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Abstract— In this paper, we explore the idea of using inertial
and actuator information to accurately identify the environment
of an amphibious robot. In particular, in our work with a
legged robot we use internal sensors to measure the dynamics
and interaction forces experienced by the robot. From these
measurements we use simple machine learning methods to prob-
abilistically infer properties of the environment, and therefore
identify it. The robot’s gait can then be automatically selected in
response to environmental changes. Experimental results show
that for several environments (sand, water, snow, ice, etc.), the
identification process is over 90 per cent accurate. The requisite
data can be collected during a half-leg rotation (about 250 ms),
making it one of the fastest and most economical environment
identifiers for a dynamic robot. For the littoral setting, a gait-
change experiment is done as a proof-of-concept of a robot
automatically adapting its gait to suit the environment.

I. I NTRODUCTION

In this paper we demonstrate adaptive gait control to a
wide range of environments for a legged robot. In particular,
we demonstrate that inertial sensors and actuator feedback
are suf�cient to leverage a Bayesian classi�er that rapidly
identi�es the environment, despite large amounts of noise
and intermittent contact. This information then allows the
robot to chose its gait both qualitatively and quantitatively
to adapt to the current environment. Furthermore, we believe
this is the �rst work that demonstrates the ef�ciency of such
methods over such a wide range of environmental contexts
including swimming underwater, walking on slippery ice,
and traversing the open spaces of a typical university of�ce
complex. Practical implications of this include, for example,
the ability of the robot to switch from walking to swimming
gaits as it moves from a sand beach or surf-zone to deep water.

Our experimental testbed, AQUA, is an amphibious hexapod
with six independently-controlled leg actuators. The robot can
negotiate rugged terrains, and with the use of amphibious
legs, it can also swim in water to a depth of 10 m. Proper
selection of gait for each type of environment is of crucial
importance. Therefore any autonomous version of the robot
would have to identify the environment in order to select the
proper gait. Since for this robot the leg forces are by nature
very impulse-like, the robot dynamics highly depend of the
surface mechanical properties. Conveniently, this behavior can
be viewed as a mechanism for probing and estimating the
dynamic properties of the surface.

Fig. 1. The hexapod robot, shown equipped with the semi-circle legs.
Communication with the operator station occurs over the �ber-optic tether.

Due to the complexity and variability of the robot-ground
interactions, our approach will rely on a probabilistic frame-
work that could be extended to become non-parametric. This
has the further advantage of keeping the learning phase simple
(merely recording a few segments of walking). We assume that
any environment type we need to identify will persist for at
least a few leg cycles.

II. D ESCRIPTION OF THEROBOT

Our vehicle (Fig. 1) [1] is a hexapod robot that was
speci�cally designed for amphibious locomotion. This robot is
based on the highly successful RHex [2] robot, and has been
improved to have autonomous underwater behavior [3]. Vari-
ous legs have been designed for the appropriate terrain: semi-
circle compliant legs for rugged terrain, amphibious straight
legs for beach and water, �ippers for underwater swimming.
The robot is equipped with a 3-axis Inertial Measurement Unit
(3DM-GX1TM ) from Microstrain. Two PC/104 single-Board
computers, one a 300 MHz Pentium-equivalent running QNX
and the other a 1400 MHz Pentium-M running GNU/Linux,
are used for on-board computation. Although it was not used
in this experiment, the robot is also equipped with 3 cameras,
one of which is connected directly through Firewire to the
Pentium-M subsystem.





The problem we are trying to solve can be summed up as
�nding the inverse mapping relationship; that is to identify the
environmentC given a sensory signatureS:

C = φ−1(S) (4)

In recent times, Bayesian systems have established themselves
as robust methods for dealing with uncertainty in an optimal
or near-optimal way. Using the Bayes, this problem can be
reformulated in a probabilistic manner as:

P (C|S) =
P (S|C)P (C)

P (S)
(5)

with the conditional probabilityP (S|C) representing a prob-
ability density of the sensor signalsS given an environment
C.

As for many problems, estimating the prior probabilities
P (C) is a dif�cult task. In our case, this prior is highly
dependent on the operating conditions of the robot. It should
also be noted that this prior is highly non-stationary. In order
to sidestep this issue and better concentrate on the environment
identi�cation problem, we assume equal priorsP (C) for all
environments. Lettingα be the usual normalizing constant, the
classi�er is reduced to the maximum-likelihood form:

P (C|S) = αP (S|C) (6)

