tasks and are simpler
to realize. We also plan to generalize our technique for sorting
parts so that it works with fences instead of push actions. The
main difference for our method is that the pushing angle of
a fence is more restricted than that of a jaw. The diagonal
query lines thus becomes diagonal query segments and our
data structures over the generalized push diagram have to be
adjusted accordingly.

An interesting open problem is to find the overall shortest
sequence of push actions leading to any realizable stable pair
of orientations, or to any realizable stable pair of orientations
providing a prescribed minimum separation between the cen-
ters of mass of both parts. It would also be interesting to
investigate the worst-case number of push actions needed to
bring any two shapes into a given stable pair of orientations.

REFERENCES

[1] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding on
a conveyor with a one joint robot.Algorithmica, 26:313–344, 2000.

[2] S. Akella and M. T. Mason. Posing polygonal objects in the plane by
pushing. InIEEE International Conference on Robotics and Automation
(ICRA), pages 2255–2262, 1992.



[3] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-
Verlag, Berlin, 2000.

[4] R-P. Berretty, K. Goldberg, M. H. Overmars, and A. F. van der Stappen.
Algorithms for fence design. InRobotics, the algorithmic perspective,
pages 279–295. A.K. Peters, 1998.

[5] R-P. Berretty, K. Goldberg, M. H. Overmars, and A. F. van der Stappen.
Computing fence designs for orienting parts.Computational Geometry:
Theory and Applications, 10(4):249–262, 1998.

[6] R-P. Berretty, K. Goldberg, M. H. Overmars, and A. F. van der Stappen.
Orienting parts by inside-out pulling. InIEEE International Conference
on Robotics and Automation (ICRA), pages 1053–1058, 2001.

[7] R-P. Berretty, M. H. Overmars, and A. F. van der Stappen. Orienting
polyhedral parts by pushing.Computational Geometry: Theory and
Applications, 21:21–38, 2002.

[8] K-F. Böhringer, V. Bhatt, B.R. Donald, and K. Goldberg. Algorithms
for sensorless manipulation using a vibrating surface.Algorithmica,
26:389–429, 2000.

[9] K-F. Böhringer, B. R. Donald, and N.C. MacDonald. Upper and
lower bounds for programmable vector fields with applications to mems
and vibratory plate part feeders.Algorithms for Robotic Motion and
Manipulation, J.-P. Laumond and M. Overmars (Eds.), A.K. Peters,
pages 255–276, 1996.

[10] M. Brokowski, M. A. Peshkin, and K. Goldberg. Optimal curved fences
for part alignment on a belt.ASME Transactions of Mechanical Design,
117, 1995.

[11] R. Brost. Automatic grasp planning in presence of uncertainty.Inter-
national Journal of Robotics Research, 7(1):3–17, 1988.

[12] R. C. Brost and K. Goldberg. A complete algorithm for synthesizing
modular fixtures for polygonal parts.IEEE Transactions on Robotics
and Automation, 12:31–46, 1996.

[13] J. Canny and K. Goldberg. A risc approach to robotics.IEEE Robotics
and Automation Magazine, 1:26–28, 1994.

[14] J. Canny and K. Goldberg. Risc for industrial robotics: Recent results
and open problems. InIEEE International Conference on Robotics and
Automation (ICRA), pages 1951–1958, 1994.

[15] Y-B. Chen and D. J. Ierardi. The complexity of oblivious plans for
orienting and distinguishing polygonal parts.Algoritmica, 14:367–397,
1995.

[16] M. A. Erdmann and M. T. Mason. An exploration of sensorless
manipulation. IEEE Journal of Robotics and Automation, 4:367–379,
1988.

[17] M. A. Erdmann, M. T. Mason, and G. Vaněček. Mechanical parts
orienting: The case of a polyhedron on a table.Algorithmica, 10(2):226–
247, 1993.

[18] K. Goldberg. Handling industrial parts with the parallel-jaw gripper. In
NSF Design and Manufacturing Systems Conference, 1993.

[19] K. Goldberg. Orienting polygonal parts without sensors.Algoritmica,
10(2):201–225, 1993.

[20] K. Goldberg, B. Mirtich, Y. Zhuang, J. Craig, B. Carlisle, and J. Canny.
Part pose statistics: Estimators and experiments.IEEE Transactions on
Robotics and Automation, pages 849–859, 1999.

[21] W. Huang and M. T. Mason. Mechanics, planning and control for
tapping. InRobotics, the algorithmic perspective, pages 91–102. A.K.
Peters, 1998.

