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Abstract— In this paper we examine the stability of a class
of simple three-dimensional point-mass hoppers, which have
minimal feedback. These hoppers, with varying leg numbers,
are representative of both animal and robotic runners: single-
stance-leg runners such as humans, birds, and some monopod
robots; double-stance-leg hoppers such as kangaroos; and triple-
stance-leg runners like the cockroach or the robot RHex. These
models have minimal feedback: only liftoff and touchdown events
are sensed and, during flight phases, legs are positioned in a
predetermined manner for the ensuing touchdown. Only one
model, that corresponding to cockroach running, is actuated,
and then only in a feedforward fashion. The remaining hopper
models form a subset of energy conserving, piecewise-holonomic
point-mass models for running. Categorically, we show that
the model for single-stance-leg runners is unstable; whereas
the double-stance-leg and triple-stance-leg hopper models are
stable. We abstract three ideas that warrant further study: 1)
runners with multiple splayed legs are naturally more stable since
they can produce sufficient corrective forces in all directions to
perturbations. However, 2) In some systems with specialized hip
joints, passive reactions to perturbations generated at the hip can
be stabilizing. This scenario may be present in RHex. Finally, 3)
A RHex and cockroach version of the three-stance-leg model
are fundamentally different in how their individual legs act to
produce net body forces, which affects their respective stability
properties.

I. INTRODUCTION

Animals and robots diverse in morphology can produce sim-
ilar net force patterns during legged locomotion that look much
like a pogo-stick hopping along. Simple planar models or ‘tem-
plates’ [1] have been developed to model such spring-mass
or ‘pogo-stick’ locomotion in both the sagittal and horizontal
planes [2], [3], [4], [5], [6], [7]. The spring-loaded inverted
pendulum (SLIP) model [8], [9], [10] describes sagittal plane
motions and the Lateral Leg Spring (LLS) model [11], [12],
[13] similarly captures motion in the horizontal plane. Both
models demonstrate the existence of passively stable gaits. The
SLIP and LLS are simple, contain few key parameters, and are
analytically tractable [1]. Furthermore, control strategies based
on SLIP have been helpful in designing robotic runners [14],
[15]. However, the passive stability found in SLIP and LLS
does not extend to a three-dimensional model of spring-mass
locomotion.

A three-dimensional generalization of LLS and SLIP, called
3D-SLIP, produces no stable periodic gaits [16]. Such three-
dimensional gaits can be stabilized using a feedback-based
foot placement control law; however, feedback control can
be costly and difficult to implement. Rather, we hope to find

Fig. 1. Panel (a): Single-leg (3D-SLIP) Hopper; depicts a point-mass model
with a single, massless springy leg and a ball-joint hip. The foot/ground
joint is also a ball-joint. Panel (b): Double-stance-leg (Kangaroo) Hopper;
depicts the model with two massless springy legs during stance. Panel (c):
Triple-stance-leg with actuation (Roach) Hopper; depicts the model with three
massless springy legs during stance, and leg actuation elements on each leg to
control the leg equilibrium lengths. The legs are placed out upon touchdown
in unaligned directions, unlike RHex. Panel (d): Triple-stance-leg (RHex)
Hopper; depicts the model with three massless springy legs during stance,
and hips placed spatially along a body plane. The legs are placed out upon
touchdown such that they are all aligned.

more passive sources of stability, potentially dependent on the
system’s mechanical form, or morphology. We wish to move
beyond planar models, to account for the three-dimensional
nature of locomotion, and to better represent the varying
morphologies of animal and robotic species.

In this paper, we generalize the analysis of 3D-SLIP to
a larger class of three-dimensional center-of-mass models
of legged locomotion. In particular, we wish to understand
how the morphology of animals or machines affects stability.
Multiple stance legs placed on either side of the center-of-mass
can provide forces that span the three-dimensional physical
space and so can provide self-stabilization even with constant,
uncontrolled foot placements, unlike the previous 3D-SLIP



Fig. 2. The stance frame and angles (β1, β2) and (δ1, δ2) describing the
system’s state at TD. Important vector relationships are also shown.

model. In this paper we investigate a kangaroo-like hopper,
and a hopper with tripod support geometry, characteristic of
running cockroaches. We also examine a simple model of the
hexapod robot RHex. While conceptual, the results of this
study are potentially broadly useful in the design and analysis
of legged robots.

