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Abstract— This paper focuses on efficient occupancy grid In this paper, we choose to use OGs in a hierarchical manner
building based on wavelet occupancy grids, a new sparse grid related to those of [9] but embedded in the wavelet theory
representation and on a new update algorithm for range sensors. which allows us to present a new algorithm called wavelet hi-

The update algorithm takes advantage of the natural multiscale . L . -
properties of the wavelet expansion to update only parts of the erarchical rasterization that hierarchically updateswhagelet

environement that are modified by the sensor measurements and 0ccupancy grid in the relevant area of the environment. It
at the proper scale. The sparse wavelet representation coupled does not require, as with the previous approach [10], any
with an efficient algorithm presented in this paper provides intermediate representation for adding observations & th
efficient and fast updating of occupancy grids. It leads to real- wavelet grid. This leads to real-time dense mapping in 2D and

time results especially in 2D grids and for the first time in 3D ial inst f this aloorithm that per
grids. Experiments and results are discussed for both real and W€ PrOPOS€ a special instance of this aigorithm that peisorm

simulated data. well enough for real-time 3D grid modelling. This method is
intrinsically multi-scale and thus one of its major advaets
. INTRODUCTION AND PREVIOUS WORK is that the mapping could be performed at any resolution in

The Simultaneous Localization And Mapping (SLAM) issuan anytime fashion.
has found very convincing solutions in the past few years, €Bhere exists a large panel of dense mapping techniques:
pecially in 2 dimensions. Thanks to a number of contribigioramongst the other popular representations of dense 3D data
[1] [2] [3] [4], it is now feasible to navigate and build a mapare raw data points [4], triangle mesh [11] [12], elevaticaps
while maintaining an estimate of the robot's position in afi3], [14] or ZX-tree based representations [15], [9]. However
unknown 2D indoor environment on a planar floor. In these 2tbere are major drawbacks in using such representatiori. Wi
conditions, the problem is theoretically and practicatiyved clouds of points it is not easy to generalize: roughly spagki
even in a populated environment [5]. Some of the most imprdkere is no simple mechanism to fill in the holes. Moreover,
sive approaches are based on grid-based fast-slam algeritlthe clouds of points are generated by the successive records
[6] [7] [3], which offer a unified framework for landmark of range measurements, thus the amount of data is prolabitiv
registration and pose calculation thanks to occupancysgrigdfter a few hours of recording. The triangle mesh represen-
(OG) [8]. This approach yields several advantages: it plewi tation is a kind of %-D map and the space representation
robots with the ability to build an accurate dense map @ also incomplete. In simple elevation maps [11], for the
the static environment, which keeps track of all possiblame reasons, holes in the environment such as tunnels are
landmarks and represents open spaces at the same time. @aotypart of the set of representable objects. This problem is
a simple update mechanism, which filters moving obstaclesercome in [14] since there is a little number of verticalpst
naturally and performs sensor fusion, is required. In @sttio for each part of the map. The most serious point is that most of
other methods, there is no need to perform landmark extractithese methods lack a straightforward data fusion mechanism
as the raw data from range measurements are sufficient. Onéngparticular, it is rarely simple to include information ome
the benefits is accurate self positioning, which is paréidyl absence of features. Triangle mesh [12] and elevation maps
visible in the accuracy of the angle estimate. However, tlig4] suffer most from this problem. Therefore most of the
major drawback is the amount of data required to store atithe these representations are obtained as a batch prgessi
process the grid, as a grid that represents the environmentor a little environment.
has an exponential memory cost as the number of dimensidits range sensors OGs represent the probability for the pre-
increases. In 2D SLAM, this drawback is overcome by the&ence of a reflective surface at any world location. Theeefor
sheer power of the computer and its huge memory. But thitse ability to update the map for both the presence and the
issue cannot be avoided for 3D SLAM even with today’'absence of data is a major advantage, which we call the
desktop computing capabilities. Recently, methods to dealolution property. With OGs this property does not come
with the 3D instance of the SLAM problem, in undulatingrom a batch process but is part of the probabilistic map rhode
terrains [4] have used landmark extraction, clustering anddefinition. The cost is that a huge amount of memory is needed
special algorithm for spurious data detection. Howeves thto cope with the map discretization.
map framework does not handle out-of-date data; therefdre[10], a wavelet grid-based approach was introduced, kvhic
the extra cost of removing or updating data coming from pastakes it possible to represent grids in a compact but flexible
poses of moving objects is not considered. format. In pyramid maps representations [8], [9], inforioat



