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Abstract—In this paper we derive analytical upper bounds pose (cf. Section 1V). Before delving into the details of our

on the covariance of the state estimates in SLAM. The analysis approach, in the following section we present an overview of
is based on a novel formulation of the SLAM problem, which related work.

enables the simultaneous estimation of the landmark coordinates
with respect to a robot-centered frame (relative map), as well & I
with respect to a fixed global frame (absolute map). A study
of the properties of the covariance matrix in this formulation One of the first attempts to study the properties of the co-

yields analytical upper bounds for the uncertainty of both map variance matrix of the state estimates in SLAM was presented
representatiqns._ Moreover, by employing results from Least ;, [11]. In that work, a Linear Time Invariant (LTI) SLAM
Squares estimation theory, theguaranteed accuracy of the robot . . .
pose estimates is derived as a function of the accuracy of the model is em_ployed, n Wh'Ch both the rob.ot and the Iandmark_s
robot's sensors and of the properties of the map. Contrary are constrained to lie in a one-dimensional space. For this
to previous approaches, the method presented here makes nosimple model, the solution to the Riccati differential etijoma,
assumptions about the availability of a sensor measuring the which describes the time evolution of the covariance matfix
absolute orientation of the robot. The theoretical analysis is tha position estimates, is derived in closed form. This ltesu
validated by simulation results and real-world experiments. d . . .
emonstrates some of the properties of the covariancexmatri
in SLAM, but its practical importance is limited by the fact
that the analysis holds only for motion in 1D. The work of [11]
Recent interest in Simultaneous Localization and Mappiritas been extended to the case of a team of multiple vehicles
(SLAM) has resulted in significant advances in the design pérforming SLAM [12] under the same set of assumptions
estimation algorithms [1]-[5], data association teche®{6], (i.e., LTI system model, and motion in 1D).
and sensor data processing [7], [8], which have enabledA different set of properties of the covariance matrix in
localization with maps consisting of millions of landmarksSLAM is studied in [13]-[15]. In particular, it is shown that
(e.g., [1]). However, a theoretical characterization o€ ththe covariance matrix of the landmarks’ position estimases
attainable localization accuracy in SLAM remains an opesfecreasing monotonically, as more observations are pedes
problem to date. To the best of our knowledge, very feand after sufficient time, the map estimates become fully
approaches exist in the literature that focus mmedicting correlated. Additionally, the authors derive lawer bound
the accuracy of the robot’'s pose and of the map estimates, the covariance matrix, by considering the case in which
given the capabilities of a robot’s sensor payload. As altesithe odometry measurements averfect Since no additional
evaluating the suitability of a robot with a given set of s&ss uncertainty is introduced in the system during state prapag
for a particular SLAM application, largely remains a mattetion, this is the “best-case scenario”. The covariance ef th
of exhaustive simulations and experimentation. state estimates in this hypothetical system defines a lower
In this paper, we focus on deriving upper bounds for theound, which depends only on the initial uncertainty of the
covariance of the state estimates in SLAM, as a functignbot’s pose. These results are also extended to the case of
of the accuracy of the robot's sensors and the size of theoperative Concurrent Mapping and Localization in [16],
map. The derived closed-form expressions provitsretical [17]. A limitation of the aforementioned approaches is tiwat
guaranteedor the accuracy of SLAM, and can thus be emderived lower bounds anmdependenbf the accuracy of the
ployed during the design of a localization system, to deieem robot’s sensors, and thus cannot be employedcéonparing
the necessary accuracy of the robot's sensors. Contrarythe performance of robots with sensors of different quality
previous approaches [9], [10], in the treatment presenézd hMoreover, if the robot’s initial pose is perfectly known, izh
we do not assume that the robot is equipped with an absoligea common situation in SLAM, these bounds are equal to
orientation sensor, and thus the problem formulation isemozero, and are thus non-informative.
general. In order to derive analytical expressions for {hyeen In [9], upper bounds on the uncertainty of the position
bounds on the localization uncertainty, we employ a novebtimates in SLAM, as closed-form functions of the accuracy
formulation of the SLAM problem, in which the landmarkof the robot’s sensors, are derived. This is achieved bynassu
coordinates with respect to (i) the robot, and (ii) a fixethg that the robot is equipped with absolute orientation
global frame, are jointly estimated. This enables us to agmp sensor (e.g., a compass). When such a sensor is available,
upper bounds on the covariance lmfth map representationsthe maximum variance of the orientation errors is bounded,
(cf. Section Ill), as well as on the uncertainty in the robot'and a position-only Extended Kalman Filter estimator can be

