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Abstract— In this paper we present a novel gait analysis
technique which can directly be used to synthesize gaits for a
broad class of mechanical systems. We build upon prior work
in locomotion mechanics, however we take a different approach
to generate gaits that yield absolute motion of the mechanical
system. We present a systematic analysis to control all parameters
of a proposed type of gait which eliminates the need for intuition
and guesswork as was required in the prior work. The main
contribution of the paper is relating position change or motion
in the  ber space to a volume integral bounded by closed curves
on a two dimensional manifold embedded in the base space or
shape space of the robot. Not only does our method remove the
restriction of using sinusoidal gaits as was the case in the prior
work but it also allows for generating optimal gaits by solving a
variational problem rather than solving a dynamic programming
problem as was the case in the prior work.

I. INTRODUCTION

The gait generation problem for robotic systems is a dif -
cult one. Even though researchers have studied this problem
extensively, most prior approaches were either empirically
derived or considered a restrictive set of possible gaits. Both
approaches, however, required some parameter guessing to
generate a desired motion. In this paper we simplify the gait
generation problem and eliminate not only the restriction of
possible gaits but also any guessing of motion parameters for
the generated gaits.

To be more speci c, we deal with under-actuated systems,
that is, systems that do not have as many actuators as the
dimension of their con guration space. Moreover, we are
interested in robots that do not have direct control of their
position but only of their shape, i.e. we assume that just the
shape variables are fully actuated. We address the question
of how a multi-bodied robotic system can induce position
change upon itself by changing its shape, that is, we address
the gait generation problem. Locomotion via shape changes
can be found in nature as well: biological snakes locomote
by undulating their bodies, and many bacteria locomote by
changing their shapes.

In this paper we will generate gaits which produce a desired
motion for principally kinematic mechanical systems, that is,
systems whose motion is governed solely by the existence
of the “right number” of non-holonomic constraints (see Fig.
1). One particular robotic system that we are interested in
is the kinematic snake robot (Fig. 1(b)). Not only does this
robot have the principally kinematic property but it has been
extensively studied in prior literature which allows us to
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Fig. 1. Con guration variables of the rolling disk (a) and the kinematic
snake robot (b).

compare our results to previous work. The work presented
in this paper is an extension to our gait generation techniques
for purely mechanical systems in [15].

II. PRIOR WORK

Con guration space of mechanical systems is usually com-
posed to two spaces, a  ber space that represents the position
of the robot and a base space that represents the shape of
the robot. Gait generation or designing curves in the base
space that will produce a desired position change has been
extensively studied. Work presented in this paper relates to
and builds upon some of this prior research.

A. Bio-mimetic approach:
During the seventies, Hirose performed extensive experi-

ments on biological snakes to study how they locomote. He
was able to de ne a geometric curve, the serpenoid curve,
which best approximates the shape of a real snake during
undulation [6]. Moreover, Hirose designed and built several
robotic snakes which were composed of numerous rigid links
that were connected by revolute joints as seen in Fig. 1(a). By
attaching passive wheels on the bottom of the links and forcing
the robot shape to move along the serpenoid curve, Hirose
was able to demonstrate robotic snake locomotion similar to
biological snakes locomotion. The restrictions of this approach
were that it was system speci c, that is, not generalizable and
the parameters of the serponoid curve were empirically  ne
tuned to only produce smooth snake-like undulation motion.

B. Reduction approach:
Ostrowski, on the other hand, took advantage of transla-

tional symmetry in physics which allowed him to project the
entire dynamics of the system onto the shape space, a subspace
of the entire con guration space which represents the internal



shape of the robot. Moreover, by devising a reconstruction
equation to relate shape and position velocities he was able
to represent the motion of the robot by a non-linear control
system. Then by taking recourse to control theory he related
the degree of Lie brackets of the control vector  elds of the
control system to the frequencies of the sinusoidal inputs of
the shape variables [13].

Using this approach he was able to intuitively develop and
then analyze gaits for several types of mechanical systems
including principally kinematic systems. In fact, Ostrowski
was able to create gaits for the robot seen in Fig. 1(b) where
he had full control of the orientation of the wheel axes as
well as the joints’ angles. The restriction of this approach
was that the inputs had to be sinusoidal; and even though
this method produced the frequencies of the sinusoidal inputs,
the magnitudes were  ne-tuned to produce the desired motion.
This method of gait generation is also found in [1], [2], [6] [8],
[10],[13], [14], and [16]. In this paper, we consider a simpler
kinematic snake by  xing the wheel axes’ orientations, that is,
effectively reducing the shape space dimension. Nonetheless,
we are still able to generate gaits that produce the same
motions attained in the prior work.

