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Abstract— The ability to perceive and analyzeterrain is a key
problemin mobile robot navigation. Terrain perception problems
arise in planetary robotics, agricultur e, mining, and, of course,
self-driving cars. Here, we intr oduce the PTA (probabilistic
terrain analysis) algorithm for terrain classi cation with a fast-
moving robot platform. The PTA algorithm uses probabilistic
techniguesto integrate range measurementsover time, and relies
on ef cient statistical testsfor distinguishing dri vable from non-
drivable terrain. By using probabilistic techniques,PTA is able
to accommodatesevere errors in sensing,and identify obstacles
with nearly 100% accuracy at speedsof up to 35mph. The PTA
algorithm was an essential component in the DARPA Grand
Challenge, where it enabled our robot Stanley to traverse the
entire coursein record time.

I. INTRODUCTION

The DARPA Grand Challenge required an autonomous
robotto traverseunrehearsedesertterrainat speedsn excess
of 30mph,and without ary humanintervention. Stanlgy, our
robotic vehicle describedin this article, successfullytra-
versed 131.6 miles of unpaved desertterrain in just below
7 hours[14].

The focus of this article is the central software component
that enabledthis vehicle to navigate and ultimately win this
historical race. Robotic autonomyhas beenavailable in air-
borneand submersedystemsfor multiple decadeshowever,
until recently no comparableauto-pilots existed for ground
vehicles. The reasonwhy ground navigation is harderthan
aerial or undervater navigation arisesfrom the obstacleson
the ground.In the desert,obstaclesnclude rocks, vegetation,
berms, ruts, cliffs, overhangs,man-madeartifactslike aban-
donedvehicles,and so on. Perceving and navigating in the
presenceof obstaclesis a key prerequisitefor autonomous
groundnavigation.

This article focuseson an algorithm for terrain perception
thathasbeenthe coreenablingfactorof our autonomousobot
showvn in Fig. 1. This algorithm,calledthe probabilisticterrain
analysis(PTA) algorithm, processesangedataacquiredby a
single-axislaser scannermountedhorizontally on a moving
robotic platform. It constructsa 2D ernvironmentmap suitable
for robotic driving. The map is generatedonline with less
than300mslateng, makingit suitablefor autonomouground
vehicle navigation.

The key dif culty addressedy the PTA algorithm arises
from the noise in pose estimationthat naturally occursin
a fast-maing ground rover. Even though our systemuses

state-of-the-artinertial guidance(multiple GPS and inertial
sensorsgntegratedusinga nonlinear lter), theresidualerrors
are still large enoughto renderthe point cloud unusablefor
driving. PTA basesits terrain assessmendn a probabilistic
model of the uncertaintyin the data acquisition process.In
doing so, PTA can distinguishbetweenactual obstaclesand
“phantom” obstaclesresulting from the uncertaintyin the
inertial guidance system. The PTA algorithm also usesa
discriminatve machinelearning algorithm for acquiring the
parametersf this probabilisticmodel. This learningalgorithm
malkes it possibleto optimally tune the algorithm using data
acquiredwithin a few minutesof humandriving.

Empirically, the PTA algorithm has been shavn to be
accurate.In fact, we claim it was an essentialinnovation
in the designof the winning vehicle of the DARPA Grand
Challenge.Stanlg traveled at speedsof up to 38mph over
extremely rugged, unpaved desertterrain. In this article, we
provide empirical evidencethat the core elementof PTA, its
probabilisticnoiseanalysisandassociatedearningprocedure,
reducethe error rate signi cantly when comparedto a non-
probabilisticalgorithm.In onedatasetit reducedalse-positre
errorratefrom 12.6%to 0.002%withoutsigni cantly affecting
the false-ngative rate. Such numbersmatteredgreatly for
the DARPA Grand Challenge:false-posities correspondto
“phantomobstaclesthat(aswe shaw) easilymisleadtherobot
into hazardougerrain.

Il. RELATED WORK

Thereexists a hugebody of relatedwork on terrainpercep-
tion for autonomoudriving. Early work in the eld includes
that by Dickmannsand Pomerleau[10], [2]. This seminal
researctfocusedon vision-basednroaddriving, andled to a
hugebody of follow-up researchA morerecentovervien of
researchin this areais givenin [4].

