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Fig. 2.

Left: Graphical model of unsupervised clustering in the initial visual space. Middle: Graphical model of unsupervised dimensionality reduction

based on MoFA [12], [17] (see also [7]). Right: Graphical model of automatically supervised dimensionality reduction in which mechanical measurements
obtained automatically from the robot are used as supervision (proposed in this paper). The automatic supervision in uences the selection of appropriate low
dimensional representations and helps learn the distinction between different terrain types. The observed random variables are displayed in shaded circles.

will bedonein this frameavork. To easethe exposition,we rst
describetwo relatedprobabilisticmodels.

A. Unsupervised clustering

The most straightforvard approachto learn to classify
examplescorrespondingo different terrainsis to apply un-
supervisedearning(clustering).The correspondinggraphical
model is showvn in Figure 2, left. The parameterst ;;3;
are the meansand covariancesof each of the K clusters
of visual dataX and ¥4 are the prior probabilitiesof each
class. The indicator variablesL are latent, i.e. hidden, and
are addedto simplify the inferenceprocess;they de ne the
class-membershipf eachtraining example,i.e. L;; = 1 if
the i*" training example x; belongsto the j** class. The
model is usedto learn the parameterof eachclassand the
classi cationboundariepetweerthem.However, inferencein
high dimensionalspacess numerically brittle andis limited
by the amountandthe diversity of the availabletraining data.

B. Unsupervised dimensionality reduction

As operatingin high dimensionalspacesis not desirable,
we wishto nd a lower dimensionalrepresentatiotJ of the
initial visualspaceX . As previously shavn [7], dimensionality
reduction can be done using Mixture of Factor Analyzers
(MoFA), which canbe expressedorobabilisticallyasfollows:

PX;U)= PXjyC=j)PUjC=j)P(C=j) (3
j=1

in whichit is assumedhatfX jU;C =jg » N (A;U+" ;; ¥;)
andU » N (*;;3;). In otherwords, the joint probability of
X andU is assumedo be modeledas a mixture of K local
linear projections,or factors(see Equation(2)) [7], [17]. In
this paperwe assumethat U are latent variables.This is a
more generalcasethan both [7] and [17]. After introducing
auxiliary latentvariablesL ;;, asabove, we canwrite Equation
(3) in the following way (which correspondgo the graphical
modelin Figure 2, middle):

P (X;U;LjOg) = P(XjU;L; ©0)P (UjL; ©g)P (LjOy):;

where ©g = 1,35 A;;7 5 U5 %09/, containsthe un-
known parametersof the model. Becauseof the particular
assumptionsabout the model, made in Equation (2), the

probability of a datapoint x; belongingto a terrain classj,
given a latent representatioru;, and the probability of the
latentrepresentation;, given the classj, are expresseds:

e 3 (Xi=Aui—n) TV (= Ajui—n;)
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whereD andd are the dimensionalitiesof the initial visual
spaceand the projected representationyespectiely. Those
distributions are modeled,so that a tractablesolution to the
maximumlik elihood estimationproblemis achiered.

C. Automatically supervised dimensionality reduction

Previous approacheshave assumedthe projectionsU of
the data are known [12], [17] or have obtained them by
unsupervisedearning[7]. In this work we wish to have the
automaticsupervisionin uence which projectionsare chosen
to best representand consequentlydiscriminate the visual
classes.For that purposewe introduce supervisioninto the
whole maximumlik elihoodframework, thussolving the initial
problemin Equation(1), consideringall the dataavailable to
the system.That is, the ambiguousmechanicalsupervision
alsotakes partin the maximumlik elihood decision.

In particular we have two parts, a vision part, in which
dimensionalityreductionis done,and a mechanicabehaior
part,in which the slip measurementact assupervision.They
arelinked throughthe fact that they refer to the sameterrain
type, sothey both give someinformationaboutthis terrain.In
otherwords,during learning,we canusevisualinformationto
learn somethingaboutthe nonlinearmechanicaimodels,and
conversely the mechanicalfeedbackto supervisethe vision
baseddimensionalityreductionand terrain classi cation. Our
goalis to make thosetwo differentsetsof informationinteract.

The main problemis that the decision about the terrain
typesandlearningof their mechanicabehaior arenotdirectly
related(i.e. they aredonein different, decoupledspacesut
they do refer to the sameterrains.We cando that decoupling
by usingagain the hiddenvariablesL which de ne the class-
membershipf eachtraining example(hereL ;; = 1 if theit®
training example (X;;y;;z;) has beengeneratedoy the j "
nonlinearslip modeland belongsto the j ¥ terrainclass).As
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Input: Training datafx;;y;;z;gY ,, wherex; arethe vision domaindata,y; arethe geometrydomaindata,
z; arethe mechanicakupervisionmeasurementOutput: EstimatedparametersE of the system.
Algorithm: Initialize the unknavn parameters£®. Sett = 0. Repeatuntil corvergence:

1. (E-step)Estimatethe expectedvaluesof L ;;, u;; (we denoteu;; = E (ujx;;L,;; = 1)):