. RELATED WORK

I. INTRODUCTION



formulated. This work is extended to the case of Cooperatigad f*+i1pp, is the position of the robot at time-stef,

SLAM in [10], under the assumption that every robot has axpressed with respect to the robot frame at time-tepl:

absolute orientation sensor. Clearly, there exist casesravh

such a requirement is not satisfied. We here extend tHE*'pg, = —C(—widt)pg,,, = —vpdtC(~widt)er  (3)

results of our previous work to the case where no absolute

orientation measurements are available, resulting in aemdp the preceding expressions, andwy, are the translational

general formulation. As shown in Section IV, in SLAM itand rotational velocity of the robot at time steprespectively,

is possible to derive an upper bound on the variance of thiis the sampling interval, aneh = [1 0]”.

robot’s orientation errorsyithout requiring that a compass or Using the measurements of the robot’s translational and

similar sensor be available. rotational velocitiesy,,, andw,,,, respectively, the position
estimate of the-th landmark is propagated according to:

I1l. THE UNCERTAINTY OF MAP ESTIMATION IN SLAM o Frsi e c .

In this section, we derive upper bounds for the covariance of Pirs P+ Cl=om, ) piJZA
the landmarks’ position estimates in SLAM. In particulae w = C(-wm,ot) (_vmkatel * pi**) “)
compute upper bounds for the uncertainty of the Iandmarl@'
positions when these are expressed with respect to i) a ﬁxr%
global frame (absolute map), and ii) the robot's coordinate

linearizing Eq (3), we obtain the error propagation etpmat
the relative position of the-th landmark:

frame (relative map).Our approach is based on formulating R = =, 68) %P, — GO (—wm, 68)erTn
an Extended Kalman Filter (EKF) estimator, in which theestat R SR "
vector is comprised of both the relative map coordinades] + 0tJx iy Wk (5)

the absolute map coordinates, but does explicitly contain . . .

the robot pose. The estimate for the robot pose, as well aslﬂst,he last expression, .the symb.ol denotes the error in the

covariance, can be inferred from the transformation berlnNeSSt'mate of the respective quantity, and

the two map representations, as shown in the following @ecti 0 1
We point out that the computational complexity of this I = {_1 0} (6)

formulation is higher than that of the standard EKF. Howgver

the sole purpose of employing such a formulation of SLANt we create a state vectofX, comprised of the relative

is to determine analytical upper bounds for the covariarice Positions of the landmarks with respect to the robot, then th

the proposed EKF set-ugdl available measurements are used
once, and apart from linearization, no other approximatine BX,1 = 28, PX, + FGrnoa (7)
made. Therefore, the covariance of the absolute map coehpute
with this filter will be identical (except for small lineagtion wheren, 4 = [0, gk]T is the noise of the robot's odometry
inaccuracies) to the covariance that is computed with thgeasurements, assumed to be zero-mean, white Gaussian, wit
“traditional” EKF SLAM algorithm [18], in which the state covariance matrixQ = diag(c2,02). The state transition
vector contains the absolute map coordinates and the roRgitrix is given by
pose.