A. Conditioning the Sensor Signals on Leg Angleθleg

A complete and optimal probabilistic analysis of this system
would require the set of full conditional probabilities. With
the 18 sensors, the size of the full conditional probabilities
table would be enormous (on the order of218). However, this
problem can be greatly simpli�ed by �rst keeping only one of
the leg's signals (Ileg) and then conditioning the probabilities
on that particular leg's angleθleg. Using the product rule and
having the new sensor spaceS′ = φ̇p, φ̇r, φ̇y, ax, ay, az, Ileg

we get

P (C|S′, θleg) = αP (S′, θleg|C) = αP (S′|θleg, C)P (θleg|C)
(7)

As an approximation, we assume the leg is always rotating
in any environmentC. The probabilityP (θleg|C) is therefore
always equal to 1 and Eq. 7 becomes:

P (C|S′, θleg) = αP (S′|θleg, C) (8)

Finally, assuming conditional independence of the prob-
abilities and selecting the Maximum A Posteriori (MAP)
hypothesis C, we get the usual naive Bayes classi�er equation:

C = argmax
Ci∈Cenv

∏
s∈S0

P (s|θleg, Ci) (9)

B. Importance of Using Information Synchronized on Leg
Angle

Using the sensor information synchronized on the leg angle
θleg represents on of the key aspects of our approach. This
stems from the fact that in the robot steady-state regime, the
sensor signals will be periodic, and the period will be tied to
the gait period itself. The leg angle is directly computed from

Fig. 2. Vertical accelerationaz over time. The circles (o) indicate the value
of this signal whenθleg=1.65 rad during the leg rotation.

the gait clock for the robot (the robot walks in open-loop, so
the leg angle is tied to the gait timing). Changes in the signal
should be felt more strongly if one keeps in mind the gait
timing. A clear example of this can be seen in Fig. 2. If we
only look at the statistics of the accelerationaz on this graph,
we see a reduction of amplitude when the robot starts entering
the wash zone, but an increase when it has reached full water
depth. Lost in the amplitude envelope is the notion of the phase
of that signal, and simply using amplitude, we fail to recognize
a phase reversal (a shift ofπ in the waveform) at time t=23s.
Using the synchronized information, this phase reversal is
taken into account, improving the accuracy of the information.
Therefore, statistical methods based on amplitude would be
unable to distinguish betweenCwash (shallow water) and
Cwater; for both locations, the amplitude of the oscillation is
similar. This technique bears some similitude to the sampling
of the return map at a particular angle in Tedrake et al.[18],
however in our case the sampling phase angles can be multiple
and are selected at locations maximizing information.

Another advantage in using the synchronized signal is that
the information tends to have a higher signal-to-noise ratio.
Since a signal with a lower signal-to-noise ratio intrinsically
has less information in it, more data needs to be collected
and analyzed, often having to perform some averaging. The
immediate impact of this �ltering over several gait periods
is the introduction of delays in the environment identi�cation
process.

V. RESULTS FORL ITTORAL SETTING

In this �rst experiment, we limited ourselves to a littoral
(i.e., surf-zone) environment. The set of possible values for
Cenv was therefore limited to:

Cenv ∈ {Cbeach, Cwash, Cwater} (10)

whereCbeach represents the sandy beach,Cwash the section
of the beach covered with shallow water (up to the robot's



Fig. 3. Motor leg currentIleg (above) and vertical accelerationaz (below)
plotted as a function of leg angleθleg for the beach trials. Only the cases
where the robot is on the beach (o) and in deep water (+) are plotted. Each
case contains a few leg rotations, in order to show the distribution of the data.

height), andCwater the section where the water depth is
greater that the robot's height. The sensor spaceS was reduced
to the following signals:

- θleg, the angle of a particular leg
- Ileg, the estimated motor current driving that particular
leg

- az the vertical acceleration of the robot.
Physically, the currentIleg is a good indicator of the torque
generated at a given leg.

A. Experimental Results

Data was collected over 15 trial runs on a pebble-covered
beach. This particular beach was selected due to its gentle
slope and the absence of large waves. This way, the depth
of the water could be assumed to be monotonically increasing
with the distance away from the shore. Fig. 3 shows the motor
current for a leg (top graph) and the vertical acceleration
(bottom graph) plotted against the leg angle. The �rst set of
point (circles) corresponds to the beach environment (Cbeach),
and the second set (crosses) corresponds to when the robot is
completely submerged by sea water (Cwater). The interme-
diate values corresponding toCwash were omitted from this
graph to better show the distance between theCbeach and the
Cwater signatures. Although the data from this plot comes
from a single trial, all other trials on this beach had similar
results. This indicates the relative stability of this signature
methods.

This graphic suggests that the easiest way to discriminate
between these two environments is to look at the loca-
tion where their probability distributionsP (Ileg|θleg, C) and
P (az|θleg, C) have maximum separation (dashed line in Fig.
3). Using a simple threshold rule, the environment can be

identi�ed. This rule could be applied to either the currentIleg

or the vertical accelerationaz, or both.