, wherex; » N (Ajuf 4+ nf, Ul + ALSE(AL))

k=1
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2. (M-step) Selectthe parametersﬁt+1 to maximize CL(X,U,Y, 2, Lj®") . Let I/ = LI t'= N LU
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Fig. 3. EM algorithm updates (see [1] for details).

an additional step, a dimensionalityreduction of the visual
part of the datais done,so now the supervisioncanaffect the
parametergelatedto the dimensionalityreductiontoo. This
essentiallymeangpreferringprojectionswhich t thedata,and
thereforealso the supervision,well. Now, given the labeling

used as building blocks for slip approximationare: x, x2,
e, logX, tanhx (those functions are used later on in our
experimentswith the differencethat the input parameteris
scaled rst). The parametersu;?; :::; uf;%- are to be learned
for eachmodelj . We assumehe following probability model

of an exampleis known, the slip supervisionmeasurements for z; belongingto the j ** nonlinearmodel conditionedon

andthe visual information areindependentSo, the complete
likelihoodfactorsasfollows:

P(X;U;Y;Z;LjO) =

PXiUiL QP (UL ©) P(YigjLi6) PIEje)

Vision part, dim. red.  Autom. supervision Prior

where® = f1 ;355 A7 55 U5 Wy %: Y401, containsall the
parametersthat need to be estimatedin the system.|; are
the parametersof the nonlinear t of the slip data and %
are their covariances(here they are the standarddeviations,
asthe nal measuremenis one dimensional).The graphical
model correspondingo this caseis shavn in Figure 2, right.
This model allows the automatically obtained mechanical
supervisionto affect both the dimensionalityreductionand
the clusteringprocessthus improving a purely unsupervised
learningfor the purposesof the task at hand. Note that here
the lower dimensionalrepresentations hidden and that the
supervisionpart can in uence the visual learning and the
dimensionalityreductionthroughthe latentvariablesL ;;.
The supervisionpart is as follows. The mechanicalmea-
surementdataare assumedo have comefrom a nonlinear t,
which is modeledasa GeneralLinear RegressionGLR) [18].
GLR is appropriatefor expressingnonlinearbehaior andis
convenient for computationbecauset is linear in terms of
the parameterdo be estimated.For eachterraintype j, the
regressionfunction Z(Y) = E(ZjY) is assumedto have
come from a GLR with Gaugsiannoise: f ; ;Y) - Z(Y) =
Z(Y )25, whereZ (V) = W+ 7, g, (Y),2; » N (0;%),
and g, are several nonlinear functions selectedbefore the
learninghasstarted.Someexamplenonlinearfunctionsto be
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where G(y; 1) T s Wa.(y) and
(W05 W 22 ). P(y;) is given an uninformative prior (here,
uniform over a rangeof slopes).

With the help of the hiddenvariablesL, the completelog
likelihoodfunction (CL) canbe written as:

XX

CL(X, U,Y, Z, Lj(")) = Lij[lOgP(XijUi,Li]‘ = ].,Aj,nj,‘l/j)-i-
i=1 j=1

log P(usjLij =1, puj,%;5) +log P(Y4, zijLij = 1,05, 05) + log m;]

The introductionof the hiddenvariablesL is crucialto sim-
plifying the problemandallows for it to be solved ef ciently
with the ExpectatiorMaximization(EM) algorithm[5], which
tries to maximizethe completelog likelihood (CL). The EM
algorithm updatesappliedto our formulation of the problem
areshavn in Figure 3 (the detailedderivationsof the updates
are provided in [1]). In brief, the algorithm performs the
following stepsuntil convergence.In the E-step,the expected
valuesof the unobsered variablesu;; andlabel assignments
L;; areestimatedln the M-step, the parametersgor both the
vision andthe mechanicakupervisionside are selectedso as
to maximize the completelog likelihood. In other words, at
eachiterationbetterparameter® areselectedjn a sensehat
they increasethe likelihood of the available data.As the two
views are conditionally independentthe parameterdor the
vision and the mechanicakide are updatedindependentlyof



oneanotheiin theM-step.Notethatit is throughthevariableL

thatthevisualdataandthe mechanicasupervisiorinteractand
that the automaticsupervisioncan affect the local projections
de ning the dimensionalityreductionthroughthe variableU.

The interaction happensin the E-stepof eachiteration, by

updatingthe expectedvaluesof L and U which dependon

both the visual dataand the supervision.The new variables
introducedin Figure3 arede ned asfollows: L§ is adiagonal
N xN matrix which has Ltlj; :::L§Vj on its diagonal,G is a
N x(R + 1) matrix suchthatG;, = g,(Y:), Gjr+1) = 1, and
Z is a N x1 vectorcontainingthe measurements; [1].

D. Discussion
The main difference  from previous ap-
proaches [7], [12], [17] is that we have incorporated

automatic supervisioninto the framework, which directly

affects the lower dimensionality projectionsand the terrain
classi cation. Furthermore the variablesU correspondingo

the low dimensionalrepresentatiorare latent (unlike [12],

where they are known and obtainedfrom Isomap, prior to

learning)andcanhave arbitrarymeansandcovariancesvhich

are learned(unlike [7], where they are assumedo be zero
meanand unit variance).This is an importantpoint, because
it is through the latent variables U that the supervision
can in uence the dimensionality reduction processduring

learning.