II. A GENERAL CLASS OF POINT-MASS HOPPERS

A general hopper model consists of any number of massless,
passively-sprung legs attached at a frictionless ball-jointed
‘hip’ to a point-mass body. Force generated in a leg, which
is assumed proportional to displacement by Hook’s law, acts
along the leg’s length through the hip.

Running or (here, equivalently) hopping motions are com-
posed of stance and flight phases. Touchdown (TD) occurs
when the mass falls to a height at which the leg(s), uncom-
pressed and placed at a specified angle, make contact with
the ground plane. The stance phase ensues, ending in liftoff
(LO) when any leg uncompresses, reaching its equilibrium
length. The mass then follows ballistic motion during the flight
phase until TD occurs again. See Figure 2. Minimal control
is required during flight to reset the leg in anticipation of TD,
but feedback is otherwise not present. Further, the models are
passive except in the special case of a roach-like hopper, which
requires actuation to produce realistic gaits.

The kinematic relationship between the leg vector q i and
the position vector r, or the virtual leg vector, is

r = qi + bi , (1)

where i is a place holder for a given leg number, up to N ,
which is the total number of legs for a given instantiation of
the model. The foot position bi is fixed throughout the stance
phase. The leg length is denoted ζi = |qi|, and the spring

equilibrium length li is typically constant and equal to the leg
length at TD, but in the roach hopper is a function of time.
For N = 1, we have the one-legged (3D-SLIP) hopper, and
the virtual leg vector is coincident with the leg vector: r = q.
In this case (N = 1) we drop the subcript i, and b is the null
vector. The position of the center-of-mass is determined at TD
by the landing geometry of the virtual leg, parameterized by
two angles (β1,β2); however, for all the steady gaits considered
in this paper β1 = 0 and β2 = 2π/5.

We study a nondimensionalized model to reduce parameter
dependence. The subsequent results can be ‘unpacked’ for any
given system given key physical parameters of size (virtual leg
length), effective spring constant, and mass. All the lengths of
the hopper model, as in (1) and Figure 2, have been rescaled
by a hypothetical original length L such that the virtual leg
vector at TD has unit length: |r|TD = 1. We also rescale time
by the ratio L

V , where V is a hypothetical velocity magnitude
of the original system, resulting in |ṙ|TD = 1. These rescalings
in length and time result in nondimensional spring and gravity
constants in the equations of motion. For a linear spring,
summing leg forces from one to N and applying Newton’s
second law in both stance and flight, we get:

r̈ =
k̃

mN

N∑
i=1

(
li
ζi

− 1
)

qi − g̃ez , (stance) ; (2)

r̈ = −g̃ez, (flight) ; (3)

ST D = (r | z = sin β2, ż ≤ 0 ), (TD) ; (4)

SLO = (r | ζi = li, ζ̇i ≥ 0, for any i ), (LO) . (5)

The stance and flight equations of motion along with TD
and LO conditions that specify switching manifolds in state-
space, define a hybrid dynamical system [17]. The vector
ez := (0, 0, 1) ∈ R

3. The equations are in nondimen-
sional form, where g̃ = gL

V 2 = Egravity

Ekinetic
(inverse Froude

number) and k̃ = kL2

mV 2 = Espring

Ekinetic
(Strouhal number) are

nondimensional gravitational and stiffness parameters, and g,
L, k, and m are physical constants of the original system
before rescaling: acceleration due to gravity, virtual leg length,
effective spring constant, and mass, respectively. Four dimen-
sionless parameters (β1, β2, g̃, k̃) replace the original seven
(β1, β2, g, L, k, m, V ).

We define the stride map to be the composite effect of the
stance and flight phases of motion upon the system’s state,
or simply, the function that evolves the system’s state from
stride-to-stride: (r, ṙ)n → (r, ṙ)n+1. We choose to measure
from touchdown to next touchdown (TDn to TDn+1), but
other choices are equally valid (some choose apex-to-apex).
Note, that for some gaits, the stride as defined is technically a
half-stride. Due to symmetry of the equations of motion, this
has no qualitative affect on the results of our analysis [16].
Since the position of the center-of-mass is fixed from TD to
next TD, determined by the landing geometry, we only need
to track the evolution of the system’s velocity, and we can
recover the full state history as required.