Rpy = Iy ®C(—wm,0t) (8)
A. Relative-map SLAM

R
We first study the case in which the state vector is comprisé‘ﬂd G
only of the landmarks’ positions with respect to the robot o e R~
(relative map). Denoting the position of tih landmark with Gip = 0t[~Clowmdtler Jx"Piy,] ©)
respect to the robot at time stépoy fp;,, i = 1... N, we
obtain the state propagation equation:

is a2N x 2 block matrix, whose-th element is

The covariance propagation equation for the uncertainthef
relative mapis
Bpien = Fpg, + C(—wiét) ®p;, (1) R Rg R Rg&T | R

Pipp = 7Py P, + Qe (10)

where the rotation matrix expressing the rotation of theotob R BT R
frame between time-stegs+ 1 and & is: where we have denotetiQ, = "G,Q Gy, and Py
andRPk|k are the covariance of the error in the state estimate

of BX(k + 1) and ©X (k) respectively, after measurements up
to time & have been processed.

cos(wgdt)  sin(wgdt)

C(—wiot) = —sin(wdt) cos(wydt)

)

1We note that the term “relative map” is used in this paper tocles 2In the remainder of this papef,, denotes then x n identity matrix,
a robot-centred map. This is different than the notion of thlative map 1, x,, denotes thex x m matrix of ones0,, x denotes ther x m matrix
employed, for example, in [13]. of zeros, andg denotes the Kronecker product.



B. The Dual-Map Filter These correlations ensure that, during each EKF update step

In order to introduce the absolute landmark coordinates ¢ absolute map estimates as well as their covariance are
the state vector, we begin with the observation that, witho@PPropriately corrected.
loss of generality, the global coordinate frame can be tadec BY combining the covariance propagation and update equa-
at the initial position of the robot. Thus, at the first timepst tions (Egs. (12) and (16)), we form the Riccati recursiort tha
the absolute and relative magsincide i.e., X = #X,, describes the time evolution of the covariance matrix in the
where¢X is a vector that contains the coordinates of fiie augmented system. This is given by:

landmarks with respect to the fixed global frame. If at the fir _ Ta—1 T R T
time step, we augment the state vector to include two idaehticfp’”rl = i (P — PyH'S,"HP) @, + G QG (17)

copies of the statéX, and we thereafter propagate only on@yhere we have introduced the substitutidhs = Py, |, and
of the copies, while properly accounting for the correlatio p,_ | — P o541 to simplify the notation.

available. T G robot has perfect initial knowledge of its pose, which is
The augmented state vectorXs= [*X" “X7]", and the the most common setting for SLAM. Immediately after the
error-state propagation equation is given by first set of robot-to-landmark measurements, the uncéytain
% - R,  Oynwon %, 4 Ly R G, of the relative map i; equal to the cova_lri_a_nce matrix of
+ O x o Ion Oy xoN o :Ees;meisureme'nts,.|.é;_r]]?0‘0 = RO. The |rt1|.t|al]c valtl;]e c()jf |
B = R e Riccati recursion is the covariance matrix for the dual-
= ®iXp 4 G "Gloa (1) map filter that arises after duplicating the initial stated an
while the covariance propagation equation is given by performing one propagation step. Thus it is equal to:
Py = 24Py @) + G "QGT (12)

Ry + Qo Ro]

P, — { o ¥R (18)

Immediately after state duplication, and before the robot
starts moving, the two copies of the state carry exactly tli Upper bounds on the Asymptotic Covariance

same information, and are thus fully correlated. As a result Having determined the Riccati recursion (Eq. (17)) and
the initial covariance matrix for the augmented state veisto its initial value (Eq. (18)), we are now able to derive an

given by: upper bound for its solution, and thus an upper bound on
p _ [EPoo FPopo (13) the covariance of the map in SLAM. For this purpose, we
N S I 2 employ the following lemma:

At every time step, the robot performs a direct observationL 310 R d tant matri h that
of the relative positionsof all landmarks, and therefore the emma o.1. w andQ, are constant matrices such tha

R .
measurement vector at each time step is described by R, E.R’“ gnd Qu t Qy, for all & = 1, then the solution to
the Riccati recursion

z(k) = HX + n(k), with H= |lbny Oonxon 14 _
wheren(k) is a Gaussian, zero-mean, white noise vector. The T
measurements of different landmarks are independent, and +GQ.G (19)
t.herefore.the bc,iovitr:?nce mlatrlx (Df(k) will be a generally with an initial conditionP{ such thatPy = P, satisfies
time-varying, block-diagonal matrix: Py = P, for all k > 0.