C. Integration approach:

We classify mechanical systems into three types: purely me-
chanical systems, that is, systems whose motions is governed
solely by the conservation of momentum laws; principally
kinematic systems, that is, systems whose motion is governed
solely, by the existence of the right number of independent
non-holonomic constraints; and mixed kinematic and dynamic
systems, that is, systems whose motion is governed by some
non-holonomic constraints and momentum being conserved
along some allowable directions. In [15] we generated gaits
for purely mechanical systems. The main idea was to relate
position change of the robot to a volume integral under a well
de ned function.

In this paper we study principally kinematic mechanical
systems and we generate gaits for the robotic systems seen
in Fig. 1. Mukherjee generated gaits for the rolling disk in
a similar approach to the approach that we are presenting in
this paper [9]; however, he does not address optimal gaits, nor
does he generate gaits from more complex systems. Finally, it
is worth mentioning that there has been prior work that directly
relates to our approach: [11], [12], and [17]. However, most
were concerned with purely mechanical systems and generated
gaits only for space robots.

Our gait generation approach is simple and does not have
any restrictions on the type of allowable inputs. Hence, for
a family of parameterizable gaits, we naturally control all the
parameters, frequencies and magnitude, and eliminate the need
for deep intuition for  nding and  ne-tuning these parameters.
Moreover, our approach applies to a broad type of mechanical
systems.

III. BACKGROUND MATERIAL

In this section we introduce principally kinematic systems
and several other technical terms that are needed for our gait
generation technique.

A. Principal  ber bundles:
We remind the reader that a con guration uniquely speci es

the location in two or three dimensions of each physical
point of the mechanism or robot. A con guration is expressed
by various sets of coordinates that represent the degrees
of freedom of the mechanical system. For a robot that is
made up of many rigid bodies, both position variables ( ber
variables) that describe the robot’s position with respect to
an inertial frame, and shape variables (base variables) that
describe the robot’s internal angles are needed to specify the
robot’s con guration.

A general con guration manifold for mechanical systems1

is usually denoted by Q = (G,M ), where G is the Lie group
specifying the position of the robot and M is the base space
specifying the shape of the robot. In this paper we deal with
con guration manifolds that have a  ber bundle structure.

De nition 3.1 (Fiber bundle): A manifold Q with a base
subspace M and a projection map π : Q → M is a  ber bundle
if for every r ∈ M there exists a neighborhood U ⊂ M and
r ∈ U such that π−1(U) is homeomorphic to Y × U , where
Y = π−1(r), that is, locally, Q ∼= Y ×M . Y is a  ber 2 which
is de ned as the pre-image of r ∈ M under the map π.

B. Gait:
In this paper, we de ne a gait as closed curve, γ(t), in the

base space, M , of the robot. A gait is a mapping

γ : R → M, (1)

such that γ(t) = γ(t+p) ∈ M where p ∈ R. Note that for our
gait generation technique we require γ(t) to be continuous.

C. Non-holonomic constraints:
Non-holonomic constraints are constraints that act on con-

 guration velocities and are, by de nition, not integrable. Such
constraints are seen in mechanical systems with wheels or
rolling elements. The assumption that wheels can not slide
sideways nor slip while rolling give rise to non-holonomic
constraints. In this paper we will assume that a set of k non-
holonomic constraints can be written in a Pfaf an form

ω(q) · q̇ = 0, (2)

where ω(q) is a k × n matrix describing the constraints
and q̇ represents an element in the tangent space of the n-
dimensional con guration manifold Q.

1The con guration space of all mechanical systems have trivial principal
bundle structure.

2If the  ber Y has a group structure then Q is a principal  ber bundle,
and if Q = Y × M globally, then Q is a trivial  ber bundle.



