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Abstract— This paper presents Monte-Carlo localization
(MCL) [1] with a mixture proposal distribution for mobile robots
with stereo vision. We combine filtering with the Scale Invariant
Feature Transform (SIFT) image descriptor to accurately and
efficiently estimate the robot’s location given a map of 3D

point landmarks. Our approach completely decouples the motion
model from the robot’s mechanics and is general enough to solve
for the unconstrained 6-degrees of freedom camera motion. We
call our approach σMCL. Compared to other MCL approaches
σMCL is more accurate, without requiring that the robot move
large distances and make many measurements. More importantly
our approach is not limited to robots constrained to planar
motion. Its strength is derived from its robust vision-based motion
and observation models. σMCL is general, robust, efficient and
accurate, utilizing the best of Bayesian filtering, invariant image
features and multiple view geometry techniques.

I. INTRODUCTION

Global localization is the problem of a robot estimating
its position by considering its motion and observations with
respect to a previously learned map. Bayesian filtering is a
general method applicable to this problem that recursively
estimates the robot’s belief about its current pose. Monte-Carlo
localization provides an efficient method for representing and
updating this belief using a set of weighted samples/particles.
Previous MCL approaches have relied on the assumption that
the robot traverses a planar world and use a motion model
that is a function of the robot’s odometric hardware. Based
on uninformative sensor measurements, they suffer from the
perceptual aliasing problem [2] requiring that the robot move
for several meters and make many observations before its
location can be established. They also demand a large number
of particles in order to converge. MCL has been demonstrated
to be accurate for laser-based robots but it has failed to achieve
similar results for vision-based ones.

In this paper, we present Monte-Carlo localization for robots
with stereo vision. We call it σMCL and it differs from others
in several ways. Firstly, it is not limited to robots executing
planar motion. We solve for unconstrained 3D motion (6
degrees of freedom) by decoupling the model from the robot’s
hardware. We derive an estimate of the robot’s motion from
visual measurements using stereo vision. Secondly, we use
sparse maps of 3D natural landmarks based on the Scale
Invariant Feature Transform [3] that is fully invariant to
changes in image translation, scaling, rotation and partially

invariant to illumination changes. The choice of SIFT leads to
a reduction of perceptual aliasing enabling σMCL to converge
quickly after the robot has traveled only a short distance.
Finally, our method is more accurate than other constrained
vision-based approaches and only requires a small number of
particles.

In comparison, Thrun et al. [1] introduce MCL and study
its performance for planar, laser guided robots that utilize
2D occupancy grid maps [4]. They also demonstrate it for
a robot with vision that relies on an image-based mosaic of
a building’s ceiling but fail to match the accuracy of their
laser-based approach [5]. Wolf et al. [6] implement MCL for
a vision guided robot that uses an image retrieval system based
on invariant features but also needs 2D occupancy grid maps
for visibility computations. Their system requires the storage
of a large database of images along with the metric maps.

Recently, image-based approaches have been proposed that
do not require metric maps but operate using collections of
reference images and their locations. These methods combine
filtering with image-based localization [7] in a more general
setting than originally proposed by [6]. Variations exist for
different choices of image descriptors and associated similarity
metrics. Menegatti et al. [8] represent images using the Fourier
coefficients of their lower frequency components. They define
a simple similarity metric using the Euclidean distance of
these coefficients. Gross et al. [9], in a similar approach, use
the Euclidean distance of the mean RGB values of images
as a similarity metric and employ a luminance stabilization
and color adaptation technique to improve matching accuracy.
Ulrich et al. [10] represent images using color histograms in
the normalized RGB and HLS color spaces. They study the
performance of different similarity metrics for their histogram
representation. Kröse et al. [11] perform Principle Compo-
nent Analysis on images and store the first 20 components.
They match images by comparing the Euclidean distance of
these components smoothed by local Gaussian kernels. For
improved efficiency, they implement an approximate nearest-
neighbour approach using the kd-tree data structure. Rofer
et al. [12] propose a variant that focuses on fast feature
extraction. Theirs is limited to very small environments and it
depends on color-based landmarks suitable only for the robot
soccer domain.

The rest of this paper is structured as follows. We begin



with an overview of Bayesian filtering and its application to
robot localization leading to MCL. We describe the acquisition
of maps and continue to present the main elements of σMCL,
namely its vision-based motion and observation models. We
provide experimental results to prove its accuracy. We compare
it with other vision-based MCL methods and show that it
performs better. Finally, we conclude and suggest directions
for future work.