The position at TD is parameterized by two angles:

rTD = (cosβ2 sin β1,− cosβ2 cosβ1, sinβ2). (6)

Similarly, the TD velocity is given in terms of (δ1, δ2):

vTD = v(− cos δ2 sin δ1, cos δ2 cos δ1,− sin δ2), (7)

where v is the magnitude of the velocity at TD. Although
normalized to be unity, we must track its evolution to ensure
the existence of a periodic gait.

The stride map from TDn to TDn+1 is then implicitly
defined to be

P : (v, δ1, δ2)n → (v, δ1, δ2)n+1 , (8)

where in practice the mapping is found by integrating the
hybrid system and calculating the angles and magnitude of
velocity at the following TD.

For the passive hoppers, where li = constant, energy
is conserved from stride-to-stride. Since the height of the
center-of-mass will be the same at every TD, it follows that
the magnitude of velocity v will be constant from stride-to-
stride. In this case, the stride map can be reduced to a two-
dimensional mapping:

P : (δ1, δ2)n → (δ1, δ2)n+1 . (9)

Furthermore, this subset of systems is piecewise-holonomic
along with being energy-conserving. Whereas a purely Hamil-
tonian system cannot exhibit asymptotic stability, solutions of
an energy-conserving piecewise-holonomic system can have
partial-asymptotic stability [18], [19], [11]. These special
properties apply to the 3D-SLIP, Kangaroo, and RHex Hopper,
as shown in Figure 1 Panels (a), (b), and (d) respectively. The
Roach Hopper model (Panel (c)), is actuated (l i = li(t)), and
so is not energy-conserving, but is piecewise-holonomic.

III. RESULTS

A. Single-Leg, 3D-SLIP Hopper

For the case of only one stance leg, the equations of motion
simplify sufficiently to carry out explicit analysis. In particular,
for an approximate case (with the effects of gravity neglected
during stance) we are able to obtain an explicit stride map
Pa (given in the Appendix, or see [16] for further details),
and explicit expressions for the corresponding eigenvalues
(also given in the Appendix). These are used to show that
periodic motions of 3D-SLIP are unstable [16]: see Figure 3.
For a given k̃, two solutions exist as shown. For a given
solution, there are two eigenvalues. Those along the upper
curve correspond to perturbations in δ2 and are sometimes
stable (equivalent to the SLIP dynamics). The other curve,
corresponding to perturbations in δ1 (out of the sagittal plane),
is unstable everywhere. A short proof is given in the Appendix.
Such gaits can be stabilized with a relatively simple leg
placement control law whereby the leg is splayed out laterally,
proportional to and in the direction of lateral perturbations in
the velocity, which is measured at LO [16]. However, we wish
to examine sources of stability that rely on the form of the
hopper, rather than on feedback control.

 

 

Fig. 3. Trajectories (solutions) in inertial space for k̃ = 10, solution branches
versus k̃, and corresponding eigenvalues for sagittal plane periodic trajectories
of 3D-SLIP versus k̃. For all solutions shown here: β1 = 0, β2 = 2π/5, and
g̃ = 0.4. The eigenvalues of 3D-SLIP (of DPa (see Appendix)) are plotted,
showing corresponding directions as one moves along the solution branches.
Note that at all times, one eigenvalue, corresponding to perturbations in δ1,
has modulus greater than one.

The 3D-SLIP model, which is well understood [16], forms
the basis of our comparative study. We wish to first see if other
morphologies have more favorible stability characteristics,
with minimal or no feedback present. In the remaining sections
we compare the eigenvalues of periodic gaits in the sagittal
plane, in effect, directly comparing the 3D-SLIP solutions
shown in Figure 3, to respective periodic solutions of the
remaining hopper models. For simplicity, we study solutions
where gravity is negligible during the stance phase. In Figure 4
we directly compare eigenvalues of different hopper models
on (approximately) equivalent periodic gaits.