D. Kinematic mechanical systems:
According to [3], a mechanical system is kinematic when

its state vector is identical to its con guration vector and the
system controls are velocities. For kinematic systems, there
is a direct relation between the system’s state  rst order
derivatives and the system’s inputs. To be more technical,
purely kinematic systems are de ned as systems that have as
many independent non-holonomic constraints as the dimension
of the system’s  ber space. The motion of such systems with
a con guration q = (gl, rm) ∈ Qn=l+m can be described
by the reconstruction equation, ξ = A(g, r) · ṙ, where ξ
is the body representation of a l-dimensional  ber velocity,
A(g, r) is an l × m matrix that depends on the con guration
q, and ṙ is an m-dimensional input vector. Moreover, if the
non-holonomic constraints of the purely kinematic system
are invariant with respect to group action, the mechanical
system becomes principally kinematic. Later in the paper we
will show how the motion of principally kinematic systems
is governed solely by base motions and the prescribed non-
holonomic constraints.

De nition 3.2 (Principally kinematic system): Given a me-
chanical system that has a con guration space with trivial
principal  ber structure, Q = G × M , where l and m denote
the dimensions of G and M , respectively, then n = l + m is
the dimension of Q. Let the mechanical system be subjected
to k non-holonomic constraints, ω(q) · q̇ = 0. Then the
dimension of the matrix ω is k × n. A system is said to be
principally kinematic3 if k = l (right number of constraints),
det(ω(q)) �= 0 (linear independence of the constraints), and
ω(q) · q̇ = ω(Φg(q)) · TgΦg(q̇) = 0 (invariance of the
constraints).

E. Kinematic connections:
For principally kinematic systems, we can  nd a direct

relation between shape space velocities, ṙ, and  ber space ve-
locities, ġ. This relation is presented in the following Lemma4:

Lemma 3.3 (Local form of kinematic connections):
Given a principally kinematic mechanical system
whose con guration space is a trivial principal bundle
Qn = Gl×Mm, that is, q = (g, r) ∈ Q and q̇ = (ġ, ṙ) ∈ TqQ.
Moreover, let the system be subject to k linearly independent
non-holonomic constraints ω(q) · q̇ = 0 that are invariant with
respect to left group actions5. Then we have

TgLg−1 ġ = A(r)ṙ,

where TgLg−1 ġ is the body representation of a  ber velocity
ġ, A(r) is a l ×m matrix that is referred to as the local form
of the kinematic connection, and ṙ is a shape space velocity.

3Sometimes, these systems are referred to as Chaplygin.
4This Lemma can be found in [1] and [13], however, we present a more

compact and direct proof in this paper.
5For detailed de nitions of some of the terms in this lemma, the reader is

referred to [1].

Proof: Given the triviality of the con guration space
and the invariance of the constraints with respect to left group
actions, then we have

ω(q) · q̇ = ω(Φhq) · TqΦhq̇, or
ω(g, r) · (ġ, ṙ)T = ω(Lhg, r) · (TgLhġ, ṙ)T ,

where Φhq and TqΦhq̇ are the left and lifted left actions on
the manifold Q, [1], [13]. Note that these actions act only on
the  ber part of q. Let h = g−1 and using (2) we have

0 = ω(g, r) · (ġ, ṙ)T = ω(Lg−1g, r) · (TgLg−1 ġ, ṙ)T

= ω(g−1g, r) · (TgLg−1 ġ, ṙ)T

= ω̄(r) · (TgLg−1 ġ, ṙ)T .

Let ξ = TgLg−1 ġ and ω̄(r) = (ω̄1(r), ω̄2(r)) then writing the
above equation in matrix form we get

(
ω̄1(r) ω̄2(r)

) · ( ξ
ṙ

)
= 0.

Solving for ξ we get

ξ = TgLg−1 ġ =

−A(r)︷ ︸︸ ︷
(ω̄1(r))−1 · ω̄2(r) ·ṙ. (3)

The fact that the non-holonomic constraints are linearly in-
dependent implies that ω̄1(r) is invertible. Also note that
A(r) depends on the base variables only. Hence, by using
only the non-holonomic constraints we de ne the kinematic
connection seen in (3) which relates the  ber velocities to
base variables and base velocities. This relation is crucial for
our gait generation technique.