II. BAYESIAN FILTERING WITH PARTICLE FILTERS

Our goal is to estimate the robot’s position and orientation
at time t, denoted by st. There are 3 degrees of freedom for
the position (x,y and z) and 3 for the orientation (roll, pitch

and yaw). That is, st is a 6-dimensional vector. The state
evolves according to p(st|st−1, ut) where ut is a control signal
most often an odometry measurement. Evidence, denoted by
yt, is conditionally independent given the state (Markov as-
sumption) and distributed according to p(yt|st). Bayes filtering
recursively estimates a probability density over the state space,
given by [1]:

p(st|y
t, ut) = Bel(st) =

αp(yt|st)

∫

st−1

p(st|st−1, ut)Bel(st−1)dst−1 (1)

It’s performance depends on how accurately the transition
model is known and how efficiently the observation probability
density can be estimated.

Particle filtering is a method for approximating Bel(st)
using a set of m weighted particles, Bel(st) =
{x(i), w(i)}i=1,···,m. The system is initialized according to
p(s0) and the recursive update of the Bayes filter proceeds
in the following steps:

1) for each particle i

2) Sample from Bel(st−1) using the weighted samples,
giving s

(i)
t−1

3) Sample from qt = p(st|st−1, ut) (also known
as the proposal distribution), giving s

(i)
t

4) Compute the importance weight, w(i) according to
p(yt|s

(i)
t )

5) end for
6) Normalize the weights such that they add to 1.0
7) Resample from the particles proportionally to their

weight

This procedure is known as sampling-importance-
resampling. The application of the particle filter to robot
global localization is know as MCL. It has been shown that
the choice of proposal distribution is important with respect to
the performance of the particle filter. An alternative proposal
distribution that leads to what is called dual MCL is suggested
in [13]. Dual MCL requires that we can sample poses from
the observations using the dual proposal distribution (a hard
problem in robotics)

q̃t =
p(yt|s̃t)

π(yt)
, π(yt) =

∑

s̃t

p(yt|s̃t) (2)

Fig. 1. Bird’s eye view of 3D landmark map used for localization. Only the
3D coordinates of each landmark are shown as dark dots. Overlayed is the
path the robot followed during map construction while the robot’s position at
the end of the path is shown using a green “V”.

In this case, the importance factors are given by [13]

w(i) = π(yt)π(s̃
(i)
t |ut)Bel(s

(i)
t−1) (3)

MCL and dual MCL are complementary and it is shown
in [13] that using a mixture of the two results in superior
performance compared to either of them. Implementing a
particle filter is straightforward. One must describe the ini-
tial belief, the proposal distribution and the observation and
motion models. Until now, MCL methods have been limited
to solving the simpler case of planar robots with only 3 dof. In
the next few sections we will provide our solution, σMCL, for
vision-based robots moving unconstrained in 3D space with
6 dof. However, first we will describe the maps we use and
how we construct them since they play a central role in our
approach.

III. MAP CONSTRUCTION

We use maps of naturally occurring 3D landmarks as
proposed in [14]. Each landmark is a vector l = {P,C, α, s, f}
such that P = {XG, Y G, ZG} is a 3-dimensional position
vector in the map’s global coordinate frame, C is the 3 × 3
covariance matrix for P , and α, s, f describe an invariant fea-
ture based on the Scale Invariant Feature Transform (SIFT) [3].
Parameter α is the orientation of the feature, s is its scale and f

is the 128-dimensional key vector. SIFT descriptors have been
shown [15] to outperform others in matching accuracy and as
such they are a natural choice for this application. An example
of a map with 32, 000 landmarks is shown in Figure 1. We
constructed it using a total of 1200 frames while the robot
traveled a total distance of 25 meters.

We learn these maps using the method presented in [14].
We use visual measurements to correct the odometry estimate
as the robot travels. We assume that each landmark is in-
dependent and its position is tracked using a Kalman filter.



This approach is only useful for constructing maps for small
environments [14].

IV. OBSERVATION FUNCTION

In order to implement the Monte-Carlo algorithm we must
first specify the distribution p(yt|st) that is used to compute
the importance weights. Given our map representation and our
visual sensor, a measurement yt consists of correspondences
between landmarks in the current view and landmarks in the
known map.