is stored at each scale and there is a lot of redundancy batnpression is obtained by removing only zero coefficients.
multiscale information is available. Conversely, proliabc In this paper wavelets are just used as a special kind of
29-trees record data at the leaves [15] [9] and the whole deptéctor space basis that allows good compression. It is leyon
of the tree must be traversed to update the representatiba scope of this paper to give details about wavelet theory;
(fig. 3). Wavelet occupancy grids synthesize the advantagegerences can be found in [16] [17] [18].
of both approaches: there is no redundancy and they make it
possible to have multiscale editing by storing at finer scale
only the differences with the previous coarser scale (seeWavelets are built from two sets of functions: scaling and
section 1I-B). Furthermore this representation allows eonfletail functions (also known as wavelet functions). Sealin
pression by the elimination of redundant information wherinctions,®(x), capture the average or lower frequency infor-
there are no significant additional details such as for empHation and a scaling coefficient is notdd Detail functions,
or uncertain spaces with a theoretical analysis of infoimnat ¥(X), capture the higher frequency information and a detail
loss. In addition, this paper describe a real-time algorifor ~ coefficient for a detail functionf is notedd, ;. The set of
hierarchical updating of the occupancy representation[)n 3/vavelet basis functions can be constructed by the traoslati
for the first time. and dilation of the scaling and detail functions. Thus each o
In order to build the map, a standard approach, []_0], W|1|he basis functions or coefficients is indexed by a stalad
use an intermediate standard grid representation on whicl@ fanslation index. Moreover a detail function is indexed by
wavelet transform will be performed. Even if a 2D waveleits type f. In this paper, the non-standard Haar wavelet basis
transform can be performed in real-time, the extension ¥@used. For non-standard Haar wavelet basis, there is oly o
the case of a 3D transform in real-time is not apparent. $#ther scaling function and®2- 1 mother wavelet functions,
for a reasonable field of view, it makes the previous methathered is the dimension of the signal. Expanding a function
unfeasible for 3D data. Our algorithm overcomes this difficu O in the Haar wavelet basis is described as:
with a hierarchical strategy that updates only the relesagas 1=0
of the environment and at the proper scale. In a first section, O(x) =N N + > sztl,fq’{,fa 1)
we will present the wavelet framework and the data structure I=-N
while underlining differences with probabilisticd2rees. In \here f is an index from 1 to 2— 1, andN the level such
a second section the sensor model within the occupancy gii@t the whole grid appears as one cell. As can be seen in
framework for the wavelet space is described. Next, we pteseq. 1, only one scaling coefficient and one scaling function
the wavelet hierarchical rasterization algorithm. Lasthe are required in the expansion of any functiofx). As shown
present our results in 2D on real data and in simulated 3Rfig. 1, the scaling coefficients at other levels are compate
data where correct localisation is prOVidEd. AlthOUgh ih abart of the decompression (from left to r|ght) or Compreﬂsio
the paper the algorithm is described for any kind of rang@om right to left) processes.
sensor, the implementation and the experimental sectien ahe scaling coefficient for a certain leveland translatiort
with laser data only. holds the average of values contained in the support of the
scaling function. The support of any Haar basis function in
dimensiond is a d-cubee.g.a square in 2D and a cube in
In this paper, the occupancy state is represented as alsp@® |f the finest level is 0 and coarser levels are indexed by
function. Our main contribution is an occupancy updatingecreasing negative integers, the side of suchcabe is 2!

technique that can be performed in a compact manner. fhere the unit is in number of samples at level 0.
the heart of the method is wavelet representation, which is

a popular tool in image compression. Indeed, there existda Tree structure

similarity between OGs and images [8]. The wavelet tramsfor The key step in a wavelet decomposition is the passage from
known as the Mallat algorithm successively averages eache scale to another. The support of a Haar wavelet function a
scale, starting from the finest scale (fig. 1, from right td)lef level | is exactly partitioned by the support of thé ®avelet