F. Exterior algebra:
We shall review Stokes’ theorem in its most general form.
Theorem 3.4 (Stokes’ Theorem): Given a one-form ω and

its exterior derivative dω, we have∮
∂N

ω =
∫
N

dω, (4)

where ∂N is the boundary of the manifold N .
The exterior derivative of a one-form, ω =∑m

i=1 fi(σ1, σ2, · · · , σm)dσi, yields a two-form and is

given by dω =
m∑

i,j=1,i<j

(
∂fj

∂σi
− ∂fi

∂σj

)
(dσi ∧ dσj), where ∧

represents the wedge product [4], [7].

IV. GAIT GENERATION

Now we utilize the de nitions from the previous section to
introduce our gait evaluation technique. In (3) we were able to
relate base space velocities, ṙ, to body representation of  ber
space velocities, ξ = TgLg−1 ġ [13], [10]. Each row of (3) can
be written as follows:

ξi = −
m∑

j=1

Aij(r)ṙj , (5)



where Aij(r) is the component at the ith row and jth column
of the matrix A(r) and ṙj is the jth component of ṙ. To com-
pute the change in position, we integrate (5). Note, however,
that we are integrating a body representation of a  ber velocity.
Hence the integral of the left hand side of (5) with respect to
time will yield a change in position. This position change is
not necessarily an inertial position change as we shall see later
in the paper. We de ne a body representation con gur ation
variable ζi(t) =

∫ t

0
ξidt. As for the right hand term, it is a

one-form, hence, we will take its line integral over a path in
the base space, then integrating (5) we get

∆ζi = ζi(t1) − ζi(t0) =
∫ t1

t0

ξidt

=
∫ t1

t0

m∑
j=1

−Aij(r)
∂rj

∂t
dt

=
∮ γ(t1)

γ(t0)

m∑
j=1

−Aij(r)drj ,

=
∫ ∫

Γ

m∑
k,j=1,k<j

F i︷ ︸︸ ︷(
∂Aij(r)

∂rk
− ∂Aik(r)

∂rj

)
(drk ∧ drj),

=
m∑

k,j=1,k<j

∫ ∫
Γ

F i(r1, r2, · · · , rm)(drk ∧ drj), (6)

where γ(t) is a closed one-dimensional curve in the base
space and Γ is the interior of that curve on an arbitrary two-
dimensional smooth manifold embedded in the base space.
Note that the integrand functions F i de ned in the last row
of the previous equation are functions of the base variables
only. The above equation relates position change in body
representations, ∆ζi, to a sum of volume integrals.

By studying the integrands in the above equation and by
designing and placing curves in the base space we are able
to generate gaits that will move the mechanical system in
a desired direction. Finally, we remind the reader that ∆ζ
is an integral of a body representation of a  ber velocity ξ.
Hence, it does not necessarily relate trivially to inertial position
change. This is the case only when the  ber has a trivial group
structure, that is the lifted action map is the identity map,
TgLg−1 ġ = ġ.

A. Properties of height functions
By studying certain properties of the integrand functions F i

we are able to evaluate closed curves in the base space. We
shall refer to the integrand functions as height functions6 in
the rest of the paper.We shall study the following properties
of the height functions.

1) Symmetry:: We study periodicity which allows us to
investigate smaller portions of the base space. Moreover, we
 nd the set of points about which the height function is odd.

6Note that we have l height functions where l is the dimension of the  ber
space G.

A gait that is symmetric about an odd point of the height
function yields zero  ber motion while a gait that changes
orientation as it passes through an odd point is guaranteed to
have a non-zero position change.

2) Signed regions:: Since we are integrating a height func-
tion over a closed region, it is important to know where the
height function is positive, negative, or zero. Not only does
this allows us to control the direction of motion along the
 ber but also to optimize gaits by restricting them to lie in a
strictly positive or negative region.

3) Unboundedness:: While designing gaits, one should
stay away from regions where the height function tends to
in nity . A gait that passes through such regions may yield
in nite volume, that is, in nite position change for  nite shape
changes. Usually this is an indication that a non-holonomic
constraint is being violated.

By inspecting the above properties of the height functions
we are able to evaluate the position change of the robot due
to following any closed curve in the base space.

B. Gait generation with height functions
We have related motion along the  ber to an oriented

volume integral in the base space. Hence, we can compute
how the robot’s position changes as it changes its shape along
any closed curve in the base space. Since our gait evaluation
technique is direct and simple we can devise a set of simple
rules that can be used to generate gaits.