Let IR
t and IL

t denote the right and left gray scale images
captured using the stereo camera at time t. The right camera
is the reference camera. We compute image points of interest
from both images by selecting maximal points in the scale
space pyramid of a Difference of Gaussians [3]. For each
such point, we compute the SIFT descriptor and record its
scale and orientation. We then match the points in the left and
right images in order to compute the points’ 3D positions
in the camera coordinate frame. Matching is constrained
by the stereo camera’s known epipolar geometry and the
Euclidean distance of their SIFT keys. Thus, we obtain a
set OC = {o1, o2, · · · , on} of n local landmarks such that
oj = {Poj

= {XL
oj

, Y L
oj

, ZL
oj
}, poj

= {roj
, coj

, 1}, C, α, s, f}
where poj

= {roj
, coj

, 1} is the image coordinates of the point
and j ∈ [1 · · ·n].

An observation is defined as a set of k correspondences
between landmarks in the map and the current view, yt =
∪1···k{li ↔ oj} such that i ∈ [1..m] and j ∈ [1..n] where m

is the number of landmarks in the map and n is the number
of landmarks in the current view. We compare the landmarks’
SIFT keys in order to obtain these correspondences just as we
did before during stereo matching. There are no guarantees
that all correspondences are correct but the high specificity of
SIFT results in a reduced number of incorrect matches.

A pose of the camera, st, defines a transformation [R, T ]st

from the camera to the global coordinate frame. Specifically,
R is a 3 × 3 rotation matrix and T is a 3 × 1 translation
vector. Each landmark in the current view can be transformed
to global coordinates using the well known equation

PG
oj

= Rst
Poj

+ Tst
(4)

Using equation 4 and the Mahalanobis distance metric (in
order to take into account the map’s uncertainty), we can
define the observation density by:

p(yt|st) = e
0.5

∑

k

b=1
(P G,b

oj
−P

G,b

i
)T C−1(P G,b

oj
−P

G,b

i
)

(5)

where C is given by:

C = Rst
Coj

RT
st

+ Ci (6)

V. COMPUTING CAMERA MOTION

Another essential component to the implementation of MCL
is the specification of the robot’s motion model, ut. In
all previous work, this has been a function of the robot’s
odometry, i.e., wheel encoders that measure the amount the

robot’s wheels rotate that can be mapped to a metric value
of displacement and rotation. Noise drawn from a Gaussian is
then added to this measurement to take into account slippage
as the wheels rotate. Such measurements although accurate
and available on all research robots are only useful for planar
motions. We want to establish a more general solution. Thus,
we obtain ut measurements by taking advantage of the vast
amount of research in multiple view geometry. Specifically,
it is possible to compute the robot’s displacement directly
from the available image data including an estimate of the
uncertainty in that measurement.

Let It and It−1 represent the pairs of stereo images taken
with the robot’s camera at two consecutive intervals with
the robot moving between the two. For each pair of images
we detect points of interest, compute SIFT descriptors for
them and perform stereo matching, as described earlier in
section IV, resulting in 2 sets of landmarks Lt−1 and Lt. We
compute the camera motion in two steps, first by the linear
estimation of the Essential matrix, E, and its parameterization,
as described below. Second, we compute a more accurate
estimate by dropping the linearity assumption and using a non-
linear optimization algorithm minimizing the re-projection
error of the 3D coordinates of the landmarks.

A. Linear Estimation of the Essential Matrix

For this part we only consider the images from the reference
cameras for times t and t − 1. Using the SIFT descriptors
we obtain landmark correspondences between the two images
as described earlier in section IV. Let the i-th such pair of
landmarks be denoted lit ↔ lit−1. For the time being we only
consider the image coordinates of these landmarks, pi

t ↔ pi
t−1.

Given this set of 2D point correspondences, the Essential
matrix, E, is any 3 × 3 matrix that satisfies the property

pi
t

T
Epi

t−1 = 0 (7)

The Essential matrix maps points from one image to lines on
the other. If it is known, the camera pose, [R, T ], at time t can
be estimated with respect to the camera pose at time t− 1 via
its parameterization. We use the normalized 8-point algorithm
to estimate E. The algorithm can be found in most modern
machine vision books such as [16], and so we do not repeat
here. We note that the algorithm requires a minimum of 8 point
correspondences. In our experiments, we obtain an average
of 100 such correspondences allowing us to implement the
robust version of the algorithm that uses RANSAC to consider
solutions for subsets of them until a solution is found with a
high number of inliers.