R, = Diag(R;,) (15)
) ) ] The proof of this lemma is based on induction, and employs
where R;, is the2 x 2 covariance malrix of the measuremenfe tact that the right hand side of the Riccati recursion is a

of the i-th landmark. Using these definitions, we can write thFhatrix-increasing function of the argume®Rs and Q. Due

covariance update equation of the EKF as: to space limitations, the details of the proof are omittet a
Piiijisr = Prop— Pk+1|kHTS;Z+11HPk+1|k (16) tphri(;?terested reader is referred to [19] for the detailshef t

with Sp+1 = HPy o HY + Ry We now show how upper bounds on the matri€&., Ry,

At this point, a clarification regarding the structure of thendp, can be derived. From Egs. (9) and (11) we obtain:
measurement equation (cf. Eq. (14)) is due. At first, the

fact that the measurement equation does not directly ievolv N

the absolute position estimates of the landmarks may app&‘ﬁ’FeRQk = trace ("GyQ" Gy ) = Noyot* + oot pr
somewhat peculiar. Note, however, that the close relation e =1

isting between the absolute and relative maps is expresaedwherep; is the distance of theth landmark to the robot. Thus,
the correlations in the augmented system covariance matifx p, is the maximum possible distance between the robot



and any landmark (determined, for example, by the robofis SLAM, it suffices to determine the steady-state solutibn o
maximum sensing range), the following inequality holds: the Riccati in Eq. (23). This recursion is simpler than thiat o
Eq. (19), since it is aonstant coefficienRiccati recursion.
R 2542 2 2642
frace "Qi < Noyot”™ + Nogppot™ = g In order to determine theasymptoticsolution of Eq. (23),
We therefore obtain an upper bound 6., as: we employ the following lemma, which has been adapted

BQi < qlon = Qu (20) from {20}

We should note at this point that this isot the lowest —Lemma 3_-3:Supp_osd?Z(0) is the solution to the discrete-
upper bound that can be derived f8Q;.. By considering the time Riccati recursion in Eq. (23) with initial valuPy =
effect of the errors in the translational and rotationabeéy Osnx4n. Then the solution with the initial condition given in
measurements separately, a tighter bound can be obtairfe@. (21) is determined by the identity
The resulting matrix is non-diagonal in this case, however, 50 5u(0) _ = 1= 7
and this complicates the ensuing analysis. All the pertinen P~ Py = Tk (L +Pody)  PoT
quantities can still be derived in closed form, but the riasgl where Ty, is given by
expressions are considerably more cumbersome. We have thus _ k
opted not to present the tighter, but more complex bounds in Tr = (Liy — KpH)" (Iay + PJy)
this paper, in the interest of clarity. These results carob@d In these expression® is any solution to the Discrete Alge-
in [19]. braic Riccati Equation (DARE):

An upper bound on the measurement covariance matrix, B T T . 7
Ry, can be derived by considering the characteristics of the P=P-PH (HPH +R,)"HP+GQ.G
particular sensor used for the relative position measunésne gn( K, = PH” (HPH" + Ru)*l. J,. denotes the solution
If the covariance matrix of the measurement of each indafiduig the dual Riccati recursion:
landmark can be bounded above By, < rl», then we obtain