The idea of using lasersfor outdoor terrain perceptionis
not new; in fact, lasershave playedessentiakolesin a series
of Government-fundedff-road driving projects[13] and in
both DARPA GrandChallengeq15]. Grid representatiofike
the one usedin this paperhave becomepopularin a number
of systemsusinglidar or stereofor depthperception[5], [9],
[16]; in fact, the work in [16] attachescon dence factorsto
grid cells that re ect the information contentin the sensor
measurements.



Figure 1. At approximatelyl:40pmon Oct 8, 2005, a mobile robot wins

the DARPA Grand Challenge.The algorithm discussedn this paperplayed
an essentiakole in the robot's ability to navigate the 2005 Grand Challenge
course.

The topic of poseerrorin 3D point cloud acquisitionhas
receved considerablattentionin the literature.For example,
in [7], Levoy et al. describea methodfor mappinghistorical
objectsusinga robotarmanda rangescannerThe “classical”
methodfor aligning suchpoint cloudsis the iterative closest
pointalgorithm(ICP) [1]; see[11] for areal-timeimplementa-
tion, and[8] for a variantknown asscanmatding. However,
the fundamentalhssumptiorbehindthesemethodsis that the
robot scansthe sameobject more than once. Multiple scans
are aligned by detectingthe areaof overlap, and using the
mismatchfor scanalignment.

In our driving domain,sucha methodis inapplicable.This
is becausamost scanscover new territory, hencecorrespond
to no previous scan.The generallack of overlap“breaks” the
correspondencstepin ICP or scanmatching,renderingthese
methodinapplicablefor poseerror compensationln fact, we
remark that the authorsindeedimplementedICP and found
the performanceo be intolerably poor.

From a probabilistic viewpoint, ICP usesa probabilistic
error model (a Gaussian}o recover an accurateworld model
from inaccuratedata;the methodhereusesa probabilisticerror
modelto de ne suitabletestsover aninaccuratevorld model.
This subtle differenceis important, as the available datais
insufcient to recover an accurate3D terrain model.

I1l. POINT CLOUD ACQUISITION

The PTA algorithmoperateson a 3-D point cloud acquired
by the robot while in motion. Becausethe speci cs of the
data acquisition matter we briey describethe robot and
the various sensorsinvolved in the acquisition process.All
methodsdescribedin this sectionare commonlyusedin the
eld of vehicle guidance[3], [12].

The robotic vehicle is shovn in Fig. 1. To determineits
locationrelative to an external coordinateframe, the robot is
equippedwith an inertial guidancesystem The task of this

Figure 2.

The vehicle usesa single line scannerto acquire surface data
from the terrainto make driving decisions.

systemis to determinethe poseof the robot, by which we
meanthe georeference8-D coordinategdenotedxy ) andthe
3-D orientationof the vehiclein Euler angles(pitch-roll-yaw,
denoted ):

0 1 0 1
Xk K
xk = @y A k=@ (A (1)
Zy k

Herek is the time index. As usual,the orientationvector |
inducesa rotation matrix, which we will denoteby Ry.

The inertial guidancesystemcomputesthe pose estimate
basedn measurementisom two differentialGPSsystemsand
a six-dggree-of-freedoninertial measurementnit (IMU). The
GPSsystemameasurehe absolutecoordinatesand velocities
of the vehicle and its pitch and yaw angle (but not roll).
ThelMU measuresingularvelocitiesandlinear accelerations.
As is commonin the eld of vehicle guidance,the datais
integratedusinga Kalman lter . Ourimplementatiorrelieson
an unscentecKalman lter (UKF) [6] chosenover classical
methoddfor its improved accurag. The spatialaccurag in Xy
of the guidancesystemis dependenbn the satellitereception,
and varies from 20cm to 2m. The maximum error in the
vehicle's orientation  is on the order of one degree.Such
valuesarewithin thenormfor moderate-cogjuidancesystems
suchasthe one deployed.