This produces an oracle predicting the information stored functions at levell +1, (see Fig. 1 for dimension 1). This
finer cells, then only differences from the oracle are endoddeads to a quadtree for the case of a 2D space or an octree
This averaging produces the next coarser scale and diffesenfor a 3D space. Each representation hierarchically maps the
with neighboring samples at the fine scale gives the assatiatvhole explored space. A node of the tree storés 2 detail

so called detail coefficients. There is no loss of informaiio  coefficients and potentially®Zxhildren that encode finer details
that process since the information contained in the finelesc# they are necessary to reconstruct the expanded function.
can be recovered from its average and detail coefficientseSi The key step of a node creation is described in fig. 2. Only
two neighboring samples are often similar, a large number ®fcoefficients in 2D remain at each leaf while at each node
the detail coefficients turn out to be very small in magnitudés recorded the mean occupancy of the underlying area. In
Truncating or removing these small coefficients from tha standard quadtree, 4 coefficients are necessary and, for
representation introduces only small errors in the recoottd example in [9], the storage of the mean is redundant, whereas
signal, giving a form of lossy signal compression. Lossless the wavelet representation it is not.

Notations

Il. WAVELETS
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Fig. 2. A key step in a Haar wavelet transform in 2D. Four scpamples
Fig. 1. The 1D image (upper, left) is[8,10,9,5,0,0,4,4], and its at scalel generate 1 coarser scaling coefficient at s¢alel and 3 detail
unnormalized (used here because it is simpler to display) Hgeesentation coefficients at scalethat are stored in a wavelet tree node. In general the tree
is: [5,3,1,—2,—1,2,0,0]. The image is then reconstructed one level at a timrode has 4 children that describe finer resolutions for epabessubdivision.
as follows:[5] — [5+3,5—3] =[8,2] — [8+1,8—1,2—2,2+2=(9,7,0,4]  But if each child is a leaf and has only zero-detail coeffitietmen all the
and so on. Here 0 is the finest scale index or the scale whemesdgathered child branches can be pruned without information loss. Arel tiee node
and —2 is the coarsest scale. As in one dimension there is only artdfi becomes a leaf.
detail function, the subscripts refers only to translatfgnindices of eq. (1).

N\

The Haar wavelet data structure is exactly%atrze for its
topology but not for the encoded data. Therefore the indgxin I
of a cell with wavelet OG is as fast as with probabilistc 2 B
29-trees, however the retrieving of occupancy needs a small o /
number of inverse wavelet transform operatforiaurthermore
it not only stores spatially organized data, but also sunresr
the data at different resolutions, which enables hieraathi | ‘ \/‘
updating. For example, fig. 3, the occupancy of all finest
squares inside the empty area (fig. 6) decreases of the sages. Hierarchical updates are possible with waveletsa iprobabilistic
amount, thus in the coarsest cell of the quadtree with wavesgdtree all the pale/yellow squares are to be updated iegefall into the

P ty space. With wavelets the scale of the large square wvatresvis the
the update is a constant. Also, the mean of the update O}Z%Fone that requires updating; therefore, the computasicefficient. The

the waved square equals the value of the update for each fifi@ttier of the coarse cells of the quadtree are marked inestbtack lines.

cell, so all finer wavelet coefficients of the update are zero.

As the update process is just the sum of the map wavelet

representation with the update wavelet representatianigee of the sensor consists of the range to the nearest obstacle fo

1), it produces efficient updates in areas that are cotlidren a certain direction. Thus a range measurement divides the

the observation. Coherent areas are those that are adjaceipace into three areas: ampty space before the obstacle,

each other and have the same occupancy. an occupiedspace at the obstacle location and theknown

At the top of the structure, the root of the tree stores thgpace everywhere else. In this context, an OG is a stochastic

scaling coefficient at the coarsest level and the support teksellated representation of spatial information thahtams

the corresponding scaling function includes all the spatiprobabilistic estimates of the occupancy state of eachiell

locations of the signal data or the bounding box of tha lattice [8]. In this framework, every cell are independient

observed places. updated for each sensor measurement, and the only differenc

between cells is their positions in the grid. The distance

lll. OCCUPANCY GRIDS AND RANGE SENSORMODELS  \hich we are interested in, so as to define cell occupancy,

OG is a very general framework for environment modelling the relative position of the cell with respect to the senso
associated with range sensors such as laser range-findé@ation. In the next subsection, the Bayesian equatianseib

sonar, radar or stereoscopic video camera. Each measurerf6aUpancy update are specified with cell positions reldtve
the sensor.