R Xrlhy =Ry

Jiy1 =3, —JG(GT1,.G+ Q) 'GTJ, + H'R'H

with zero initial condition,Jg = 04y xan-
Regarding the initial value of the recursion in Eqg. (19),sit i
easy to see that the following matrix satisfies the conditiqiemma 3.3 simplifies the evaluation of the steady-stateevalu
Py = Py: of Py, since the solution to the Riccati recursion with zero
initial condition is easily derived. When the initial valuétbe
covariance is zero, then the submatrix®jf that corresponds
. » ) . to the covariance of the absolute map wédmainzero for all
An additional difficulty in solving for the steady-state val ;. - 0, since no influx of uncertainty occurs in the absolute
of the Riccati recursion in Eqg. (19) is that the state tramsit |, 4mark coordinates. This observation results in siganitic

matrix, ®, is time-varying. Considering, however, the specialjification of the necessary derivations, which are gméad
structure of the matrices that appear in this recursion, the qatail in [19]

following lemma can be proven [19]:
Lemma 3.2:Let the solution, P}, to the recursion in
Eq. (19) be partitioned iR N x 2N blocks as

w (q+’l“)[2N 7“[2]\[
PO o TIQN ’I‘IQN (21)

Applying Lemmas 3.3 and 3.2, and evaluating the limit of
the resulting expressions @&s— oo, allows us to obtain the
following upper bound for the asymptotic covariance matrix

Rpu of the augmented-state filter:
Pp o= |prt ] @2) :
Pre. P (Q N W) I 0
D b3 - T
Additionally, let P, be the solution to the recursion P < 2 T Tar) N 2ZNx2N
_ _ _ _ _ _ - 2
Pyi1 = Py~ PyHT (HPHT +R,)  HP, + GQ,G” O2nan (‘3 + m) Ly
(23)

- ~ This expression provides an upper bound for the covariance
with initial condition Py = P{, and letP; be partitioned as of the augmented state vector after every EiBpagation

~ EP,  Ppu step. To derive a bound for the covariance immediately after
P, = |:PT Gp "} (24) the updatestep of the EKF, we note that during propagation,
RG k the absolute map covariance remains unchanged, while the
Then for anyk > 0, the following relations hold: uncertainty of the relative map is increased according to
Rp, — Rpu  Gp, _Gpu 4 Pre, = CiPra, Eqg. (10). Using this observation, we can shc_)W that an upper
bound on the steady-state covariance matrix of the relative
whereCy, = Hle Py map, immediately after every update step, is given by

This lemma demonstrates that to derive an upper bound on Rp _ (_q + 7 ) Iy = Tmaplan (25)
o0 2 4 ma

) . - tar
the steady-state covariance of the absolute and relatiyes ma



while the asymptotic uncertainty of the absolute positiohs whereHpy, is the Jacobian matrix of the error vecigy with
the landmarks in SLAM is bounded above by the matrix respect td;. This is a2N x 3 block matrix, whose-th block
element is equal to

GD q q?
Po=|—-2+4+1\—+qr| Ly ="maplon (26) L
( 2 V4 ) ' Hi=[L p], with p;, = —JClén)™p  (33)

These results provide bounds for the accuracy of the mapwe
SLAM, which are evaluated in closed form, and depend
the accuracy of the robot’s sensors, as well as on the s

point out that the solution of the Least Squares problem in
Q. (28) and the covariance of this solution, given by Eq),(32

: ; yi€ld the sameresults for the robot's pose, as the “standard”
of the area being mapped. Interestingly, thmundson both :
. X EKF formulation for SLAM, when at least 2 landmarks are
the relative and absolute map aqual when the covariance . L . :
. : . vailable. This is because in both cased, the available
matrix after the update phase of the EKF is considered. P
. . . Mmeasurements are used, and no approximations are made
However, it should be clear that tlaetual covariance matrices : -
. . ) (apart from linearization). Thus, we can use the expression
of the two map representations aret identical at steady state. . i .
; Eq, (32), to study the properties of the robot’s pose conaga
In the next section, we show how these results can be use
g . , In EKF-based SLAM.
for obtaining bounds on the covariance of the robot's pose : .
estimates in SLAM In the following, we focus on deriving upper bounds on the
steady-state value of the matrRgg. Note that sinceP, <