To acquirethe 3-D point cloud, the robot is equippedwith
single-scanlasers (multiple lasersare used for redundang
but processedeparately)Eachlaseris mountedhorizontally
on the robot's roof, slightly tilted downward to scan the
ground ahead.Fig. 2 illustratesthe scanningprocess.Each
laser scan generatesa vector of 180 range measurements
spaced0.5 dggreesapart. If we denotethe angle of the i-
th elementin this vector by |, and the measuredrange
value by rl, the correspondingmeasurements projected
into the external GPS-referencérame via the straightforvard
projecti/eoequaticl)n:
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+ Xk + Rk Xsens

)

Here Ry is the rotationmatrix that correspondso the vehicle
orientation g; Xsens and Rsens are the displacementand



Figure 3. 3D point cloud acquiredby the moving vehicle. The scandatais
integratedinto point cloudsusinganinertially guidedsystemfor determining
the location and orientationof the sensor

pointing angle of the scannerrelative to the vehicle's local
coordinateframe. Fig. 3 illustratessucha point cloud.
Olwviously, the 3-D point cloud is only of intermediary
interestaswe seekto enabletherobotto make theright driving
decisions.To this end, we de ne a terrain labeling function
that assignsto each2-D location X 4; Yy oneof threevalues:
Obstacle if we can nd two points, (X Y} zZ})T
and (X}, YJ Zi)T whosex-y distanceto the query
point Xq; Yy is smaller or equalto ", and for which
jzi  Zl,j exceedsa critical vertical distance . In our
implementation,” = 30cmand is betweenl5cm and
20cm (seesectionon parametetuning below).
Drivable if not an obstacle but we can nd at leastone
point (X Y} Zz})T within an "-rangeof the query
coordinatesX q; Yg.
Unknown if no point (X} Y, Z})T exists within an
"-rangeof the query coordinatesX 4; Yg.
The searchfor nearbypointsis corvenientlyorganizedin a 2-
D grid, andthe samegrid is usedasthe nal 2-D drivability
mapthatis providedto the vehicle's navigation engine.Fig. 4
shavs an example map. Here red=obstaclewhite=drivable,
and grey=unknawn.

IV. PROBABILISTIC TERRAIN ANALYSIS (PTA)
A. Tempoal NoiseModel

Unfortunately the algorithm just describedyields results
inappropriatefor robot navigation. Fig. 5 shavs such an
instance,in which a small error in the vehicle'’s role/pitch
estimationleadsto a massve terrain classi cation error—
forcing the vehicle off the road. Such situationsoccur even
for roll/pitch errorsbelov 0:5 degrees.The sensitvity to roll
and pitch for the vehicle is the result of the fact that the
scanneis pointedforward,detectingobjectsat up to 30 meters
range.Unfortunately sucharangeis necessarjor safevehicle
operationat GrandChallengedriving speedslin our reference
datasetof labeledterrain, we found that 12.6% of known
drivable areais classi ed as obstacle for a heightthreshold
parameter = 15cm
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Figure 4. Snapshobf the path plannerasit processeshe drivability map.
This snapshots taken from the mostdif cult partof the 2005DARPA Grand
Challenge,a mountainousareacalled Beer Bottle Pass

To accommodatsucherrors,onemight betemptedo adjust
the 3-D point cloud throughan ICP-typealgorithm.However,
ICP is proneto fail for the reasonsdiscussedn the related
work sectionabove.

In contract,the PTA algorithm doesnot attemptto recon-
struct a 3-D model. Instead,it runs statisticaltestsover the
data,to probefor obstaclesTo do so,PTA modelstheerrorin
the dataacquisitionprocessusinga rst orderMarkov model,
and usesthis model when determining whether a location
Xq; Yq is drivable.

The rst order Markov model is given by a stochastic
processwith noisevariables y and :

Kk k

+

kKt ok 3)
Herethe asteriskalenotethe estimatedvehicle state,which is
of coursecorruptedby noise.The variable modelsthe noise
over time, andthe variable the momentarynoisein the pose
estimatesAssumingGaussiamoise,we have

K N(«k 1;B)
K N (0;C)

(4)
(®)

whereB and C are the time-invariant noise covariances As
aresultof Eq. 4, the error increasesver time!. This models
the fact that the state estimateis generallynoisy, but noise
evolvesslowly over time.

We further de ne B and C to be of the following form:

B = diag( 4,i %yes wer 2 52 52 ) (6)
C = diag( 5z5 Azl mzs 2 2 2 5% ) (O

1We shallnot be concernedvith the obsenationthatthe absolutearrormay
diverge underthis model, as we only useit to determinethe relative error
when comparingto measurementacquiredin shorttemporalsuccession.