<
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1The number of operations is a small constant (4 sums and 2 medtijolins
in 2D, 7 sums and 3 multiplications in 3D) per scale and the nurobscales A Bayesian cell occupancy update,
is the depth of the tree which is logarithmic {lm 2D and Iry in 3D) in the
number of cells. a) Probabilistic variable definitions:



« Z a random variabfefor the sensor range measurements
in the setZ.

o Oyy € 0 ={occemp}. Oyy is the state of the ce(lx,y),
where(x,y) € Z2. Z? is the set of indexes of all the cells  occupancy probabies.
in the monitored area.

b) Joint probabilistic distribution: the lattice of cells
is a type of Markov field and in this article the sensor
model assumes cell independence. This leads to the folgpwin
expression for the joint distribution for each cell.
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P(Oxy,Z) = P(Oxy)P(Z|Oxy) (2

Given a sensor measuremenive apply the Bayes rule to
derive the probability for cel(x,y) to be occupied 4:

0
R ey
X cell indices. 20 350

Fig. 4. Update of a 2D OG after a sensor reading, initiallyheaell
occupancy was unknowne. 0.5 probability. The sensor beam has an aperture

p(Oxy|Z) — of 7 degrees. The sensor is positioned in (0,0).
P(Oxy) P(ZOxy)
3)
p(occ)p(zoce) + p(emp) p(zlemp)
The two conditional distribution®(Z|occ) and P(Z|emp p(ocdz) p(occ) p(Z/occ)
e ———— = log +
must be specified in order to process cell occupancy update. 09 plempz) plemp) p(zlemp)
Defining these functions is an important part of many works — log-odd, + log-0dd(2) @)
( [8], [19]). The results in [20] prove that for certain cheg
of parametersthese functions are piecewise constants: Therefore the vector space generated by the wavelet basis
with its sum inner operator is sufficient to represent ancatgd
aifz<p OGs. This inference with sums was originally proposed by
p(z][Oxy =0cd) = cif z=p (4) Elfes and Moravec [8], but only for performance reasonseHer
’ cs otherwise. it is also necessary to allow inference to be performed withi
. the compressed data.
cpif z<p
P(Z[Oxy =em@d) = cpif z=p (5) C. Log-ratio form of sensor model functions
Cs otherwise. It is straightforward to derive from eq. 4 and 5 the sensor
wherep is the range of the cellx,y). model equations in log-ratio form that we note thus:
As explained in [10], the cell update requires operatioas th
are not part of the set of wavelet vector operatfopproduct Oifz<p
and quotient ). Thus a better form is necessary to operatgog-oddz) = log(cz/cs) =log-odd,.. if z=p  (8)
updates on the wavelet form of occupancy functions. log(cs/cs) = log-odd,, otherwise.
B. Log-ratio form of occupancy update where p is the range of the celx,y), way to define each

As occupancy is a binary variable, a quotient between tkenstant is given in [26] One can notice that the update term
likelihoods of the two states of the variable is sufficient t&s zero if the cell is beyond the sensor readings, thus notapda
describe the binary distribution. The new representatiggdu is required in this case.