IV. THE ACCURACY OF POSE ESTIMATION INSLAM P}, an upper bound for the covariance of the robot pose at

Although the robot pose (position and orientation) is ndtme-stepk is given by (cf. Eq. (32)):
explicitly contained in the state vector of the formulatidwat .
we presented in the preceding section, an estimate for this Pgy = (Hng (HXkPqu)}k)_ngk) (34)
pose is implicitly defined from the estimates of the relative
map,’*X, and the absolute maf X. Specifically, the relation Substitution of the asymptotic results from Egs. (25) ar@),(2
between the representation of théh landmark in the global and of the values of the Jacobiaddy, and Hy, from
frame, “p;, and in the robot frame at time stép “+p;, is Egs. (31) and (33), yields the following asymptotic value fo

given by: Pgo:
G G R
P = +C *pi 27 -1
p PR, (c'ﬁfc) p | ( ) N N SV Per Pr
where “pg, and ¢, are the position and orientation of* 66 = <"'map Z{\il 5T g\il (ﬁfﬁi) = pg¢ Py
the robot with respect to the global frame at time step = = (35)

respectively. Thus, given the augmented state vector a-tim

stepk, X = [X" ¢XT]", and its covarianceP;,, we are  Employing inversion of the partitioned matrix in Eq. (35)
able to determine the robot pose, we obtain the following expression far,,:

G, T T
0, = [ DR, ¢k] o 2 map (36)
and its covariancePgg, by solving the Least Squares mini- oo Zf_\il (Tp:) — & (ZJLZZT) (Z]'\Lﬂai)
mization problem: i= i= i=
min et W, ey, (28) Noting that for anyi, j, the propertyp! ; = "p] p; holds,
k

and after simple algebraic manipulation, we can re-write th
whereegy, is the vector of errors that we seek to minimize, i.eexpression fotP,, as [19]:

the 2N x 1 vector whosei-th block is equal to
ANTmap

.- G Rip G Pyp= —— — (37)
g = +C kD i 29 ¢ N N
PR, + C(dr) ™ pi = 7p (29) SEYY
and W, is the covariance matrix of the vecteg. Employing ) ) )
linearization of Eq. (29), we obtain Wherepij is thg distance between landmarkand . Thus, if
- the pairwise distances of the landmarks are known, an upper
Wi = Hx, PrHy, (30) pound on the robot’s orientation variance is determined by
whereH , is the Jacobian of the error vectey with respect the preceding expression. Furthermore, if some propeofies
to the state vectoK, given by the plac_ement of the Iandmarks in space is knqwn, using this
expression we can determine bounds that are independent of
Hy, = [IN ® C(or) I2N] (31)  the actual landmark positions. For example, if the minimum
The covariance matrix of the least-squares estimat@ fos: aIIowabIeh distance between any two landmarks is equal to
_ _1 PLLyin» then
Poo = (H§ W; 'Hg,)
— 4f"ﬂmap

-1 < *map
(03, (HxPHE) 'He ) (32 Poo < (v 1),2; (38)

min
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Fig. 1.

(a) The diagonal elements of the covariance of thenteanll position estimates, computed by the standard EKF SLAMrisifigo, and by the dual-map

filter presented in Section lll. (b) The diagonal elementshef tobot pose covariance, computed by the standard EKF SLAtitim, and by the method
described in Section IV. To preserve the clarity of the figunaly the first 100sec are shown.

For the upper bound on the covariance matrix of the robot®variance matrix of the global landmark coordinates, hee t
position estimates, we obtain from Eq. (35): most important results of this paper. They enable us to céenpu

N N 1 theguaranteed accuracgf the state estimates in SLAM, as an

(Zizl ﬁi) (Zizl ﬁ?) analytical functionof the accuracy of the robot’s sensors, and