(a) Mapper failure
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(b) Fatal vehicle reaction
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Figure 5. Smallerrorsin poseestimation(smallerthan0.5 degrees)induce
massve terrain classi cation errors,which frequentlyforce the robot off the
road.

for the noise covariances 7,, 2 , 3,,and # . Those
shall be de ned later, when we focus on our attentionon a

learningmethodfor parametetuning.

B. The Probabilistic ObstacleTest

The rst orderMarkov chainenablesus to reformulatethe
obstacletest as a statistical test. While in its generalform,
this testis dif cult to computewe shall soonseethat for the
speci ¢ laser con guration thereis a simple approximation
that works well in practice.

Speci cally, given two points (X} Y} z))T and
Xk Y4 zZI)T (without lossof generalityassumen > k),
the heightdifferenceis distributed accordingto

Z  zh

i i 0T ; i '
N(]ZL{ZZ_‘n},[ k [Z]1(2C + n kjB)r 'm[Zg)

mean

8)

covariance

Here we approximatedthe non-linear projection de ned in
Eq. 2 with a rst order Taylor expansion.Thetermr | [Z] is
the Jacobiarof thevalueof Z|, with respecto the statevector

In generaltheseJacobiansare dif cult to calculate.How-
ever, for a forward-pointedlaser a vehicle that is approxi-
matelylevel, a laserfor which | 1., andif we ignorethe
laseroffset X sens, this Jacobiarresolhesto a distribution that

is relatively easily computed
0

= OO

ri[z] 9)

ri cos
re sin |
0

This expressiondependdinearly on the error in the estimate
of z, andalsoon the error in pitch androll, which are both
ampli ed throughthe actualmeasuredangerL.

Plugging this back into 8, and observingthat our model
assumesqual covariancefor roll and pitch error, we obtain
the relatively simple distribution

Zk Zh N Zhy (10)
mean
fm_kiC St ? )+{22x2yz+rL 2o+ ? )
covariance
This expressiorgrows linearly with thetime differencgm 2kj.

Thekey unknavns arethe noisecovariances &,, 2
and 2 , which we generallydo not know.

We will return to the problem of nding those noise
covariancein the next section,whenwe addresghe issueof
learning the Markov model. Assuming knowledge of those
parametersywe cannot usea statisticaltestfor determiningif
the Z -value of a pair of "-nearbypointsis indeedlarger than
the heightthreshold . Thetestusesthe Z-valueof thenormal
distribution just de ned, to calculate

pizi  zhi> ) >

for the error probability threshold .
For = 0:05, this resohesto

jzk q Zh > 1:64

1 XYz
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According to our Markov model, this test is an obstacle
acceptancdest for the presenceof an obstacleat the 95%
con dencelevel.

We note that the quantity on the right-hand side of the
testincreasesnonotonicallywith the time differenceim  Kk;|.
This obsenation is important: the acceptancerobability for
an obstacledeceaseswith time becausef the noise.Thatis,
two nearbypointsin the 3-D point cloud aremorelikely to be
witnessof an obstaclef they wererecordedn shorttemporal
succession.

Put differently the minimum height difference between
two measurementsequiredto mark those measurementas
witnessesf an obstacle,is a function of the time difference



at which thosemeasurementwere acquired.The more time
went by, the larger this minimum heightdifference.

C. Efcient Implementatiorof the PTA Test

A key provision in the PTA analysispertainsto the ef cient
searchof possiblepairs of points that are a witness of an
obstacle.As in the non-probabilisticalgorithm above, PTA
cachesall information over a 2-D grid of the ernvironment.
Theresolutionof the grid is "=2. Thus,whenanalyzinga new
rangemeasuremen®TA only queriesthe correspondin@-D
grid cell andits immediateneighbors.

Eventhoughmary pointsin the 3-D point cloud might fall
within agrid cell, it sufces to storetwo Z valuespercell. One
of thesevaluesde nesthetightestuppervaluefor futuretests,
andonede nesthetightestlower value.Along with thesetwo
values,we have to storethe timesat which the corresponding
measurementsererecordedsothatthetestcancorrectlyfold
in the increaseof uncertaintyover time.

The fact that those two measurementsufce is a direct
result of the monotonicgrowth of the uncertaintyover time.
Supposeve obsere a new measuremerr a cell which was
previously obsened. The one or more of threecaseswill be
true:

1) Thenew measuremenhightbeawitnessof anobstacle,
accordingto the probabilistictestin PTA. In this case,
PTA simply marksthe cell as obstacleand no further
testingtakes place.