We can compute the camera pose via the Singular Value
Decomposition (SVD) of E as described in [16]. As a result,
we obtain the rotation matrix R̃ and a unit size vector T̃ that
denotes the camera’s displacement direction but not the actual
camera displacement. Although we could take advantage of the
information in T̃ to guide our non-linear solution described
in the next section, currently we do not and we simply set
T̃ = 0. Figure 2 gives two examples of the estimated epipolar
geometry for forward motion and rotation.



(a) (b)

Fig. 2. Examples of estimating the epipolar geometry for (a) forward motion
and (b) a rotation to the right. The top row shows the point correspondences
between two consecutive image frames. Crosses mark the points at time t−1
and lines point to their location at time t. The bottom row, shows the epipolar
lines drawn for a subset of the matched points using the estimated Essential
matrix.

We use [R̃, T̃ ]st
to initialize the non-linear estimation of

the camera pose. The advantage of the initial value is that it
allows us to do outlier removal , i.e., we can remove landmark
matches that do not satisfy equation 7. Additionally, having
an initial estimate helps guide the non-linear optimization
algorithm away from local minima.

B. Non-Linear Estimation of the Camera Pose

Given an initial value for the camera pose at time t with
respect to the camera at time t − 1, we compute a more
accurate estimate using the Levenberg-Marquardt (LM) non-
linear optimization algorithm. We utilize the 3D coordinates
of our landmarks and use the LM algorithm to minimize
their re-projection error. Let x̃t be the 6-dimensional vector
xt = [roll, pitch, yaw, T11, T21, T31] corresponding to a given
[R, T ]. Our goal is to iteratively compute a correction term χ

xi+1
t = xi

t − χ (8)

such as to minimize the vector of error measurement ε , i.e.,
the re-projection error of our 3D points. For a known camera
calibration matrix K, ε is defined as

ε =











εT
0

εT
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...

εT
k
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p0
t − K(RP 0

t−1 + T )
p1

t − K(RP 1
t−1 + T )

...
pk

t − K(RP k
t−1 + T )











(9)

Given an initial estimate for the parameters, we wish to solve
for χ that minimizes ε , i.e.,

[

J

λI

]

χ =

[

ε

λd

]

⇔ (JT J + λI)χ = JT ε + λId (10)

where J = [∂ε0
∂χ

, · · · , ∂εk

∂χ
]T , is the Jacobian matrix,I is

the identity matrix and d is the initial solution from the

Odometry Vision-based Estimate
x y θ x y z α θ β

0.00 0.00 -1.76 0.01 0.00 -0.01 0.22 -1.83 0.05
0.00 0.00 -2.11 -0.01 -0.00 0.01 -0.01 -1.97 -0.02
0.00 0.00 2.11 0.01 0.02 0.00 0.01 1.63 0.00
0.12 0.00 0.00 0.18 -0.02 0.01 -0.01 -0.13 0.18
0.11 0.01 0.00 0.09 0.01 0.01 -0.26 -0.52 0.04

TABLE I

COMPARING OUR LEAST-SQUARES ESTIMATE OF CAMERA MOTION WITH

ODOMETRY. POSITION IS SHOWN IN cm AND ORIENTATION IS DEGREES.

linear estimate given by [R̃, T̃ ]. The LM algorithm introduces
the variable λ that controls the convergence of the solution
by switching between pure gradient descent and Newton’s
method. As discussed in [17] solving 10 , i.e., the normal
equations, minimizes

||Jχ − ε||2 + λ2||χ − d||2 (11)

The normal equations can be solved efficiently using the
SVD algorithm. A byproduct from solving 11 is that we also
get the covariance of the solution in the inverse of JT J . Table I
compares our vision-based estimate of camera motion with
that of odometry. One can see that it is very accurate.

VI. THE MIXTURE PROPOSAL DISTRIBUTION

As we discussed in section II, we perform filtering using a
mixture of the MCL and dual MCL proposal distributions [1]

(1 − φ)q̃t + φqt = (1 − φ)p(yt|s̃t) + φp(st|st−1, ut) (12)

where φ is known as the mixing ratio and we have set it to
0.80 for all of our experiments.

Sampling from p(st|st−1, ut) is straightforward as all par-
ticles from time t − 1 are updated using our estimate of
the camera’s motion, ut, with noise added drawn from our
confidence on this estimate given by (JT J)−1. On the other
hand, sampling from the dual proposal distribution is thought
of as a hard problem in robotics since we must be able to
generate poses from observations. It turns out that for our
choice of maps and sensor this is trivial.