B. Automatic Gait Switching from Walking to Swimming

Armed with the above information, successful automatic
gait switching experiments were performed on a new beach
setting. We used the same leg angle (θleg = 1.65rad), previ-
ously identi�ed as having the largest discrimination. A mid-
point threshold value for current was selected (Ileg < −3.0),
ensuring that the depth of water was suf�cient to enable the
robot to swim. The Fig. 4 shows a time-lapse sequence of
frames for one of the switchover experiments. These exper-
iments validated the ease and reliability of identifying the
Cbeach and Cwater environments. It should be noted that all
the above parameters were manually selected. Automatically
learning these values is currently outside the scope of this
paper, as it would entail the robot being able to measure the
true vehicle displacement in order to evaluate the performance
of the gait.

VI. I DENTIFYING THREE SIMILAR ENVIRONMENTS:
SNOW, ICE AND L INOLEUM

To further evaluate the effectiveness of our technique, we
tested it on an additional set of environments with similar
properties. This setCenv was composed of the following
environments:

- indoor lab �oor (linoleum),
- rough hard ice,
- unpacked granulated snow (5 cm deep).

This particular set was selected due to commonalities between
environments:

- ice and linoleum are both hard and cohesive surfaces,
- ice and snow are both slippery materials.

Since the differences between these environment signatures
are less dramatic than in the littoral setting, more information
will be required to reliably identify the environments. Conse-
quently, 4 data points were selected (as compared to one for
the previous experiment). A crude probability density function
was established for each of the manually selected 4 data points.
This probability density was related to the density of sample
points for each of the three environments, and the classi�cation
result was simply the output of the naive Bayes classi�er:

C = argmax
Ci∈{Csnow,Clinoleum,Cice}

∏
j

Pj(...|θleg, Ci) (11)

with
P1 = P (Ileg|θleg = 0.0rad, Ci) (12)

P2 = P (Ileg|θleg = 0.15rad, Ci) (13)

P3 = P (Ileg|θleg = 0.45rad, Ci) (14)

P4 = P (φ̇y|θleg = 1.35rad, Ci) (15)

The anglesθleg were manually selected based on the
distance between the distributions. In Fig. 5, the leg motor
current is plotted as a function of the leg angle for the



Fig. 4. Frame sequence taken during the automatic gait switch from walking to swimming. The actual switchover happens on the 6th frame, when the robot
detects the appropriate depth for swimming.

three environments. The lines indicate the leg angle where
the current valueIleg is used to compute the probabilities
P1, P2 and P3. These angles correspond to certain physical
phenomena:P1 detects the presence of non-cohesive material
(early touchdown), whereasP2 and P3 are related to the
adherence of the leg on the surface. Fig. 6 shows the body
yaw angular velocityθ̇y at various leg angles. Since large
yaw angular velocities are indicators of good traction on
the ground, this variable can be used to �nd the traction
characteristics of the ground. The yawing moment comes from
the tripod gait used on the robot: two legs are pushing the robot
forward on one side compared to one on the other side. This
creates a small imbalance in the yaw moment, proportional to
the traction generated by the legs. The probabilityP4 can be
derived from this information. Although Fig. 7 was not used
directly in this classi�cation problem, it shows how a given
environment signature will be visible for many signals: the
snow environment can be differentiated easily from the ice
and linoleum. Table I shows the result of the classi�cation.
Fig. 8 shows an estimate of the probability densitiesP1, P2,
p3 andP4.

Fig. 7. Pitch angular velocitieṡφp plotted as a function of leg angleθleg

for Cice, Csnow andClinoleum environments.



Fig. 5. Motor leg currentIleg plotted as a function of leg angleθleg for Cice, Csnow andClinoleum environments. The three vertical dashed lines indicate
the angles where the probabilities of Eq. 12, Eq. 13 and 14 are evaluated.

Fig. 6. Yaw angular velocitieṡθy plotted as a function of leg angleθleg for Cice, Csnow andClinoleum environments. The vertical dashed line indicates
the angle where the probability of Eq. 15 is evaluated.



work on integrating video information has been completed,
and integration of audio information is planned. Also, a more
complete and comprehensive classi�cation method based on a
nearest neighbors classi�er is in progress. Another dif�culty is
the relatively high bandwidth of the acceleration signal. Given
the sampling rate of 50 Hz for our acceleration unit, it makes
it hard to capture the rapidly changing acceleration signal at
the moment of impact. Work is being done to improve the
sampling rate of the inertial unit. Also, we hope to be able
to tackle the issue of discovering new environments as they
appear. This could be possibly be achieved using standard
clustering techniques that would indicate the appearance of
a new cluster in the data set. Another extension would be to
apply dimensionality reduction techniques such as Principal
Component Analysis (PCA), covering the cases of continu-
ously varying environments.
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