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Abstract— The ability to perceive and analyzeterrain is a key
problem in mobile robot navigation. Terrain perception problems
arise in planetary robotics, agricultur e, mining, and, of course,
self-driving cars. Here, we intr oduce the PTA (probabilistic
terrain analysis) algorithm for terrain classi�cation with a fast-
moving robot platform. The PTA algorithm uses probabilistic
techniquesto integrate range measurementsover time, and relies
on ef�cient statistical tests for distinguishing dri vable fr om non-
dri vable terrain. By using probabilistic techniques,PTA is able
to accommodatesevere errors in sensing,and identify obstacles
with nearly 100% accuracy at speedsof up to 35mph. The PTA
algorithm was an essential component in the DARPA Grand
Challenge, where it enabled our robot Stanley to traverse the
entire course in record time.

I . INTRODUCTION

The DARPA Grand Challenge required an autonomous
robot to traverseunrehearseddesertterrainat speedsin excess
of 30mph,and without any humanintervention.Stanley, our
robotic vehicle described in this article, successfully tra-
versed131.6 miles of unpaved desertterrain in just below
7 hours[14].

The focusof this article is the centralsoftwarecomponent
that enabledthis vehicle to navigate and ultimately win this
historical race.Robotic autonomyhas beenavailable in air-
borneandsubmersedsystemsfor multiple decades;however,
until recently no comparableauto-pilots existed for ground
vehicles.The reasonwhy ground navigation is harder than
aerial or underwater navigation arisesfrom the obstacleson
the ground.In the desert,obstaclesincluderocks,vegetation,
berms,ruts, clif fs, overhangs,man-madeartifacts like aban-
donedvehicles,and so on. Perceiving and navigating in the
presenceof obstaclesis a key prerequisitefor autonomous
groundnavigation.

This article focuseson an algorithm for terrain perception
thathasbeenthecoreenablingfactorof our autonomousrobot
shown in Fig. 1. Thisalgorithm,calledtheprobabilisticterrain
analysis(PTA) algorithm,processesrangedataacquiredby a
single-axislaser scannermountedhorizontally on a moving
robotic platform. It constructsa 2D environmentmapsuitable
for robotic driving. The map is generatedonline with less
than300mslatency, makingit suitablefor autonomousground
vehiclenavigation.

The key dif�culty addressedby the PTA algorithm arises
from the noise in pose estimation that naturally occurs in
a fast-moving ground rover. Even though our systemuses

state-of-the-artinertial guidance(multiple GPS and inertial
sensorsintegratedusinga nonlinear�lter), the residualerrors
are still large enoughto renderthe point cloud unusablefor
driving. PTA basesits terrain assessmenton a probabilistic
model of the uncertaintyin the data acquisitionprocess.In
doing so, PTA can distinguishbetweenactual obstaclesand
“phantom” obstaclesresulting from the uncertainty in the
inertial guidancesystem. The PTA algorithm also uses a
discriminative machinelearning algorithm for acquiring the
parametersof this probabilisticmodel.This learningalgorithm
makes it possibleto optimally tune the algorithm using data
acquiredwithin a few minutesof humandriving.

Empirically, the PTA algorithm has been shown to be
accurate.In fact, we claim it was an essentialinnovation
in the designof the winning vehicle of the DARPA Grand
Challenge.Stanley traveled at speedsof up to 38mph over
extremely rugged,unpaved desertterrain. In this article, we
provide empirical evidencethat the core elementof PTA, its
probabilisticnoiseanalysisandassociatedlearningprocedure,
reducethe error rate signi�cantly when comparedto a non-
probabilisticalgorithm.In onedataset,it reducesfalse-positive
errorratefrom 12.6%to 0.002%withoutsigni�cantly affecting
the false-negative rate. Such numbersmatteredgreatly for
the DARPA Grand Challenge:false-positives correspondto
“phantomobstacles”that(asweshow) easilymisleadtherobot
into hazardousterrain.

I I . RELATED WORK

Thereexistsa hugebodyof relatedwork on terrainpercep-
tion for autonomousdriving. Early work in the �eld includes
that by Dickmannsand Pomerleau[10], [2]. This seminal
researchfocusedon vision-basedonroaddriving, andled to a
hugebody of follow-up research.A more recentoverview of
researchin this areais given in [4].