1) Closed non-self-intersecting curves:: Any closed non-
self-intersecting curve that lies entirely in a positive or negative
region is guaranteed to produce a non-zero  ber motion.

2) Closed self-intersecting curves:: Any closed self-
intersecting curve is guaranteed to produce a non-zero  ber
motion provided that the curve spans more than one region,
the self-intersection occurs on a boundary edge between two
regions of opposite signs, and the orientation of the curve
changes sign as it crosses from one region to another.

3) Symmetric curves around points in the set K:: Assum-
ing that the height function is hyper-odd over the set of points
in K, then any curve symmetric with respect to points in K
will enclose equal areas in two adjacent regions that have
opposite signs. Integrating the volume under such curves will
yield zero, that is, the  ber motion for such gaits is identically
zero.

These rules do not add any constraints on the shape of the
input curves. For instance, as long as the curve stays entirely
in one region and does not intersect itself, it is guaranteed to
generate a nonzero  ber motion. The bigger the area enclosed
by the curve within a positive or negative region, the bigger the
generated phase shift. This relaxes the restriction of sinusoidal
inputs that was required in prior work.

C. Optimal gaits
Earlier we related position change of the robot to an oriented

volume under a well-de ned height function. By changing the
shape and position of a gait, γ(t), we are able to change the
magnitude of the  ber motion. In this section we formulate a



variational problem that maximizes the  ber motion magnitude
for all gaits with a given length. We refer the reader to [5] for
a detailed description of the calculus of variations ideas used
here.

For optimality analysis it is easier to work with line integrals
seen in (3) rather than dealing with double integrations. Hence,
the functional which we are optimizing is a one-form

J(γ) =
∮

γ(t)

ω.

To simplify the mathematical notation, let ω be two dimen-
sional, that is,

ω = f(r1, r2)dr1 + g(r1, r2)dr2

where r1, r2 are the base variables.
Note that the requirement that the gaits have a  x ed length

is essential. If such a bound is not enforced we can get
unbounded volume for a gait with unbounded length. For this
problem it is convenient to parameterize the gait by its arc
length, s. This will yield a well de ned functional that we are
trying to maximize

max J(γ(s)) =
∫ s1

s0

(
f(r1, r2)

∂r1

∂s
+ g(r1, r2)

∂r2

∂s

)
ds.

In this problem we have an additional constraint on the length
of the curves; this can be represented by the following integral:

L =
∫ s1

s0

√
(∂r1/∂s)2 + (∂r2/∂s)2ds.

The above two integrals de ne a constrained calculus of
variations problem. We resort to numerical methods to opti-
mize our gaits. However, the main bene t from our gait analy-
sis technique is that now we can solve for optimal gaits using
a variational problem. This is a signi cant accomplishment
compared to the prior work where a dynamic programming
problem was used.

V. EXAMPLES

In this section we will generate gaits for two principally
kinematic systems, the rolling disk and the kinematic snake.

A. Rolling disk:
The rolling disk has a con guration manifold Q = R×R×

S × S. Let q = (x, y, θ, φ) ∈ Q denote the disk con guration
where (x, y) represent the location of the point of contact,
θ represents the orientation angle measured from the x-axis,
and φ represents the rolling angle measured from the vertical
axis (Fig. 1(a)). We will assume that we have full actuation
control of both the steering and rolling angles. Hence, the base
space is M = S× S and the  ber space is G = R ×R which
is two-dimensional. Additionally we have two non-holonomic
constraints: no sideways sliding (ẋ sin θ − ẏ cos θ = 0) and
rolling without slipping (ẋ cos θ + ẏ sin θ −Rφ̇ = 0). Solving
for the  ber velocities ẋ and ẏ using the constraints and writing
the solution in matrix form we get
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Fig. 2. The rolling disk height functions along the x direction are seen in
(a)&(d) and the y direction in (b)&(e). Four types of gaits are simulated and
their respective trace for the contact point is seen in (c)&(f).

(
ξ1

ξ2

)
=
(

ẋ
ẏ

)
︸ ︷︷ ︸
TgLg−1 ġ for G=R×R

=
(

0 R cos θ
0 R sin θ

)
︸ ︷︷ ︸

A(r)

(
θ̇

φ̇

)
.