Thenen measuremerdoesnottriggerasawitnessof an

obstacle put in future testsit establishes tighter lower

bound on the minimum Z-value than the previously

storedmeasurementn this case we simply replacethe
previous measurementvith this new one.The rationale
behindthis is simple: If the nev measuremenis more
restrictve than the previous one, there will not be a

situationwherea testagainstthis point would fail while

a testagainst the older one would succeedHence,the

old point can safely be discarded.

The third car is equialent to the second,but with a

re nementof the uppervalue.

Noticethata new measuremenhayre ne simultaneouslythe
lower andthe upperbounds.

The factthat we only have to memorizetwo measurements
pergrid call rendersPTA highly ef cient in spaceandtime—
which is importantfor real-timerobotic driving.

2)

3)

D. Learningthe Parametes

The probabilistic Markov model possessesa number of
unknavn parametersThe nal componentof the PTA is
concernedwvith tting the variousparameters:

The heightthreshold .
The statisticalacceptancerobability threshold .
The Markov chainerror parametersyhich are the noise

covariances 3,, 2 , 3,.and 2

Eachof Stanlg's ve laserspossessess own parametesset.

Terrain labeling for parameter tuning

no labels(white/grey)

obstacleqred)

drivable (blue)

Figure 6. Terrainlabelingfor parametettuning: The areatraversedby the
vehicleis labeledas “drivable” (blue) and two stripesat a x ed distanceto
the left andthe right are labeledas “obstacles”(red). While theselabelsare
only approximatethey areextremelyeasyto obtainandsigni cantly improve
the accurag of the resultingmapwhenusedfor parametetuning.

Insteadof determiningsuch parameterdy hand,which is
dif cult 2, PTA usesa discriminatie learning algorithm for
(locally) optimizing these parametersMore speci cally, the
parametersare tunedin a way that maximizesthe discrim-
inative accurag of the resulting terrain analysison labeled
training data.

A tediousway of labeling datawould be to label eachgrid
cell manuallyas to whetherit correspondgo an obstacleor
not. Such a method would require extreme effort, since a
personwould have to manually inspecteach area near the
robot.

To get around this issue, we developed an approximate
labeling technique,in which a human diver simply labels
terrain by driving. Fig 6 illustratesthe idea: Terrain that a
personchoosedo drive over is assumedo be obstacle-free,
hencelabeledas“0”. This areacorrespondso the blue stripe
in Figure6. A stripeleft andright of this corridor is assumed
to be all obstaclesasindicatedby the red stripesin Figure6.
Clearly, not all of those cells are occupied; however, the
learning techniqueis still pushedto label as mary of those
aspossibleas occupied.

The learning algorithm is now implementedthrough co-
ordinate ascent.In the outer loop, the algorithm performs
coordinateascentrelative to a data-drven scoring function.
Given an initial guess,the coordinateascentalgorithm mod-
i es eachparameterone-afteranotherby a x ed amount. It
thendeterminesf the new value constitutesan improvement
over the previous value when evaluatedover a logged data
set, and retainsit accordingly If for a givenintenal size no
improvementcan be found, the searchintenal is cut in half
andthe searchis continued,until the searchinterval becomes
smallerthana pre-setminimum searchinterval (at which point
the tuning is terminated).

Empirically, we nd that the learningalgorithm corverges
quickly to a robustsolutionwhentrainedwith about2 minutes
of driving data.In developing the DARPA Grand Challenge
entry, we oftenincludedin the training setdatafrom extreme

2GPSmanufcturersdo not reporttemporaldrift; anddrift is oftenescalated
by thefactthathigh-accurag receversswitchbetweemmultiple internal lters
turnedfor differentsignal strengths.



(a) Robot and laser scan plotted over time

(a) Robot and laser scan plotted over time

(b) 3-D point cloud  (c) non-probabilistic method (d) PTA result

error —

Figure 7. Comparisonof non-probabilisticalgorithm and PTA: (a) shovs
a scanover time, (b) the 3-D point cloud, (c) the erroneousnap and (d) the
resultof PTA.

terrain, with large errorsin the vehicle stateestimation(and
henceerrorsin the map).In this way, the datafocusedon the
hardestinstancesavailable.