Ppp = 2rmap | NIz — ZN (ﬁTﬁ) the properties of the landmarks’ configuration. Hence, géhes
=1 3 7

expressions can be employed to determine whether a caadidat
which, by application of the matrix inversion lemma, yields robot system design satisfies the accuracy requirements of a

o given SLAM applicationwithoutthe need for simulations, or
Ppp = 222, experimentation.
N For example, consider a scenario in which a service robot
2T map (Zﬁil ﬁi) (va:l ﬁf) (e.g., autonomous lawn-mower, autonomous vacuum-clganer
is operating in an area of approximately known size, and
N? (Zilil (f’iTﬁi) o % (Zz]'vzl ﬁiT) (Zi]\il ﬁi)) Iocaﬁzes b%/ performing SLAFIi/FI). Clearly,ythe state vector
pe should contain as few landmarks as possible, to minimize
. . the computational requirements of the localization atboni
To derive an upper bound fdfp », we examine the trace of they; aqver, the robot's sensors should be as inexpensive (and
secqnd te.rmTQ., in the last expression. After some algebralpnus, as inaccurate) as possible, in order to minimize pro-
manipulation, it can be shown that duction costs. By employing the results of this paper during
Armmap Zij\il (FpTEp)  2rmap the d_esign phase, the trade-offs b_etween cost, complwit_y,_
trace(Ty) = N N 5 Y localization accuracy can be studied, and informed detssio
2in1 Zj=1piﬁ' can be reached. Moreover, during the robot’'s operation, the
and thus selection of landmarks to include in the state vector can be
N guided by the results of Egs. (37)-(38), to enstireoretical
Prp < 27:;:[3,1:) I + trace(Ty) I, = % Py ¢Z P21, guaranteesfor the robot's pose accuracy. It thus becomes
i=1

clear that the availability of closed-form expressionsttha
Finally, we observe that if the maximum distance between tﬁgaractenze the accuracy of the state esnr_nates n SLAM IS a
robot and any landmark is equal tg, the covariance of the powerful tool, which can be employed both in the design phase

robot's position estimate is bounded above by and .durlng the operation of robotic systems. In 'the fo!lcyvm
section, we present results from real-world experimentschv
Ppp = p§P¢¢12 (39) demonstrate the validity of the preceding theoretical ysisl
This result, along with those of Eqgs. (37)-(38), which de- V. EXPERIMENTAL RESULTS

termine upper bounds on the robot’s orientation uncestaint Before describing the setup of our real-world experiments,
and that of Eq. (26), which yields the upper bound of thee illustrate, with numerical results, that the dual maprfor