B. Double-Leg, Kangaroo Hopper

For every sagittal plane trajectory of 3D-SLIP, shown in
Figure 3, we can reproduce an approximately equivalent
trajectory with a two-leg ‘kangaroo’ spring-mass hopper. The
same general equations and mapping apply as before, only
now there are two legs and so two force vectors. However, the
spring constant k̃ is increased by a factor of 1.15 to account
for differences in leg geometry so that the total effective force
along periodic trajectories is approximately equivalent to 3D-



SLIP. The legs are placed with respect to the foot frame such
that b1 = [D, 0, 0] and b2 = [−D, 0, 0], where D = 0.35
for this study. Note, again that the hip joints support no
moment and there is no actuation, thus energy is conserved.
We therefore have a reduced stride map analogous to (9),
with nearly identical periodic solutions as 3D-SLIP, but with
different dynamic properties. See Figure 4b.

With symmetrically splayed legs, the Kangaroo Hopper
acts effectively as a SLIP in the sagittal plane and so has
approximately the same eigenvalues corresponding to the δ 2

direction. However, when perturbed from the sagittal plane (in
δ1) one leg compresses more and produces a net corrective
force, pushing the once unstable eigenvalue into the stable
region.

C. Triple-Leg, Roach Hopper

As with the Kangaroo Hopper, for every trajectory of 3D-
SLIP (shown in Figure 3) we can reproduce the same trajectory
with a three-leg (Roach) Hopper. The same general equations
apply as before, only now there are three legs and so three
force vectors. This time, however, we need to have actuation
in the legs in order to produce SLIP-like forces (which happen
to be similar to an insect’s net body forces) and to have
legs pushing like an insect: with forces approximately directed
along legs towards the center-of-mass.

To actuate, we vary the leg equilibrium length as a predeter-
mined function of time: li = li(t). At each instant, we solve
for the inputs [l1(t), l2(t), l3(t)] required to generate the three
components of the desired net force [fd.x(t), fd.y(t), fd.z(t)],
which reduces to a linear algebra problem:

[l1; l2; l3] = A−1b , (10)

A =

⎡
⎣ q1x/ζ1 q2x/ζ2 q3x/ζ3

q1y/ζ1 q2y/ζ2 q3y/ζ3

q1z/ζ1 q2z/ζ2 q3z/ζ3

⎤
⎦ , (11)

b =

⎡
⎣ fd.x + q1x + q2x + q3x

fd.y + q1y + q2y + q3y

fd.z + q1z + q2z + q3z

⎤
⎦ , (12)

where A and b are complex expressions of known quantities
at each instant of time (determined from the desired forces
and trajectory), and so we can solve for each leg equilibrium
length as a function of time. The vectors qi(t) and lengths
ζi(t) are calculated given the desired 3D-SLIP trajectory r(t).

Since for every value of k̃ there exist two 3D-SLIP solu-
tions, which would result in non-unique inputs l i(t) for a given
k̃ of the roach hopper, we only evaluate the roach hopper
model along the upper portion of the of 3D-SLIP solution
branch shown in Figure 3. The resulting leg equilibrium
lengths li(t) can be thought of as inputs to the system,
though they do not constitute feedback control since they are
prescribed functions of time. These time varying inputs do,
however, break the energy conservation we have used before
to reduce the dimension of the stride map: so we use (8).

The roach hopper legs are placed down at TD such that
the geometry at midstance, for a given periodic 3D-SLIP
trajectory, is a regular tetrahedron: b1 = zm[−1/2,

√
3/2, 0],

Fig. 4. A plot of the eigenvalues of the stride map versus the parameter
k̃, for four different cases. For Panels (b)-(d), the faint symbols ‘o’ represent
3D-SLIP eigenvalues, as depicted in Panel (a). Panel (a): Eigenvalues of the
single-leg (3D-SLIP) Hopper, for which λ1 corresponding to perturbations in
δ1 has modulus greater than one, and so is unstable. What is shown here in
Panel (a) is a smaller portion of the same eigenvalue plot in Figure 3. Panel (b):
Double-leg (Kangaroo) Hopper; stable for one-half of its fixed point branch.
Panel (c): Triple-leg (Roach) Hopper; stable for one-half of its fixed point
branch. Panel (d): Triple-leg (RHex) Hopper; stable for one-half of its fixed
point branch. Note that the double-arrows denote corresponding directions as
one moves along the solution branch, and the curved arrow highlights the
change in eigenvalue branches.

b1 = zm[1, 0, 0], b3 = zm[−1/2,−√
3/2, 0], where zm is

the height of the center-of-mass at midstance of the desired
trajectory.