V. RESULTS

The probabilistic analysis paired with the discriminatie
algorithm for parametertuning has a signi cant effect on
the accurag of the method.Using an independentdata set
acquiredn the SonorarDesertwe foundthatthefalsepositive
rate(thearealabeledasdrivablein Fig. 6) dropsfrom 12.6%to
0.002%whenmeasureaver 50,000grid cellswhenmeasured
on an independenttest set. At the sametime the rate at
which the areaoff the road is labeled as obstacleremains
approximatelyconstant(from 22.6%to 22.0%). This rate is
not 100% simply becausemost of the terrain thereis still
at anddrivable.Our approachfor dataacquisitionmislabels
the at terrainasnon-drivable. Suchmislabelinghowever, do
not impedewith the parametertuning algorithm, and hence
is preferableto labeling pixels manually (which would be
extremely tedious).

Fig 7 shavs an example:a snapshobf the vehiclefrom the
sideillustratesthatpartof the surfaceis scannednultiple times
due to a changeof pitch. As a result, the non-P7A method
hallucinatesa large occupiedare in the centerof the road,
asshowvn in Panelc of Fig 7. PTA overcomesthis error and
generatesa map that is good enoughfor driving. A second
exampleis shavn in Fig 8.

Basedon post-screeningf the sensordatalogged during
the race,we nd that the PTA algorithm was essentialfor
the robot's successFigure 9 displaysthe situationalong the
mostdif cult part of he course known as“Beer Bottle Pass.
The two blue contoursin the bottom image mark the GPS
corridor provided by DARPA, which aligns poorly with the
map data, indicating an approximatelocalization error of 2
meters.This analysissuggestghat a robot that followed the
GPSvia points blindly would likely have failed to traverse
this narrav mountainpass.

We also usedthe algorithm in the National Quali cation
Event, which was DARPA's selection event for the race

(b) 3-D point cloud  (c) non-probabilistic method (d) PTA result

error

Figure 8. A secondcomparisonSeetext.

contestants.In this event, our robot emepged as the only

robot that never collided with an obstacleor misseda gate
markedby trafc conesAll otherrobotswereunableto escape
collisions. This performancewas echoedin the actual race,
whereseveral othervehiclescollided with obstaclesalongthe

way, whereasour robotemepgedfreeof ary scratche®r dents.
While collision-free motion requiresmore than just accurate
terrain analysis,the terrain analysisis a clear prerequisiteof

collision-free motion.

The suitability of the PTA error modelcanalso be seenin
surface data. Figure 10 showvs a scatterplot generatedrom
measurementsakenon a at road,free of obstaclesThe hor
izontal axis is the time differencebetweentwo measurements
within a grid cell, andthe vertical axisis jZ}, ~ Zl, j, which
on at terrainis the estimationerror (ideally, the valueshould
alwaysbe zero).As this plot indicates the vertical estimation
error is indeeda function of time: the more time elapsesto
largertherelative Z -error. This dependences capturedby our
Markov model,which also modelsan increaseof uncertainty
over time.

(a) Beer Bottle Pass (b) Map and GPS corridor

Figure 9. Snapshobf the map acquiredby the robot on the “Beer Bottle
Pass, themostdif cult passagefthe DARPA GrandChallengeThetwo blue
contoursmark the GPS corridor provided by DARPA, which aligns poorly
with the mapdata.This analysissuggestshat a robot that followed the GPS
via points blindly would likely have failed to traversethis narrov mountain
pass.
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Figure 10. For terrainknown to be at, this diagramshaws the estimated
vertical heightdifference.

VI. CONCLUSION

We have presenteda new algorithm, called PTA (shortfor
probabilistic terrain analysig. This algorithmenablesoffroad
vehicles, equippedwith a single-scanlaser to analyzedata
from this laser so as to discriminate betweendrivable and
non-drivable terrain.

Th heartof this algorithmis a statisticalerror model of the
pose estimationerror, and a statisticaltest for the presence
of obstaclesbasedon this error model. The PTA algorithm
also featuresa learningcomponentin which labeledtraining
datais usedto tune the parametersf the probabilisticerror
model.In empiricaltesting,the approactwasfoundto provide
excellentresults.In fact, we believe PTA wasessentiain our
successfubid for the DARPA GrandChallenge.
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