The idea of using lasersfor outdoor terrain perceptionis
not new; in fact, lasershave playedessentialroles in a series
of Government-fundedoff-road driving projects[13] and in
both DARPA GrandChallenges[15]. Grid representationlike
the oneusedin this paperhave becomepopularin a number
of systemsusing lidar or stereofor depthperception[5], [9],
[16]; in fact, the work in [16] attachescon�dence factorsto
grid cells that re�ect the information content in the sensor
measurements.



Figure 1. At approximately1:40pmon Oct 8, 2005,a mobile robot wins
the DARPA GrandChallenge.The algorithm discussedin this paperplayed
an essentialrole in the robot's ability to navigate the 2005GrandChallenge
course.

The topic of poseerror in 3D point cloud acquisitionhas
received considerableattentionin the literature.For example,
in [7], Levoy et al. describea methodfor mappinghistorical
objectsusinga robotarmanda rangescanner. The“classical”
methodfor aligning suchpoint cloudsis the iterative closest
point algorithm(ICP) [1]; see[11] for a real-timeimplementa-
tion, and[8] for a variantknown asscanmatching. However,
the fundamentalassumptionbehindthesemethodsis that the
robot scansthe sameobject more than once.Multiple scans
are aligned by detectingthe areaof overlap, and using the
mismatchfor scanalignment.

In our driving domain,sucha methodis inapplicable.This
is becausemost scanscover new territory, hencecorrespond
to no previous scan.The generallack of overlap“breaks” the
correspondencestepin ICP or scanmatching,renderingthese
methodinapplicablefor poseerror compensation.In fact, we
remark that the authorsindeedimplementedICP and found
the performanceto be intolerablypoor.

From a probabilistic viewpoint, ICP usesa probabilistic
error model (a Gaussian)to recover an accurateworld model
from inaccuratedata;themethodhereusesaprobabilisticerror
modelto de�ne suitabletestsover an inaccurateworld model.
This subtle differenceis important, as the available data is
insuf�cient to recover an accurate3D terrainmodel.

I I I . POINT CLOUD ACQUISITION

The PTA algorithmoperateson a 3-D point cloud acquired
by the robot while in motion. Becausethe speci�cs of the
data acquisition matter, we brie�y describethe robot and
the various sensorsinvolved in the acquisitionprocess.All
methodsdescribedin this sectionare commonlyusedin the
�eld of vehicleguidance[3], [12].

The robotic vehicle is shown in Fig. 1. To determineits
location relative to an external coordinateframe, the robot is
equippedwith an inertial guidancesystem. The task of this

Figure 2. The vehicle usesa single line scannerto acquiresurface data
from the terrain to make driving decisions.

systemis to determinethe poseof the robot, by which we
meanthegeoreferenced3-D coordinates(denotedx k ) andthe
3-D orientationof the vehicle in Euler angles(pitch-roll-yaw,
denoted	 k ):
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Herek is the time index. As usual,the orientationvector 	 k

inducesa rotationmatrix, which we will denoteby Rk .
The inertial guidancesystemcomputesthe poseestimate

basedonmeasurementsfrom two differentialGPSsystemsand
a six-degree-of-freedominertial measurementunit (IMU). The
GPSsystemsmeasurethe absolutecoordinatesandvelocities
of the vehicle and its pitch and yaw angle (but not roll).
TheIMU measuresangularvelocitiesandlinearaccelerations.
As is commonin the �eld of vehicle guidance,the data is
integratedusinga Kalman�lter . Our implementationrelieson
an unscentedKalman �lter (UKF) [6] chosenover classical
methodsfor its improvedaccuracy. Thespatialaccuracy in x k

of theguidancesystemis dependenton thesatellitereception,
and varies from 20cm to 2m. The maximum error in the
vehicle's orientation	 k is on the order of one degree.Such
valuesarewithin thenormfor moderate-costguidancesystems
suchas the onedeployed.

To acquirethe 3-D point cloud, the robot is equippedwith
single-scanlasers (multiple lasersare used for redundancy
but processedseparately).Eachlaseris mountedhorizontally
on the robot's roof, slightly tilted downward to scan the
ground ahead.Fig. 2 illustrates the scanningprocess.Each
laser scan generatesa vector of 180 range measurements
spaced0.5 degreesapart. If we denotethe angle of the i -
th element in this vector by � i

k , and the measuredrange
value by r i

k , the correspondingmeasurementis projected
into the externalGPS-referenceframevia the straightforward
projective equation:
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HereRk is the rotationmatrix that correspondsto the vehicle
orientation 	 k ; x sens and Rsens are the displacementand



Figure 3. 3D point cloud acquiredby the moving vehicle.The scandatais
integratedinto point cloudsusingan inertially guidedsystemfor determining
the locationandorientationof the sensor.

pointing angle of the scannerrelative to the vehicle's local
coordinateframe.Fig. 3 illustratessucha point cloud.