We integrate the roach hopper stride map numerically, find
the same upright periodic gaits as the 3D-SLIP hopper, but
this time find stable eigenvalues. In this case we obtain three
eigenvalues since the stride map is three-dimensional. Further,
there is no immediate physical meaning in terms of (δ1, δ2)
directions (the eigenvectors are mixed). Note in Figure 4c, how
all three branches of eigenvalues are entirely within the stable
region, (|λi| < 1).

D. Triple-Leg, RHex Hopper Model

Another three-leg hopper model, which is related to the
robot RHex, is different from the previous hoppers since
its hip-joints can support moments. The hips of RHex are
revolute joints with axes normal to the sagittal plane. To
an approximation these joints rigidly resist rotation along
any other axis. If RHex translates out of a fore-aft plane of
motion, the springy legs bend and resist shearing. This effect
is modeled by adding a linear passive spring term in the lateral



direction to the equations of motion during stance:

r̈ =
k̃

mN

N∑
i=1

(
li
ζi

− 1
)

qi − κhex − g̃ez , (13)

where κh = 10 for this study. The remaining equations are
identical to (3)-(5). Note that the distances from the hips to
the center-of-mass of the RHex Hopper have no affect on
the equations of motion since we only conisder translational
motions. Like the 3D-SLIP and Kangaroo Hoppers before,
this model is passive and conserves energy, and so we use the
reduced stride map (9). Evaluating along the same 3D-SLIP
trajectories, we find regions where the RHex Hopper is stable:
see Figure 4d.

Like the Kangaroo Hopper, one branch of eigenvalues of the
RHex Hopper is identical to that of 3D-SLIP, corresponding
to perturbations within the sagittal plane (in δ2). For 3D-
SLIP, Kangaroo, and RHex models the eigenvalues of the two-
dimensional stride map decouple nicely, one corresponding to
motion in the sagittal plane (agreeing with SLIP), and the
other to motion out of the plane. The primary difference in
the stability of these hoppers is in the out-of-plane eigenvalue.
The RHex Hopper’s strong hips and resistance to out of plane
‘shearing,’ correct such perturbations, whereas 3D-SLIP has no
mechanism for correction. The Kangaroo Hopper also corrects
out of plane perturbations but is shown here to have a much
slower correction time. It is perhaps ‘easier’ to stabilize with
rigid hips, as in RHex.

Unlike the other three-leg model of the roach, we can obtain
SLIP-like motions without actuation since all the legs of RHex
are aligned and act as three SLIPs in unison. This highlights a
fundamental difference between the RHex and Roach models.

Whereas SLIP is considered the simplest planar template
(‘model’) of RHex, The RHex Hopper model is intended to
be the simplest three-dimensional template of RHex. Without
the transverse hip-torque reaction in this model, the RHex-
hopper would have the same stability characteristics as 3D-
SLIP (since all legs are aligned). Therefore, the kinematic
constraints on RHex’s legs, enforced by large stiffness out
of the sagittal plane, may play an important role in its overall
stability.

IV. CONCLUSIONS

In this paper we examine the stability of a class of simple
three-dimensional point-mass hoppers, which have minimal
feedback. These hoppers, with varying leg numbers and hip
models (hence, morphology), are representative of both an-
imal and robotic runners: single-stance-leg runners such as
humans, birds, and some monopod robots; double-stance-leg
hoppers such as kangaroos; and triple-stance-leg runners like
the cockroach or the robot RHex, though we note how RHex
is different from the roach.

These models have minimal feedback in the sense that only
liftoff and touchdown events are sensed and, during flight
phases, legs are positioned in a predetermined manner for the
following touchdown event. No other information is required

and no feedback control is used except where indicated.
Only one model, that corresponding to cockroach running,
is actuated, but then only in a feedforward fashion. The
remaining hopper models form a subset of energy conserving,
piecewise-holonomic point-mass models for running.

Categorically, we show that the point-mass model for single-
stance-leg runners (3D-SLIP) is unstable everywhere unless
more control is added; the double-stance-leg Kangaroo hopper
is stable (with sufficient spring constant); the triple-stance-
leg RHex model is stable; and the triple-stance-leg Roach
model representative of cockroaches, insects, and perhaps
some robots is stable as well.