Using Equation 6, we can compute the change in both the
x and y directions for any gait γ(t) = (θ(t), φ(t))

∆x = ∆ζ1 =
∮

γ

R cos(θ)dφ

=
∫ ∫

Γ

−R sin(θ)︸ ︷︷ ︸
Fx(θ,φ)

dθdφ, (7)

∆y = ∆ζ2 =
∮

γ

R sin(θ)dφ

=
∫ ∫

Γ

R cos(θ)︸ ︷︷ ︸
Fy(θ,φ)

dθdφ. (8)

A three-dimensional plot of both height functions can be
seen in Fig. 2(a) and 2(b). Let us study the properties of
these speci c height functions for the rolling disk. Symmetry:
Both Fx and Fy are periodic with period 2π, hence it suf ces
to look at the region (θ, φ) ∈ [−π, π] × [−π, π]. Moreover,
the height functions are quite simple, both are independent of
the rolling variables, φ. Plus, the height functions inherit the
odd and even properties from the sine and cosine functions
in the orientation variable, θ. Zero curves: We can easily
compute the zero lines, (θ, φ) = (t, kπ), k ∈ Z for Fx and
(θ, φ) = (t, (2k + 1)π/2), k ∈ Z for Fy . These lines identify
the positive and negative regions for both height functions.
Boundedness: Note that there are no in nity lines for the
rolling disk example. The reason is that the non-holonomic
constraints can never be linearly dependent.

Given the above properties of the height functions for the
rolling disk, gait generation is direct. Moreover, since the  ber



group is R × R and is Abelian7, we can relate the position
change in both the x and y directions directly to the volume
integrals as seen in Equations 7 and 8. (This trivial relation is
not true in general, as we shall see in the second example in
this paper.)

To generate a gait that moves the disk in the y direction only,
a circular gait that stays in a positive region of Fy while being
symmetric to a zero line of Fx will produce this motion, that
is, ∆x = 0,∆y > 0 as seen in Fig. 2(a,b). We could shift this
gait along the θ direction to produce motion in the x direction,
or we can use a “ gure-8” type of gait to produce the same
net motion, that is, ∆x > 0,∆y = 0 as seen in Fig. 2(d,e).
These two families of gaits allow us to move the rolling disk
in any direction in the plane. Also note that we are not bound
to use sinusoidal gaits. We simulated two other types of gait
as seen in Fig. 2(c,f). In fact, we achieved bigger magnitudes
for these gaits when compared to the sinusoidal counterparts.

B. Kinematic snake robot:

Now we will generate gaits for a more complex mechanical
system, the kinematic snake (Fig. 1(b)). Ostrowski was able to
generate gaits for a similar system [13], however, he had full
control over the orientation of the wheel axes as well as the
joint angles, that is, making the base space  ve-dimensional.
In this paper, we have actuation of the joints only and  x
the wheel axes to the links without compromising the overall
mobility of the robot, that is, even though the base space
is two-dimensional, we are still able to generate gaits that
will move the robot along the body representation of all  ber
directions.

The con guration space of the kinematic snake has a prin-
cipal bundle structure and is  ve-dimensional, Q = G×M =
SE(2) × (S × S). Let q = (x, y, θ, α1, α2) ∈ Q represent the
robot’s con guration and 2L be the length of each link. Since
we have three sets of passive wheels, three non-holonomic
constraints with no sideways slipping are generated, that is,

−Sθ+α1 ẋ + Cθ+α1 ẏ − Lα̇1 − L(1 + Cα1)θ̇ = 0,

−Sθẋ + Cθẏ = 0,

−Sθ−α2 ẋ + Cθ−α2 ẏ − Lα̇2 + L(1 + Cα2)θ̇ = 0,

where C∗ = cos(∗) and S∗ = sin(∗). Solving the above
system for ġ = {ẋ, ẏ, θ̇} and then solving for the body
representation ξ = TgLg−1 ġ we get

7For Abelian groups, TgLg−1 is the identity map, that is, ξ = TgLg−1 ġ =
ġ.

ξ =

TgLg−1 for G=SE(2)︷ ︸︸ ︷⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

ġ︷ ︸︸ ︷⎛
⎝ ẋ

ẏ

θ̇

⎞
⎠ =

⎛
⎜⎝

L(1+Cα2 )α̇1

Sα1+Sα1−α2−Sα2

L(1+Cα1 )α̇2

(1+Sα2 )Sα1−(1+Cα1 )Sα2

0 0
−Sα2 α̇1

Sα1+Sα1−α2−Sα2

−Sα1 α̇2

(1+Sα2 )Sα1−(1+Cα1 )Sα2

⎞
⎟⎠

︸ ︷︷ ︸
A(r)

ṙ.