Obviously, the 3-D point cloud is only of intermediary
interestasweseekto enabletherobotto make theright driving
decisions.To this end, we de�ne a terrain labeling function
that assignsto each2-D locationX q; Yq oneof threevalues:

� Obstacle if we can �nd two points, (X i
k Y i

k Z i
k )T

and (X j
m Y j

m Z j
m )T whosex-y distanceto the query

point X q; Yq is smaller or equal to " , and for which
jZ i

k � Z j
m j exceedsa critical vertical distance� . In our

implementation," = 30cm and � is between15cm and
20cm (seesectionon parametertuning below).

� Dri vable if not an obstacle,but we can�nd at leastone
point (X i

k Y i
k Z i

k )T within an "-rangeof the query
coordinatesX q; Yq.

� Unknown if no point (X i
k Y i

k Z i
k )T exists within an

"-rangeof the querycoordinatesX q; Yq.
Thesearchfor nearbypointsis convenientlyorganizedin a 2-
D grid, and the samegrid is usedas the �nal 2-D drivability
mapthat is provided to thevehicle's navigationengine.Fig. 4
shows an example map. Here red=obstacle,white=drivable,
andgrey=unknown.

IV. PROBABILISTIC TERRAIN ANALYSIS (PTA)

A. Temporal NoiseModel

Unfortunately, the algorithm just describedyields results
inappropriatefor robot navigation. Fig. 5 shows such an
instance,in which a small error in the vehicle's role/pitch
estimation leads to a massive terrain classi�cation error—
forcing the vehicle off the road. Such situationsoccur even
for roll/pitch errorsbelow 0:5 degrees.The sensitivity to roll
and pitch for the vehicle is the result of the fact that the
scanneris pointedforward,detectingobjectsatup to 30meters
range.Unfortunately, sucha rangeis necessaryfor safevehicle
operationat GrandChallengedriving speeds.In our reference
datasetof labeled terrain, we found that 12.6% of known
drivable areais classi�ed as obstacle,for a height threshold
parameter� = 15cm.

Figure 4. Snapshotof the pathplanneras it processesthe drivability map.
This snapshotis taken from themostdif�cult partof the2005DARPA Grand
Challenge,a mountainousareacalledBeerBottle Pass.

To accommodatesucherrors,onemightbetemptedto adjust
the 3-D point cloud throughan ICP-typealgorithm.However,
ICP is prone to fail for the reasonsdiscussedin the related
work sectionabove.

In contract,the PTA algorithm doesnot attemptto recon-
struct a 3-D model. Instead,it runs statisticaltestsover the
data,to probefor obstacles.To do so,PTA modelstheerror in
thedataacquisitionprocessusinga �rst orderMarkov model,
and uses this model when determiningwhether a location
X q; Yq is drivable.

The �rst order Markov model is given by a stochastic
processwith noisevariables� k and  k :

�
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	 �

k
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x k
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�
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Herethe asterisksdenotethe estimatedvehiclestate,which is
of coursecorruptedby noise.Thevariable� modelsthenoise
over time, andthevariable themomentarynoisein thepose
estimates.AssumingGaussiannoise,we have

� k � N (� k � 1; B ) (4)

 k � N (0; C) (5)

whereB and C are the time-invariant noisecovariances.As
a resultof Eq. 4, the error increasesover time1. This models
the fact that the stateestimateis generallynoisy, but noise
evolvesslowly over time.

We further de�ne B andC to be of the following form:

B = diag(� 2
xyz ; � 2

xyz ; � 2
xyz ; � 2

��  ; � 2
��  ; � 2

��  ) (6)

C = diag(� 2
xyz ; � 2

xyz ; � 2
xyz ; � 2

��  ; � 2
��  ; � 2

��  ) (7)

1We shallnot beconcernedwith theobservationthattheabsoluteerrormay
diverge under this model, as we only use it to determinethe relative error
whencomparingto measurementsacquiredin short temporalsuccession.