We abstract three ideas that warrant further attention: 1)
multi-legged, splayed runners are naturally more stable since
they can produce sufficient corrective forces in all directions
to perturbations (their leg vectors span the three-dimensional
space), whereas a single-leg hopper cannot respond to pertur-
bations in the same way. However, 2) In some systems with
specialized hip joints, passive reactions to perturbations can
be stabilizing, even for a single leg hopper. This scenario
is present in RHex, which has all legs aligned (effectively
acting as a one-leg hopper), but the hip-joint is revolute and
so resists motion out of a preset plane. It is unlikely that such a
hip mechanism is dominant in other runners with more loose
‘ball-joint’-type hips. Finally, for those interested in further
study of hexapod runners, 3) RHex and the cockroach are
fundamentally different in how their individual legs act to
produce net body forces and this difference influences their
respective stability properties: RHex’s legs act more-or-less
in unison (but remains stable due to the aforementioned hip
mechanism), whereas the roach’s legs push against each other.
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APPENDIX: THE STRIDE MAP Pa (FROM [16])
The stance plane, SI (Fig. 5), is normal to the cross product

n := −r × v = (nx, ny , nz) , where

nx = sin β2 cos δ2 cos δ1 − cos β2 cos β1 sin δ2 ,

ny = sin β2 cos δ2 sin δ1 − cosβ2 sin β1 sin δ2 , (14)

nz = − cosβ2 cos δ2 sin(β1 − δ1) .

Both the momentum and spring force lie in SI , hence SI is an
invariant plane if gravity forces are neglected in stance.

The approximate stride map Pa is the composition of B from
inertial to invariant plane coordinates, P2D through stance in the
invariant plane, R back to inertial coordinates, and Pfl through
flight to the next TD: see eqrefeq23. These four maps are given in
more detail below and are derived in [16]. See Figure 5 for a visual
narrative.

Pa = Pfl ◦R ◦ P2D ◦B : [δ1, δ2]n → [δ1, δ2]n+1 . (15)

The mapping B (from inertial to invariant plane coordinates):

B : [δ1, δ2] → [θqv , β, φ1, φ2]. (16)

θqv = c−1(cδ2cβ2c(β1 − δ1) + sβ2sδ2)

β = c−1 sβ2cβ2cδ2c(β1 − δ1) − c2β2sδ2√
s2β2c2δ2-2sβ2cβ2sδ2cδ2c(β1-δ1)+c2β2s2δ2

φ1 = tan−1(ny/nx)

φ2 = − tan−1(nz/nxy)

We abbreviate the functions sin and cos as s and c, and nxy =
(n2
x + n2

y)
−1/2. Note that when β1 = 0, as in this paper, β = β2.

The mapping P2D (through stance in SI ):

P2D : [θqv, β, φ1, φ2] → [δLO , zLO, φ1, φ2] . (17)

δLO = π − θqv − β − ∆ψ(θqv, k̃)

zLO = sin(β + ∆ψ(θqv, k̃)) cosφ2

φ1 = φ1

φ2 = φ2

Fig. 5. (a) Inertial coordinates. (b) The invariant stance plane SI and stance
frame coordinates. Figure modified from [16]

∆ψ(θqv, k̃) = 2

∫ 1

ζb

sin θqv

ζ[(1 − 2V (ζ; k̃))ζ2 − sin2 θqv ]
1
2
dζ

The mapping R (from invariant plane to inertial coordinates):

R : [δLO, zLO , φ1, φ2] → [δLO1 , δLO2 , zLO] . (18)

δLO1 = tan−1(tan δLO sinφ2) − φ1

δLO2 = sin−1(sin δLO cosφ2)

zLO = zLO

The mapping Pfl (through flight in inertial space):

Pfl : [δLO1 , δLO2 , zLO] → [δ
TDn+1
1 , δ

TDn+1
2 ] . (19)

δ
TDn+1
1 = δLO1

δ
TDn+1
2 = cos−1

(
cos δLO2

√
1 + 2g̃(sin β2 − zLO)

)

The Jacobian of Pa, evaluated at sagittal plane fixed points,
reduces to:

DPa =

[
− sin(β+δ)

sin(β−δ) 0

0 1 + (1 + g̃ cosβ cot δ) ∂∆ψ
∂θqv

]
, (20)

It’s eigenvalues λ1 and λ2 are the top-left and bottom-right entries,
respectively. The eigenvalue λ1 is associated with perturbations to δ1
(away from the sagittal plane), and is always less than −1 [16].