Note that as expected A(r) is a function of the base space
variables. This is due to the constraints being invariant with
respect to group actions when represented in body coordinates.
Then we take each row of the above equation and integrate it
over a period of a cyclic gait. By using Stokes’ Theorem we
convert the line integrals to volume integrals which compute
the  ber motion in the directions {ξ1, ξ2, ξ3}.

∆ζ1 =
∫ ∫

Γ

(
L

−1 + cos(α1 − α2)

)
︸ ︷︷ ︸

F1(α1,α2)

dα1dα2, (9)

∆ζ2 =
∫ ∫

Γ

0︸︷︷︸
F2(α1,α2)

dα1dα2 ≡ 0, (10)

∆ζ3 =
∫ ∫

Γ

(
tan(α1

2 ) + tan(α2
2 )

4 sin2(α1−α2
2 )

)
︸ ︷︷ ︸

F3(α1,α2)

dα1dα2. (11)

The  ber motion in the ξ2 direction from (10) is identically
zero for any gait. This agrees with the physical intuition that
the middle link can not move in the ξ2 direction without
breaking the “no sideways motion” constraint of the wheels
in the middle link (Fig. 1(a)). But we can still generate gaits
that will produce motion in the other two directions ξ1 and ξ3

by studying the properties of their associated height functions
F1 and F3 given in (9) and (11).

Inspecting the height functions in (9) and (11), we deduce
the following properties: Symmetry: Since α1, α2 ∈ S, both
F1 and F3 are periodic with period 2π, hence it suf ces to
look at the region (α1, α2) ∈ [−π, π] × [−π, π]. Moreover,
F1 has two types of symmetry, F1(α1, α2) = F1(α1 +
c, α2 + c) for c ∈ R and F1 is even about its in nity
lines. As for F3 is odd about its zero lines. Zero curves:
Note that F1 is never zero while the zero lines for F3 are
(α1, α2) = (t,−t + 2kπ), k ∈ Z. Boundedness: We can easily
compute the in nity lines, (α1, α2) = (t, t + 2kπ), k ∈ Z for
F1 and (α1, α2) = (t, t + 2kπ), (t, kπ), (kπ, t), k ∈ Z for F3.
The zero and in nity lines identify the positive and negative
regions for both height functions. To be able to plot these
unbounded height functions, we used the arctan function
to map the unbounded values to ±π/2. The plots of the
integrands are seen in Fig. 3(a)&(b).



The unbounded lines described above represent singular
con gurations of the robot. So if the snake robot starts from a
con guration on these lines, the robot will not be able to move
away from it without breaking a non-holonomic constraint.
Moreover, if a region enclosed within a designed gait contains
a portion of the above lines, the computed  ber motion for
such a gait might be unbounded. Physically, this means that for
a  nite shape motion, the robot will have in nite motion which
can be understood as breaking a constraint. Hence, not only
do the height functions help us design gaits but also identify
regions where constraints are singular. Having identi ed some
useful properties of the integrand functions, we can move on
to designing gaits.

Given the above properties, we can design gaits that guar-
antee a non-zero  ber motion in either the ξ1, ξ3, or both the
ξ1 and ξ3 directions.
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Fig. 3. Four designed gaits in (a) and (b) with the respective  ber motion
magnitudes in (c)-(h). G1 and G3 are sinusoidal while G2 and G4 are not.
For example, for G2 we have {∆x �= 0, ∆y �= 0, ∆θ = 0} while {∆ζ1 �=
0, ∆ζ2 = 0, ∆ζ3 = 0}.