(a) Mapper failur e

(b) Fatal vehicle reaction

Figure 5. Small errorsin poseestimation(smallerthan0.5 degrees)induce
massive terrainclassi�cation errors,which frequentlyforce the robot off the
road.

for the noisecovariances� 2
xyz , � 2

��  , � 2
xyz , and � 2

��  . Those
shall be de�ned later, when we focus on our attentionon a
learningmethodfor parametertuning.

B. TheProbabilistic ObstacleTest

The �rst orderMarkov chainenablesus to reformulatethe
obstacletest as a statistical test. While in its generalform,
this test is dif�cult to compute,we shall soonseethat for the
speci�c laser con�guration there is a simple approximation
that works well in practice.

Speci�cally, given two points (X i
k Y i

k Z i
k )T and

(X j
m Y j

m Z j
m )T (without lossof generalityassumem > k),

the heightdifferenceis distributedaccordingto

Z i �
k � Z j �

m (8)

� N (Z i
k � Z j

m| {z }
mean

; r iT
k [Z ] (2C + jm � kj B ) r j

m [Z ]
| {z }

covariance

)

Here we approximatedthe non-linear projection de�ned in
Eq. 2 with a �rst orderTaylor expansion.The term r i

k [Z ] is
theJacobianof thevalueof Z i

k with respectto thestatevector.
In general,theseJacobiansare dif�cult to calculate.How-

ever, for a forward-pointedlaser, a vehicle that is approxi-
matelylevel, a laserfor which � i

k � � j
m , andif we ignorethe

laseroffset x sens, this Jacobianresolves to a distribution that

is relatively easilycomputed
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This expressiondependslinearly on the error in the estimate
of zk , andalsoon the error in pitch androll, which areboth
ampli�ed throughthe actualmeasuredranger i

k .
Plugging this back into 8, and observingthat our model

assumesequalcovariancefor roll and pitch error, we obtain
the relatively simpledistribution

Z i �
k � Z j �

m � N (Z i
k � Z j
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m � 2
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Thisexpressiongrows linearlywith thetimedifferencejm� kj.
Thekey unknownsarethenoisecovariances� 2

xyz , � 2
��  , � 2

xyz ,
and � 2

��  , which we generallydo not know.
We will return to the problem of �nding those noise

covariancein the next section,when we addressthe issueof
learning the Markov model. Assuming knowledge of those
parameters,we cannot usea statisticaltestfor determiningif
the Z -valueof a pair of " -nearbypoints is indeedlarger than
theheightthreshold� . ThetestusestheZ-valueof thenormal
distribution just de�ned, to calculate

p(jZ i �
k � Z j �

m j > � ) > � (11)

for the error probability threshold� .
For � = 0:05, this resolves to
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m j � � > 1:64
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According to our Markov model, this test is an obstacle
acceptancetest for the presenceof an obstacleat the 95%
con�dencelevel.

We note that the quantity on the right-hand side of the
test increasesmonotonicallywith the time differencejm � kj.
This observation is important: the acceptanceprobability for
an obstacledecreaseswith time becauseof the noise.That is,
two nearbypointsin the3-D point cloudaremorelikely to be
witnessof anobstacleif they wererecordedin shorttemporal
succession.

Put differently, the minimum height difference between
two measurementsrequiredto mark thosemeasurementsas
witnessesof an obstacle,is a function of the time difference



at which thosemeasurementswere acquired.The more time
went by, the larger this minimum heightdifference.

C. Ef�cient Implementationof the PTA Test

A key provision in thePTA analysispertainsto theef�cient
searchof possiblepairs of points that are a witness of an
obstacle.As in the non-probabilisticalgorithm above, PTA
cachesall information over a 2-D grid of the environment.
Theresolutionof thegrid is "=2. Thus,whenanalyzinga new
rangemeasurement,PTA only queriesthe corresponding2-D
grid cell and its immediateneighbors.

Even thoughmany pointsin the 3-D point cloud might fall
within agrid cell, it suf�ces to storetwo Z valuespercell. One
of thesevaluesde�nes thetightestuppervaluefor futuretests,
andonede�nes thetightestlower value.Along with thesetwo
values,we have to storethe timesat which the corresponding
measurementswererecorded,sothatthetestcancorrectlyfold
in the increaseof uncertaintyover time.

The fact that those two measurementssuf�ce is a direct
result of the monotonicgrowth of the uncertaintyover time.
Supposewe observe a new measurementfor a cell which was
previously observed. The one or more of threecaseswill be
true:

1) Thenew measurementmightbeawitnessof anobstacle,
accordingto the probabilistictest in PTA. In this case,
PTA simply marks the cell as obstacleand no further
testingtakesplace.