[22] D. Kriegman. Let them fall where they may: Capture regions of curved
objects and polyhedra.International Journal of Robotics Research,
16:448–472, 1997.

[23] K. M. Lynch. Locally controllable manipulation by stable pushing.IEEE
Transactions on Robotics and Automation, pages 314–323, 1999.

[24] K. M. Lynch. Toppling manipulation. InIEEE International Conference
on Robotics and Automation (ICRA), pages 2551–2557, 1999.

[25] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, con-
trollability, and planning. International Journal of Robotics Research,
15(6):533–556, 1996.

[26] A. Marigo, M. Ceccarelli, S. Piccinocchi, and A. Bicchi. Planning
motions of polyhedral parts by rolling.Algorithmica, 26(4):560–576,
2000.

[27] M. T. Mason. Mechanics and planning of manipulator pushing opera-
tions. International Journal of Robotics Research, 5(3):53–71, 1986.

[28] K. Mehlhorn and S. N̈aher. Dynamic fractional cascading.Algorithmica,
5:215–241, 1990.

[29] Mark Moll and Michael A. Erdmann. Manipulation of pose distributions.
International Journal of Robotics Research, 21(3):277–292, 2002.

[30] M. A. Peshkin and A. C. Sanderson. The motion of a pushed sliding
workpiece. IEEE Journal of Robotics and Automation, 4(6):569–598,
1988.

[31] M. A. Peshkin and A. C. Sanderson. Planning robotic manipulation
strategies for workpieces that slide.IEEE Journal of Robotics and
Automation, pages 696–701, 1988.

[32] A. Rao and K. Goldberg. Shape from diameter: Recognizing polygonal
parts with a parallel-jaw gripper.International Journal of Robotics
Research, 13(1):16–37, 1994.

[33] A. Rao and K. Goldberg. Friction and part curvature in parallel-jaw
grasping.Journal of Robotic Systems, 12(6):365–382, 1995.

[34] A. Rao and K. Goldberg. Manipulating algebraic parts in the plane.
IEEE Transactions on Robotics and Automation, 11:589–602, 1995.

[35] A. Rao, D. Kriegman, and K. Goldberg. Complete algorithms for
reorienting polyhedral parts using a pivoting gripper.IEEE Transactions
on Robotics and Automation, 12(2):331–342, 1996.

[36] A.S. Rao and K. Goldberg. Placing registration marks.IEEE Transac-
tions on Industrial Electronics, 41:51–59, 1994.

[37] D. Reznik and J. Canny. Universal part manipulation in the plane
with a single horizontally-vibrating plate. InRobotics, the algorithmic
perspective, pages 23–34. A.K. Peters, 1998.

[38] A. Sudsang, J. Ponce, and N. Srinivasa. Algorithms for constructing
immobilizing fixtures and grasps of three-dimensional objects. In J-P.
Laumond and M. H. Overmars, editors,Algorithms for Robotic Motion
and Manipulation, pages 363–380. A.K. Peters, 1997.

[39] R. Wagner, Y. Zhuang, and K. Goldberg. Fixturing parts with seven
modular struts. InIEEE International Symposium on Assembly and
Task Planning, pages 133–139, 1995.

[40] A. S. Wallack and J. Canny. Planning for modular and hybrid fixtures.
Algorithmica, 19(1–2):40–60, 1997.

[41] M.Y. Wang. An optimum design for 3d fixture synthesis in a point set
domain. IEEE Transactions on Robotics and Automation, 16:839–846,
2000.

[42] M.Y. Wang and D. Pelinescu. Optimizing fixture layout in a point set
domain. IEEE Transactions on Robotics and Automation, 17:312–323,
2001.

[43] C. Wentink, A. F. van der Stappen, and M. H. Overmars. Algorithms
for fixture design. In J-P. Laumond and M. H. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 321–346. A.K.
Peters, 1997.

[44] D. E. Whitney. Real robots don’t need jigs. InIEEE International
Conference on Robotics and Automation (ICRA), volume 1, pages 746–
752, 1986.

[45] J. A. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete
algorithm for designing passive fences to orient parts.Assembly
Automation, 17(2):129–136, 1997.

[46] T. Zhang, G. Smith, R-P. Berretty, M. H. Overmars, and K. Goldberg.
The toppling graph: Designing pin sequences for part feeding. InIEEE
International Conference on Robotics and Automation (ICRA), volume 1,
pages 139–146, 2000.

[47] Y. Zhuang and K. Goldberg. On the existence of solutions in modular
fixturing. International Journal of Robotics Research, 15:646–656, 1996.