Let M be a map of m landmarks lGi for 1 ≤ i ≤ m

and N be the set of n landmarks lLj for 1 ≤ j ≤ n in
the current view. Let yt be the current observation. Using the
procedure described in section V and k random subsets of
matched landmarks, x1:k ⊂ X , we compute k candidate poses
s̃
(1:k)
t . For efficiency we only call on the non-linear estimation

procedure initializing the pose to zero translation and rotation.
Even if our subset of landmarks leads to an incorrect estimate,
this sample will receive a low weight given our complete set of
observations and as such we do not need to incur the penalty
of the robust linear estimate described in section V-A. For
each sampled pose we compute p(yt|s̃

(j)
t ) with 1 ≤ j ≤ k

using equation 5. Because of the high quality of observations,
we only need to sample as few as 100 poses to get a good
approximation for p(yt|s̃t). To sample from the dual proposal
we draw a random particle from {s̃

(1:k)
t , w̃1:k

t } according to
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Fig. 3. The robot we used for our experiments (a) seen from a distance and
(b) closeup of its head

the particle weights and compute its importance factor using
equation 3.

Lastly we should mention that the procedure we just de-
scribed for approximating the dual proposal distribution is
also useful for estimating p(s0), that is, the initial belief. It is
common practice that the initial belief is set to be a uniform
distribution but considering the large dimensionality of our
state space, ours is a better choice.

VII. SINGLE-FRAME APPROACH USING RANSAC

A straightforward approach to global localization that does
not require filtering is presented in [18]. Poses are generated
as discussed in the previous section and evaluated using
equation 5. For robustness a RANSAC approach is employed
in that poses are sampled until one is found that is well
supported by the current observation, i.e., p(yt|st) is above
a given threshold.

The advantage of such an approach, made possible by
the geometry of the camera and map representation, is its
simplicity and its high accuracy considering that only a single
image frame needs to be considered. A major disadvantage is
that is not suitable for tracking the robot’s pose over multiple
frames due to the large variance of the estimates. Additionally,
a user must specify beforehand the number of samples to
consider ( [18] uses only 10) and a threshold value for what
is a good pose. However, the former can be avoided if the
adaptive RANSAC algorithm is used.

Until now, no vision-based MCL method has been shown
to match the accuracy of the single-frame approach. We will
show in the next section that σMCL comes close to this target
while considering a more general case of unconstrained motion
in 3D.

VIII. EXPERIMENTS

We have implemented σMCL for our mobile robot seen in
Figure 3. It is a modified RWI B-14 quasi-holonomic base.
It is equipped with a PointGrey Research Bumblebee stereo
vision camera mounted on a Pan-Tilt Unit. It has an on-board
Pentium-based computer and wireless connectivity. It has no
other functioning sensors other than the stereo camera.

For our experiments, we have used 3 different sets of
images, S1, S2, S3, at 320 × 240 resolution. S1 is the set

of images that we used for constructing the map. It is a
useful set because along with the images we have the robot’s
pose at the time they were acquired. We use these corrected
odometry estimates as a baseline for judging the accuracy
of the σMCL approach. One obvious disadvantage of using
this set is that we always get a really large and accurate
number of landmark correspondences. In order to show that
σMCL works in general, the second set of images, S2, is an
arbitrary sequence that was not used during map building.
Unfortunately, both of these image sets are acquired as the
robot traverses a planar path. To demonstrate that our solution
works for non-planar motions, we have acquired a 3rd set
of images, S3, in which we moved the camera by hand in a
rectangular pattern off the robot’s plane of motion.

An important and open question in the study of particle
filters is the number of particles to use. In our experiments
with S1 we found that as few as 100 particles were sufficient
to achieve highly accurate results; we can get away with only a
small number of particles because of good observations. Using
more particles provided no improvement. For our experiments
with S2 and S3 we used 500 particles; using more did not
generate a noticeable improvement on the computed trajectory
of the robot. These numbers are significantly smaller than
other vision-based approaches. For example, [6] uses 5000
particles.

Figure 4 shows the results of global localization using S1.
Part (a) of the figure presents the initial belief. Part(b) shows
the particles after 7 frames, the robot having moved forward
for about 80cm. One can see that there are several modes to
the distribution. Part (c) shows the samples after 35 frames
having all converged to the robot’s true location. The robot
has moved a total of 100cm and rotated by 20 degrees.