lation employed in our analysis is equivalent to the “stadtia to-landmark distances were always close to their maximum
EKF SLAM formulation, in which the state vector comprisesalues, the bounds would have been significantly tighteis Th
the robot pose and the landmark positions. For this purpese, fact has been verified in numerous simulation studies of
consider a SLAM scenario in which a robot moves randomliadverse” SLAM setups. Finally, it is worth mentioning that
in a square area of side 4m, and observes four landmadtge to occlusions and data association failures, the laridma
randomly placed in the area. Both the “standard” EKF-basecre not detected in every laser scan. On the average, the
SLAM algorithm, and the one described in Section Ill, pracesandmarks were successfully detected 94% of the time. Deespi
the same data, and the results for the covariance of thelglotteese fluctuations in the number of observed landmarks, the
landmark coordinates are shown in Fig. 1(a). In this plaébeoretical bounds still provide a quite accurate chariete
we observe that the numerical results obtained with botion of the uncertainty in SLAM.
filters are almost identical, with only small differencesedu
to linearization and numerical errors. Moreover, in Figh)1(
we plot the diagonal elements of the robot’'s pose covarianceln this paper, we have derived upper bounds on the covari-
matrix, computed both by the standard EKF SLAM, and usirgnce of the state estimates in SLAM, asalytical functions
Eqg. (32). Once again, we observe that the two methods yielfithe accuracy of the robot’s sensors, and of the properties
almost identical results, thus indicating that by studyihg of the map (e.g., number of landmarks, maximum distance to
properties of the covariance in our formulation, we can dralandmarks). These bounds determine gnaranteed accuracy
conclusions for the covariance in the standard EKF-basttht will be attained by a robot with a given set of sensors,
SLAM algorithm? performing SLAM. Therefore, they can be used during the
In our real-world experiments, a Pioneer 3 robot equippetksign of a localization system, to guide the selection of im
with two opposite-facing SICK LMS200 laser scanners, whighortant parameters that affect the system’s performarast, c
provide a 360 field of view, was employed (cf. Fig. 2(a)).and algorithmic complexity. The derived analytical exgiens
During the experiment presented in this paper, the roboesowsimplify the process of verifying whether a particular dgsi
randomly while performing SLAM in an area of approximateneets the accuracy requirements of a given application; min
dimensions 10m4m. The laser scans are processed for dinizing the need for tedious and time-consuming simulation
tecting four prominent corners in the area, which are used stsdies, or exhaustive experimentation. In our future ywauk
landmarks. For detecting each corner, line-fitting is elpgtb plan to extend these results to cases in which the robot does
to compute the equations of adjacent wall lines, and the-int@ot operate within the same area for its entire mission. il su
section of these lines is determined. The maximum standaakes, the number of visible landmarks dynamically changes
deviation of each of the robot-to-landmark measurements waver time, and important issues such as loop-closure arise.
experimentally found to be equal to approximately 0.15nh this case, the length of the loops of the environment is a
which yields an upper boun® =< 0.0225I,m2. The robot crucial factor, which determines the accuracy of the rabot’
receives translational velocity measurements with stahde- localization. We believe that the theoretical analysisprted
viation o, = 0.01m/sec, and rotational velocity measuremenis this paper can serve as a basis for the study of more complex
with o, = 5 x 10~ 3rad/sec. The estimated robot trajectory, aSLAM scenarios.
well as the landmark positions, are shown in Fig. 2(b). In the
same figure, a sample laser scan is superimposed (after being
transformed to the global frame), to illustrate the geoynefr ~ This work was supported by the University of Minnesota
the area where the robot operates. (GiA Award, DTC), the Jet Propulsion Laboratory (Grant
In Fig. 3, the standard deviation of the estimation errofdo. 1248696, 1251073), and the National Science Foundation
(solid lines), as this is computed by the filter, is compa®d {ITR, Grant No. EIA-0324864).
the standard deviation computed with the theoreticalljvedr
bounds (dashed lines). For the robot orientation, the baund
Eg. (38) is employed in this case. From the plots in Fig. 3[1] M. Montemerlo, “FastSLAM: A factored solution to the sinaheous
we conclude that the analytical bounds that we have derved [S¥IZsio 1 marpig Ponien W koo e S
can be employed in order faredict the localization accuracy (o p. Newman, J. Leonard, J. D. Tardos, and J. Neira, “Explane

of SLAM without having to resort to extensive simulations, return: experimental validation of real-time concurrent niagpand
or experimentation. localization,” in Proc. o_f the IEEE International Conference on Robotics
P houl . hat in thi icul h h and AutomationWashington, DC, May 11-15 2002, pp. 1802-9.
We should point out .t at In this particular case, w ere t S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “Affiogent
robot moves randomly in space, the actual standard dewg@tio  approach to the simultaneous localisation and mapping problia

are approximately 2-3 times smaller than the corresponding Proc. of the 2002 IEEE International Conference on Robotrsi
, . Automation Washington, DC, May 11-15 2002, pp. 406-11.
upper bounds. If the robot's trajectory was such that thetob [4] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Dant-
Whyte, “Simultaneous localization and mapping with sparseraed
3We should note that the estimates for the robot's pose and Her t information filters,”International Journal of Robotics Researaiol. 23,
landmarks’ positions computed by the two methods are also ipatlygt no. 7-8, pp. 693-716, Aug. 2004.
identical, and the dual-map filter is consistent. The cowredng plots are [5] M. Paskin, “Thin junction tree filters for simultaneouscidization and
not be included, due to limited space. mapping,” Ph.D. dissertation, Berkeley, 2002.
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