IS:
IV. HIERARCHICAL RASTERIZATION OF POLYGON OR

P([Oxy = ocd) 6) POLYHEDRON

. P([Oxy =emp) . This section describe the main contribution of this article
In the Bayesian update of the occupancy, the quotient makgsich consists of a fast algorithm for updating an occupancy

the marginalization term disappear and thanks to a logarithyrid expanded as a non-standard Haar wavelet series from a
transformation, sums are sufficient for the inference: set of range measurements.

log-oddOyy) = log

2For a certain variabl® we will note in upper case the variable, in lower A_ Problem statement
casev its realization, and we will not@(v) for P([V =v]) the probability of ) o
a realization of the variable. Given the sensor position, the beam geometry and the

3The sensor model failure rate, the sensor range discreiizatid the prior measured ranges, it is possible to define the polygon (fig. 6)

occupancy probability are the parameters. Prior occupanciasen very low, . s - -
the world being assumed nearly empty. Only the last parameteteigant for or polyhedron viewed by the sensor within the grid. Each time

establishing that the functions are piece-wise consteBit [2 the sensor position changes or measured ranges change a new

4The product and the quotient operators are not base inneatope of a
vector space. 5in the experiments: log-odgh, = —5.46 and log-odgl.. = 16.97
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Fig. 5. The hierarchical process of updating the grid: frbmn ¢oarsest scale |
to the finest. To save computing time, areas that are outsidpdlygon of gf/
view or totally included inside the areas classified as empydatected and Cells of
processed early in the hierarchy. the U sel

Fig. 6. A range-finder beam. The range finder is locatef® @nd its field

. " afe view is surrounded by red/thick boundaries. It definesttiree kinds of
relative position of t_he polygon or p0|yhedr9n and the grigy, types. The band within the obstacle lies is at the toptremd of the field
must be computed in order to update the grid. The standafdiew. Thus the cells marked with a “D” stand for cells wherdedection

approach for updating occupancy grids, in the context afrlasevent occurs.
sensors, will be to traverse the cells along each laser senso

beam and update the cells. This traversal method induce
difficulties in calculating the coverage area for each Iasg
sensor peam n order tq avoid inaccuracies such as aliasi ions, and wavelets provide a natural mechanism for doing
An easier alternative will be to traverse every cell of thgo_

grid and for each cell, perform a simple test to determine In th.is first versi_on of the algorithm, the grid is tra\&_n_‘s
the state of the cell. I,n this case, with a grid size of 10 jerarchically following the Haar wavelet support paditi

. . . . or each grid area, thexistintersectiorpredicate guides the
cells per dimension, a 2D square grid contains more trjhn g P g

As the algorithm is able to detect uniform regions recur-
fvely, the grid representation should allow to update e¢hos

. ! . . earch. If there is an intersection, the traversal reachepeat
1 million cells and a 3D cubic grid contains more than P

billion. E i reali ; be obtained in 2 to the grid hierarchyij.e. exploring finer scales. Otherwise
itldlon' nvfn' rriat- |lr3ne”p1)er orma;rrl]c:(;:Dca?h ?? raThe |rr1 bl|tmstops at the current node. Then the wavelet transform
0€s not seem fo be the case - | neretore e pro performed recursively beginning from this last node as

is to find a method that efficiently updates the grid Witho'gescribed in fig. 2 for the 2D case

traversing every cell of the grid. As shown in fig. 6 and eq. 8, ' '

a range measurement defines three sets of cells. The first ﬁd’tbrithm 1 HierarchicalWavRaster( subspagesensor beam
E, contains cells that are observed as empty. The second sgf,

U, contains cells that are considered as unknown. The thire - -
set,B (for boundaries), contains cells that are partially empty,lz for. ea_tch subspaqeof S - G,...,ndo
unknown or occupied. The elements of the third set are mainIg it sizeoff) = minResolution then

found at the boundaries formed by the sensor beams at its vi = evalOccupancy)

two extreme angles and at the neighborhood of an obstaclg: else if existintersection{, B) then

Section III-C states that tH set can be avoided in the update > if i€E then .
process. Therefore an update step must iterate througteliise ¢ & vi = log-oddm [eq. 81
that intersect either the polygon in 2D or the polyhedron in’" else : . .
3D that describe the sensor beam boundaries (fig. 5). The Vi = HierarchicalWavRasteri( B )
following describes an algorithm that performs the correct” end if
iteration through the grid in an efficient manner through the? else " N
use of wavelets. 1L vi =0 PieUw

12:  end if
B. Exhaustive hierarchical space exploration 13: end for

+1.0bs 4l,0bs |,0bs
14: 0bs globs . d =waveletTransform{vo, - - - , v
The key idea in the exploration of the grid space (fig. 5) is (s 1. s e "V