Two non-self-intersecting gaits, G1 and G3, can be seen in
Fig. 3(a)&(b). As expected these gaits have zero phase shift
in the ξ2 and ξ3 directions but a non-zero phase shift in the ξ1

direction (Fig. 3(c)-(e)). Similarly, Fig. 3(a)&(b) depict self-
intersecting gaits. These gaits generate zero  ber motion in
the ξ1 and ξ2 directions but a non-zero  ber motion in the ξ3

direction (Fig. 3(c)-(e)).
Note that the generated  ber motion is computed in body

representation; however, we would like to compute the phase
shift in the generalized coordinate representation. As seen in
Fig. 3(c)-(h), ∆ζ1 �= ∆x and ∆ζ2 �= ∆y while ∆ζ3 = ∆θ.
This discrepancy in the computed  ber motion values is due to
the body representation, which depends on the group structure
of the  ber space. For this example, the group structure is

SE(2), and the relation is as follows:

∆ζ1 =
∫ t1

t0

ξ1dt =
∫ t1

t0

ẋ cos θ + ẏ sin θdt, (12)

∆ζ2 =
∫ t1

t0

ξ2dt =
∫ t1

t0

−ẋ sin θ + ẏ cos θdt, (13)

∆ζ3 =
∫ t1

t0

ξ3dt =
∫ t1

t0

θ̇dt = ∆θ. (14)
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Fig. 4. Variations in the  ber motion as an elliptical gait is moved over
height functions F1 and F3 in (a) and (b) respectively. We measure the motion
{∆x, ∆y, ∆θ} and {∆ζ1, ∆ζ2, ∆ζ3} in (c) and (d) respectively. i in (c)
and (d) represents the distance between the center of the ellipses and the
origin.

To understand the difference between the two represen-
tations and to get a hint on how to resolve this difference
we present the following example. Consider an elliptical gait
whose major axis is aligned with the line α2 = α1 and whose
minor axis is aligned with the line α2 = −α1. The center of
the elliptical gait is moved along the line α2 = −α1 as seen
in Fig. 4(a) and (b). As we move the gait, we numerically
compute the  ber motion along the directions, (x, y, θ). Then
we use integration to compute the  ber motion in the body
representations along the (ξ1, ξ2, ξ3) directions. As expected
from our analysis of our gait generation techniques, all gaits
have a non-zero  ber motion only in the ξ1 direction (Fig.
4(c)). However, the inertial position change is different as
seen in Fig. 4(d). Note that only the θ direction which is
identically zero matches the ξ3 direction. This is due to the
group structure of SE(2) where ∆ζ3 = ∆θ as seen in (14).

Another important thing to notice is that as the gaits
approach the origin (α1, α2) = (0, 0), the motion in the x
direction dominates while as the gaits approach the point
(α1, α2) = (π, π), the motion in the y direction dominates
(Fig. 4(d)). So we can control our gaits to produce motion
solely along each of the  ber variables {x, y, θ}.

VI. DEMONSTRATIONS

We built a simple three-link kinematic snake robot out of
Legos R© and two hobby servos to actuate the two joints. We
implemented our gaits on this experimental snake robot and
achieved good results. In Fig. 5(a) we implemented a gait
that will produce a net motion in the x direction. The robot’s
locomotion was in the the x direction but shifted a bit in the
y direction as well. We relate this to the some minor observed
slipping in the wheels and other mechanical imperfections of
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Fig. 5. Translation and rotation experiments for the kinematic snake.

the robot. Similarly we implemented a rotation gait as seen
in Fig. 5(b). The snake robot rotated in place as expected,
however the origin of the body frame slightly deviated. Again
we claim that this was caused by the reasons stated above.

VII. CONCLUSION

We presented a solution to the problem of gait generation
for principally kinematic mechanical systems. Prior work in
this area realized the same result, but with the limitation of
sinusoidal inputs. Moreover, the prior work required some
guesswork and intuition in specifying the input parameters.
The main contribution of this paper is to use Stokes’ theorem
to relate integrals along closed paths in the base space to
motions in the  ber space. This allowed for a systematic
analysis and control over the input parameters, eliminating the
need for any guesswork in specifying these parameters.

Moreover, our gait analysis tool identi es the presence of
singularities in the constraints. Prior work has identi ed such
singularities; however, our method, by studying the right type
of properties such as symmetry, periodicity, boundedness, and
sign region, not only identi es these singularities but also
produces a richer set of allowable gaits. Finally, it is worth
mentioning that our method allows us to solve for optimal
gaits by solving a variational problem.

Thus far we have been able to generate gait for purely
mechanical systems [15] and principally kinematic systems
as presented in this paper. We have been working on the third
type of system, mixed dynamic and non-holonomic system.
We believe that our approach should tackle this third type of
systems as we have already had some promising results.
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