2) Thenew measurementdoesnot triggerasawitnessof an
obstacle,but in future testsit establishesa tighter lower
bound on the minimum Z-value than the previously
storedmeasurement.In this case,we simply replacethe
previous measurementwith this new one.The rationale
behindthis is simple: If the new measurementis more
restrictive than the previous one, there will not be a
situationwherea testagainstthis point would fail while
a test against the older one would succeed.Hence,the
old point cansafelybe discarded.

3) The third car is equivalent to the second,but with a
re�nement of the uppervalue.

Notice thata new measurementmayre�ne simultaneouslythe
lower and the upperbounds.

The fact that we only have to memorizetwo measurements
per grid call rendersPTA highly ef�cient in spaceandtime—
which is importantfor real-timerobotic driving.

D. Learning the Parameters

The probabilistic Markov model possessesa number of
unknown parameters.The �nal componentof the PTA is
concernedwith �tting the variousparameters:

� The height threshold� .
� The statisticalacceptanceprobability threshold� .
� The Markov chainerror parameters,which are the noise

covariances� 2
xyz , � 2

��  , � 2
xyz , and � 2

��  .

Eachof Stanley's � ve laserspossessesits own parameterset.

Terrain labeling for parameter tuning

no labels(white/grey)

?

?

obstacles(red)

?

drivable (blue)

6

Figure 6. Terrain labeling for parametertuning: The areatraversedby the
vehicle is labeledas “drivable” (blue) and two stripesat a �x ed distanceto
the left and the right are labeledas “obstacles”(red). While theselabelsare
only approximate,they areextremelyeasyto obtainandsigni�cantly improve
the accuracy of the resultingmapwhenusedfor parametertuning.

Insteadof determiningsuchparametersby hand,which is
dif�cult 2, PTA usesa discriminative learning algorithm for
(locally) optimizing theseparameters.More speci�cally, the
parametersare tuned in a way that maximizesthe discrim-
inative accuracy of the resulting terrain analysison labeled
training data.

A tediousway of labelingdatawould be to label eachgrid
cell manuallyas to whetherit correspondsto an obstacleor
not. Such a method would require extreme effort, since a
personwould have to manually inspect each area near the
robot.

To get around this issue, we developed an approximate
labeling technique,in which a human diver simply labels
terrain by driving. Fig 6 illustrates the idea: Terrain that a
personchoosesto drive over is assumedto be obstacle-free,
hencelabeledas“0”. This areacorrespondsto the blue stripe
in Figure6. A stripeleft andright of this corridor is assumed
to be all obstacles,asindicatedby the red stripesin Figure6.
Clearly, not all of those cells are occupied; however, the
learning techniqueis still pushedto label as many of those
aspossibleasoccupied.

The learning algorithm is now implementedthrough co-
ordinate ascent.In the outer loop, the algorithm performs
coordinateascentrelative to a data-driven scoring function.
Given an initial guess,the coordinateascentalgorithm mod-
i�es eachparameterone-after-anotherby a �x ed amount.It
then determinesif the new value constitutesan improvement
over the previous value when evaluatedover a logged data
set,and retainsit accordingly. If for a given interval size no
improvementcan be found, the searchinterval is cut in half
andthe searchis continued,until the searchinterval becomes
smallerthana pre-setminimumsearchinterval (at which point
the tuning is terminated).

Empirically, we �nd that the learningalgorithm converges
quickly to a robustsolutionwhentrainedwith about2 minutes
of driving data. In developing the DARPA GrandChallenge
entry, we often includedin the training setdatafrom extreme

2GPSmanufacturersdonot reporttemporaldrift; anddrift is oftenescalated
by thefactthathigh-accuracy receiversswitchbetweenmultiple internal�lters
turnedfor differentsignalstrengths.



(a) Robot and laser scan plotted over time

(b) 3-D point cloud (c) non-probabilistic method
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(d) PTA result

Figure 7. Comparisonof non-probabilisticalgorithm and PTA: (a) shows
a scanover time, (b) the 3-D point cloud, (c) the erroneousmapand(d) the
resultof PTA.

terrain, with large errors in the vehicle stateestimation(and
henceerrorsin the map).In this way, the datafocusedon the
hardestinstancesavailable.