¢ . . . . 2 . ; 15: for eachd; o do

o define a predicat@xistintersectionwhich is true if a given | |' I obs ) )

set of grid cells intersect the volume defined by the field of®: di s —di s+dfg /*update inference

view of the sensor beams (blue/dark gray plus red/mediubf: end for _ L 1obs

gray cells in fig. 6). The absence of intersection indicates t 18 returns the scaling coefficient ™

the given set of cells are outside the sensor field of view and

do not need updating. Wheaxistintersectiorreturns true, a  Algorithm 1 gives the pseudo-code of the exhaustive hi-
special sub case needs to be considered in addition: if the eearchical grid traversal. Here is the maximum index of
of cells is totally included in the sensor field of view, alkth the space subdivisions that a node contains at one finer scale
cells belong toE (blue/dark gray cells in fig. 6) and theiri.e. 3 for 2D and 7 for 3D Haar wavelet transforms. The
occupancy is decreased by the same amount of logzpdd algorithm is recursive and begins with the whole grid as the
eq. 7. first subspace defined by the root of the wavelet tree. Itdtresu




is used to update the mean of the wavelet tree which is allgorithm 2 HierarchicalWavRaster( subspaSemean occu-
the coefficient of the scaling function at the coarsest levélancy of subspacs sg™, empty boundpemp, sensor bears
The sizeof function gets the resolution of the subspaand
minResolutiorrepresents the resolution of a cell in the grid. ~ {V3,--- ,Vi} = inverse
TheevalOccupancyunction evaluates the occupancy of a cell; 2: WaveletTransfom{(§§ 1,d'flls, e ,d'fnjs})
it can proceed by sampling the cell occupancy. for each subspaceof S i=0,...,ndo

Such an algorithm is very efficient in 2D but as it refines4: if sizeof{) = minResolution then

every area on the sensor beam boundaries it explores at least v; = evalOccupancy)

the whole perimeter of the polygon of view in 2D (red/mediume:  else

gray cells in fig. 6). Equivalently in 3D, the explored part is spaceState = existIntersectian@ )

all the surface of the polyhedron of view and it is far too &rg s: if spaceState is UNKNOWNthen

to be explored in real-time. That is why a better algorithm is vi=0

required. 10: else if spaceState is OCCUPIEDRhen

v; = HierarchicalWavRasteri( B )

C. Improved hierarchical space exploration 12: else if spaceState is EMPTY am? > Pemp then
Most of the space where a robot is to move about is largely v; = HierarchicalWavRasteli( B )

empty. Thus it is not efficient to begin with a map initialized14: else if spaceState is EMPTYthen

with a probability of 05 since this probability will decrease Vi = log-odd,,, I*eq. 8/

almost everywhere toward the minimum probabilipém, 16 end if

Equivalently, since each boundary between an area observed end if

as an empty one and an area outside the sensor field of vietv v «— v/ +v; I*update inference

separates cells that are almost all empty, updating oceypan end for

along this boundary is useless. Following this remark algeo: {35, d} ¢ ---.d} s} =waveletTransformig, - ,vi})
rithm 1 is modified in a lazy algorithm that investigates finer returns the scaling Coefﬁcieﬂgl,obs: §s+l_ 5'5“
iterations through the grid only if an update is required.

only if the subspace intersects an obstacle and it returns

EMPTY if the subspace is included EBUU. Third the value

of the minimum possible occupang¥mp is a parameter of

the algorithm in order to compare the state of the traversed

subspace with information gain brought by the sensor obser-

vations (line 12).