Figure 5 plots the localization error for the mean pose taken
over all the particles with respect to the odometry estimate.
The position error is less than 20cm and the orientation error
is less than 6 degrees. The results are the average of 10 runs
per frame. In comparison, [13] reports a localization error that
varies from 100cm to 500cm. Similarly, the results presented
in [6] specify an error that is as large as 82cm in position and
17 degrees in orientation. In [9] the position error varies from
45cm to 71cm. Finally, [8] reports that the localization error
is 20cm but this value is highly correlated with the distance
of the reference images which is also 20cm. [13], [9], [8] do
not include results for the error with respect to the robot’s
orientation. Also shown in Figure 5 is the estimate of the
single frame approach using adaptive RANSAC as described
in section VII. It performs better than σMCL but the generated
track is more noisy due to the large variance of the estimates.

Figure 6 shows the camera path for the image set S2. It was
generated using a total of 500 images while the robot traversed
a distance of 18 meters. It took about 20 frames before the
robot estimated its location and it successfully kept track of it
from then on.

Finally, Figure 7 shows the results using S3. We have
provided a general solution to the localization problem that
can handle unconstrained motions in 3D. So far we have only



Fig. 4. An example of the evolution of particles during global localization. The left column shows the state from a top view point and the right column
shows it in 3D. The current observation is marked using blue crosses/dots. The particles are shown in red and the robot’s true position is shown using a
green “V” on the top row and a green sphere on the bottom. Row (a) shows p(s0), (b) shows the sample distribution after 7 frames and (c) shows it after
35 frames.
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Fig. 5. Plots of the localization error for σMCL and single-frame adaptive
RANSAC approach. Part (a) shows the mean error in position and (b) shows
the mean error in orientation for 100 frames. Both approaches are equally
accurate but the standard deviation of the σMCL is less than 1/3 of RANSAC.

demonstrated it using data from our robot that moves on a
planar surface and has limited range off this plane due to
its steerable head. However, in order to demonstrate that our
approach really works we present results with an image set
obtained by moving the camera around by holding it in our
hand. This particular image set is very challenging with much
jitter in the camera motion. The robot lives on the x−z plane
and we obtained S3 by moving the camera on the x−y plane
in an approximately rectangular pattern. In Figure 7, the first
few frames show a large variation in the x − z plane until
σMCL converges, after which the camera’s path is correctly
tracked along the rectangular path.

We timed the performance of our approach on a 3.2GHz

Pentium 4. σMCL takes on average 1.1secs per frame. The
time does not include computing landmark correspondences,
i.e., yt, because it is common to both approaches. In our
implementation, it takes about 1sec to compute yt because
we have not implemented the efficient kd-tree approach for
SIFT matching as in [3]. The performance of σMCL is good
enough for an online system even though we have not made
much effort to optimize our software.

Fig. 6. The robot’s path for image set S2. The robot traveled a total distance
of 18 meters.
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Fig. 7. The robot’s path for image set S3. The camera’s path is correctly
tracked around an approximately rectangular pattern on the x−y plane, after
the first few frames required until σMCL converges.

For completeness, Figure 8 shows the results for the kid-
napped robot problem using S1. We demonstrate that the robot
can quickly re-localize after a sudden loss in position and a
strong prior estimate of its location. Specifically, we allowed
the robot to localize itself and then we transported it at frame
30. The robot localized again within 20 frames. We repeated
this procedure at frame 80 and the robot once again estimated
its position within the error bounds reported earlier after only
30 frames.

IX. CONCLUSION

We have presented an approach to vision-based Monte-
Carlo localization with a mixture proposal distribution that
uses the best of invariant image-based landmarks and statis-
tical techniques. Our approach decouples the sensor from the
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Fig. 8. Results for the kidnapped robot problem. We kidnapped the robot
twice at frames 30 and 80. Part (a) shows the error for the robot’s position
and (b) shows it for the orientation.

robot’s body by specifying the motion model as a function of
sensor measurements and not robot odometry. As a result we
can solve for unconstrained 6 dof motion by taking advantage
of results in multiple view geometry. We presented a number
of experimental results to prove that our approach is robust,
accurate and efficient.

In the future, we plan to optimize the efficiency of our
implementation using such improvements as the kd-tree ap-
proach for landmark matching [3]. For all our experiments
we used a fixed value for the mixing ratio. It would be
worth experimenting with adapting this ratio according to
the variance of the two proposal distributions. Finally, we
would like to apply our approach towards the simultaneous
localization and mapping (SLAM) problem possibly through
the implementation of the FastSLAM [19] algorithm.
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