V. RESULTS

The probabilistic analysis paired with the discriminative
algorithm for parametertuning has a signi�cant effect on
the accuracy of the method.Using an independentdata set
acquiredin theSonoranDesert,wefoundthatthefalsepositive
rate(thearealabeledasdrivablein Fig. 6) dropsfrom 12.6%to
0.002%whenmeasuredover 50,000grid cellswhenmeasured
on an independenttest set. At the same time the rate at
which the area off the road is labeled as obstacleremains
approximatelyconstant(from 22.6% to 22.0%).This rate is
not 100% simply becausemost of the terrain there is still
�at anddrivable.Our approachfor dataacquisitionmislabels
the �at terrainasnon-drivable.Suchmislabelinghowever, do
not impedewith the parametertuning algorithm, and hence
is preferableto labeling pixels manually (which would be
extremely tedious).

Fig 7 shows anexample:a snapshotof thevehiclefrom the
sideillustratesthatpartof thesurfaceis scannedmultiple times
due to a changeof pitch. As a result, the non-PTA method
hallucinatesa large occupiedare in the centerof the road,
as shown in Panel c of Fig 7. PTA overcomesthis error and
generatesa map that is good enoughfor driving. A second
exampleis shown in Fig 8.

Basedon post-screeningof the sensordata loggedduring
the race, we �nd that the PTA algorithm was essentialfor
the robot's success.Figure 9 displaysthe situationalong the
mostdif�cult part of he course,known as“Beer Bottle Pass.”
The two blue contoursin the bottom image mark the GPS
corridor provided by DARPA, which aligns poorly with the
map data, indicating an approximatelocalization error of 2
meters.This analysissuggeststhat a robot that followed the
GPS via points blindly would likely have failed to traverse
this narrow mountainpass.

We also usedthe algorithm in the National Quali�cation
Event, which was DARPA's selection event for the race

(a) Robot and laser scan plotted over time

(b) 3-D point cloud (c) non-probabilistic method

error

(d) PTA result

Figure 8. A secondcomparison.Seetext.

contestants.In this event, our robot emerged as the only
robot that never collided with an obstacleor misseda gate
markedby traf�c cones.All otherrobotswereunableto escape
collisions. This performancewas echoedin the actual race,
whereseveral othervehiclescollided with obstaclesalongthe
way, whereasour robotemergedfreeof any scratchesor dents.
While collision-freemotion requiresmore than just accurate
terrain analysis,the terrain analysisis a clear prerequisiteof
collision-freemotion.

The suitability of the PTA error modelcanalsobe seenin
surface data.Figure 10 shows a scatterplot generatedfrom
measurementstakenon a �at road,freeof obstacles.Thehor-
izontal axis is the time differencebetweentwo measurements
within a grid cell, andthe vertical axis is jZ i �

k � Z j �
m j, which

on �at terrainis theestimationerror (ideally, thevalueshould
alwaysbe zero).As this plot indicates,the vertical estimation
error is indeeda function of time: the more time elapses,to
larger therelative Z -error. This dependenceis capturedby our
Markov model,which alsomodelsan increaseof uncertainty
over time.

(a) Beer Bottle Pass (b) Map and GPS corridor

Figure 9. Snapshotof the map acquiredby the robot on the “Beer Bottle
Pass,” themostdif�cult passageof theDARPA GrandChallenge.Thetwo blue
contoursmark the GPS corridor provided by DARPA, which aligns poorly
with the mapdata.This analysissuggeststhat a robot that followed the GPS
via points blindly would likely have failed to traversethis narrow mountain
pass.



time differencebetweenrecordingof two witnesspoints

height
estimation
error

Figure 10. For terrain known to be �at, this diagramshows the estimated
vertical heightdifference.

VI. CONCLUSION

We have presenteda new algorithm,called PTA (short for
probabilistic terrain analysis). This algorithmenablesoffroad
vehicles,equippedwith a single-scanlaser, to analyzedata
from this laser so as to discriminatebetweendrivable and
non-drivable terrain.

Th heartof this algorithmis a statisticalerror modelof the
poseestimationerror, and a statistical test for the presence
of obstaclesbasedon this error model. The PTA algorithm
also featuresa learningcomponentin which labeledtraining
data is usedto tune the parametersof the probabilisticerror
model.In empiricaltesting,theapproachwasfoundto provide
excellentresults.In fact,we believe PTA wasessentialin our
successfulbid for the DARPA GrandChallenge.
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