The major difference between the maps produced by the first

and the second algorithm is that in the second algorithrrether

\ \ is noa priori unknown area. Thus it is no longer possible to
() (b) store the position of the unexplored parts of the world. This

Fig. 7. Two different cases for the iteration along a bouypdasrthe field of .COU|d pe a problem if one W"".ms to dr'|ve the robo.t towtftia

view that separates tHe set and theJ set. Fig. 7(a) artificial separatios, Incognita Nevertheless the information concerning unknown

(with waves) was totally empty and the observation of a paitsdhterior (on  areas is used all the same in the definition of the polygon of

the right of the red boundary) does not bring any informatiamgFig. 7(b) yjew, so that occlusions are handled when observations are
the separation brings information about the state of a paanadbstacle: the !

yellow/pale square area that is inside the field of view (cm fight of the Processed. _ . _
red/thick boundary). One of the most important parts of the previous algorithms

are the intersection queries: the definitioneafstintersection
An update is almost always required for cells that are ifhese functions must be really optimized in order to reg&iev
the obstacle neighborhood (cells marked with 'D’ in fig. 6 Jast algorithms. Each kind of range sensor requires its omn i
so iteration is always performed in areas that contain suctplementation oexistintersectionA simple implementation of
cell. But for boundaries that separate cells that belondéo tsuch a function is easy to write since it involves only geainet
U set and to thee set, iteration is required only if thE set intersection primitives, therefore we will not describeeon
corrects the knowledge in the grid (fig. 7(b)); otherwise thextensively here for lack of space. In our own implementatio
iterations can stop early in the hierarchy (fig. 7(a)). we have used an explicit representation of a polygon or
polyhedron of the sensor view with vertices and edges and
In algorithm 2 three main differences appear: first an irwergmplicit representation of a grid cell with its index. Themet
wavelet transform is performed to retrieve the informatiopolygon-polygon or the polyhedron-polyhedron intersatiis
about the current state of the traversed subspace (lin2)1 computed, if this test fails an inclusion test is performed t
Second, line 7, the intersection function retuECUPIED test if one object is included in the other.
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The beams where a max-range reading occur, which could g) Computing time:For the comparison of update algo-
be produced by non-reflective surfaces, are safely replagedrithm on the same OG representation, polygon rasterization
totally unknown area. Therefore in presence of such readirend Bresenham performs almost the same witch is interesting
the polygon/polyhedron is splitted into several parts emted since Bresenham does not handled beam width and is there-
by the laser-scanner origine. fore far less accurate than polygon rasterization. They bot
performs far better than the inverse sampling. The second al
gorithm performs better for both representations: prdisdio-
, ) : ; X ; Diree and wavelet OG, even if an inverse wavelet transform is
simulated data with noise. I'n the 3D S|mul<j:1'.uons a rotatioly s computed in the last case (10 times faster in 2D, and 20 times
was used. For all the experiments the position of the Iasgﬂa W€aster in 3D). The probabilistic-tree performs better catist
given. For rea_l experiments, Corr_ected data s_ets were Pseéhvironments, although the difference is not of importance
whereas for simulated orfesthe simulator provided us with popapilistic-tree with mean performs only slightly betem

the correct sensor position. For 2D and 3D both, we use dafic environments than wavelet OG, since, as wavelet OGs,
sets that contain only static obstacles and data sets thtgico they compute the mean. Concerning a dynamic environment

moving obstacles also. We test first and second algorithm @n e et OG is slightly faster, which we reward the true multi
2D data sets and only second algorithm on 3D data sets. ¢.5ie nature of this representation

A. Methodology h) Quality: For 2D and 3D grids, comparisons with a

used by an OG, a probabilistic-tree with and without meatgnificant differences. In the 3D results (fig. 8), part o th
stored and a wavelet OG at the end of the mapping. A§ound (on the right of the map) is not entirely mapped
probabilistic-tree and wavelet OG cover grids with size diecause the density of measurements is not uniform but
power of two, we do not use OG with equivalent size t§epends on the vehicle velocity. As the map is considered
compare which would have been unfair. Instead, we comp@8Pty & priori unseen parts of the ground appear as holes.
the bounding box of all the range measurements and use ldHS it would be interesting to use a ground model to initeli
OG of the same size of that bounding box. the map in the future works. Then, ground measurements

d) Computing time:in 2D we compare two things: first would only correct thea priori and that would save a lot
the use of the polygon rasterization algorithm against rag-t Of computing time, as the ground is the main obstacle.
ing with a Bresenham algorithm and OG rasterization using
inverse sampling with a standard OG, second the hieradchica
algorithms with probabilistic-trees and wavelet OG. We db nA. Conclusions
give results for other algorithms than polygon raster@@bn 1o gpjective of this work is to present new algorithms
hierarchical rep_resentatlons. Since all the cell gccem that make OG building in wavelet space feasible. We show
the other algorithms are random accesses witch is totafly,: \avelet space is naturally a good space to represest hug
inefficient with hierarchical rasterization, the result® aot functions such as occupancy functions in 3D. In contrast to
of interest. In 3D we only present the results with the wavelg o\ jous works, we do not need intermediate representtgion
OG representation. The mean, min and max of the update tiglg4 and fuse OGs in wavelet space with the new wavelet hi-
per scan are Com.p“teo.'- , erarchical rasterization algorithms. Thanks to the hdmiaal

€) _Map quality: - n 2D, we evaluate map quallty byorganization of the computation, computing time is deflgite
comparing th_e resu_ltlng_ map with th_e one obtame_d by ths%fficient for real-time in 2D and enough for real-time in 3D.
OG rasterization using inverse sampling by computinglghe With that achievement, the main contribution of this work is

nprm”of thg differ(;ence of the 2 grids. In 3D the quality is justto present an OG updating algorithm which is also useful in
visually estimated. 3D. The use of Haar wavelets bring no significant computation

B. Results speed-up or pittfall compare to probabilistic-tree withamdut

f) Memory: These results show that the wavelet ant$ Slightly better in memory saving. Our long-term objeetig
probabilistic-tree performs the same concerning memovy sd0 use the unified grid-based fast-slam framework in 3D envi-
ing, witch follows the theory. As predicted, the Probalidis fonments. The requirements for an environment representat
trees with the mean are however a bit more expansive. B&table for fast-slam are:
representations saves, in average, about 91% for 2D gritls anl) fast updating and scan matching to construct the map
94% for 3D grids of the required memory compared with a  and calculate the current robot’s pose in real time,
classic OG representation. The amount of memory saved i) a hierarchical grid representation to handle multiple
larger in 3D than in 2D because the proportion of empty space  maps in multiple particles efficiently,
is far more important. 3) a small amount of memory per grid to ensure efficiency

_ , _ in the previously stated conditions.
6All experiments were done with an Int8l Pentiunt® IV CPU 3.00GHz ] ) )
TCSAIL (MIT), FR-Campus, FRO79, FR101, thanks to Cyrill Staiss [21] 1 N€ last two requirements and half of the first one are futfille

8nria static parking, Inria parking with a moving car by this work; thus it is now possible to consider very powkrfu

V. EXPERIMENTS

VI. CONCLUSIONS AND FUTURE WORKS



Fig. 8.

The wavelet OG obtained from a simulation of 3D datéhegang with a rotating laser range-finder. Fig. 8(a) and &(fmvide two views of the

reconstruction of the grid from the wavelet grid at scale (cell side of 020m) and scale-2 (cell side of 040m). It is noticeable that salient details as the
lamp-post or the 4 pole landmarks before the wall are accyratepbped. The wall is interestingly smooth too, and that is &ufeaobtained by the oracle

of the scaling view: details appear at finer views.

algorithms such as a navigation grid-based fast-slam @k gri[6]
based multiple-target tracking in 3D based upon Wavelet7
occupancy grids. 7l

B. Future Works

In the future we will explore several major areas of improve{8l
ment. As the intersection query is the most time-consuming
part of the algorithm, we plan to work first on optimizing [9]
this part of the algorithm. Another area of improvement is
the kind of wavelets that is used to compress the map. Haar
wavelets are the poorest kind of wavelets for compressiqio)
properties, so it will be interesting to work with higher
order wavelets that are able to compress much more com
functions such as quadrics because it will approximate a map
with locally Gaussian occupancy density in a far better way
for example. Finally, the tree structure of the data allows
parallel traversal of the environment and we plan to develop
parallel instances of the hierarchical rasterization ailgm. [12]
The proposed algorithm is a general one and its validity area
is theoretically the set of all range sensors. We plan toyappl
this algorithm using other kinds of range sensors such as a
stereo camera. However, our main objective is now to derit’s!
a localization algorithm based on this grid representatmn

obtain a complete grid-based slam algorithm in 3D. (14
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