The proposedmaximum likelihood approachsolves the
aborementioneccombinatorialenumeratiorproblem[10] ap-
proximately by producinga solution which is guaranteedo
be a local maximumonly. Indeed,the EM solutionis prone
to getting stuckin a local maximum. For example,one can
imaginecreatingadwersarialmechanicamodelsto contradict
the clusteringin visual spaceln practice for the autonomous
navigation problemwe areaddressingour intuition is thatthe
mechanicameasurementarecorrelatedo a large extentwith
the vision input and will be only improving the vision based
classi cation. This is seenlater in the experiments.

V. EXPERIMENTAL EVALUATION

In this sectionwe apply the proposedautomatically su-
perviseddimensionalityreduction algorithm to vision-based
learning of different terrain types, using slip supervision
obtainedby the robot.

The learning setupis as follows. The robot collects data
by building a map of the environmentand obtaining geom-
etry and appearancénformation for eachmap cell. Whena
particularcell is traversed,the robot measureghe amountof
slippage occurring and saves a training example composed
of a visual featurevector (correspondingo a terrain patch),
geometry feature vector (here only the slope angle), and
the correspondingslip. The collectedtraining examplesare
used for learning of the mapping betweenthe input visual
and geometricfeaturesand the output slip. This stratey is
commonly applied to learning traversability or other terrain
propertiesfrom vision [2], [11], [24]. VO [15] is usedfor
robot localization.

Fig. 4. Top: Example frames from driving on soil (left) and on gravel (right).
Bottom: Patches from the classes in our dataset. The variability in texture
appearance is one of the challenges present in our application domain. The
dataset is collected under various weather conditions.

A. Dataset

The datasethas beencollectedby an autonomoud AGR!
robot while driving on threeterrainswith different mobility
in a natural park: soil, gravel and asphalt.Figure 4 showvs
example patchesfrom the terrainsand Figure 1 shawvs the
collectedslip measurementin the dataset.lt is not knovn
to the algorithm which terrain classesthe input examples
belongto: the slip andslopemeasurement@~igure 1) arethe
only information to be usedfor automaticsupervision.The
datasetis quite challengingasit is obtainedin outdoor off-
roadenvironments.In particular a lot of intra-classvariability
canbe obsered in the appearancef the terrain patchesand
the mechanicaklip measurementare very noisy.

B. Visual representation

Each terrain patchis representeds the frequeng of oc-
currence(i.e. a histogram)of visual features,called textons,
within a patch [23]. The textons are collected by using k-
meansof 5x5 pixel neighborhood®xtractedat randomfrom
apool of trainingimagescomingfrom all the classegsee[23]
for details). In this case,5 textons are selectedfor each
terrain classin the data, constructinga 15-dimensionalinput
featurevector This representationpbasedon both color and
texture, hasbeenshavn to achieve satistctory classi cation
resultsfor generictextures[23], aswell asfor naturaloff-road
terrains[2].

'LAGR stands for Learning Applied to Ground Robots and is an experi-
mental all-terrain vehicle program funded by DARPA



in Figure 6. The resultantslip models when learning with

terrainclassi cationin thevisualspaceNotethat,althoughthe

correctslip modelshave beenlearned therearestill examples
which are misclassi ed for both learning scenariosbecause
only the visual information is usedduring testing. The slip

model used here has less inputs than in [2] and its main

purposeis to act as supervisionrather than achieze a good

approximatiorof the slip signal.Now, giventhattherobothas

automatically learnedhow to visually discriminateterrainsby

using the slip signalsas supervisionthe nal slip prediction

resultscan be furtherimproved by applyinga more advanced
slip learningalgorithm, e.g.by taking into consideratiormore

inputs [2].

Our resultsshav that using additional, automatically ob-
tained, signals as supervisionis worthwhile: it outperforms
purely unsupervisedvision-basedlearning and has the po-
tential to substitute the expensve, tedious, and inef cient
humanlabelingin applicationsrelatedto autonomousaviga-
tion. Secondly as more descriptve high dimensionalfeature
representationare crucial to achiezing betterrecognitionper
formance,performing dimensionalityreductionand utilizing
the automaticsupervisionin the procesds moreadwantageous

thanworking with simplerlower dimensionakrepresentations.

V1. CONCLUSIONS AND FUTURE WORK

We have proposeda novel probabilistic framewvork for
dimensionalityreductionwhich takesadwantageof ambiguous
andnoisy supervisionobtainedautomaticallyfrom the robot's
onboardsensors.As a result, simultaneouslearning of the
lower dimensionatepresentatiortheterrainclassi cation,and
the nonlinearslip behaior on eachterrain is done by us-
ing only automaticallyobtainedmeasurementshe proposed
methodstandsin betweenreasoningunderuncertaintyusing
probabilistic models and retrieving the underlying structure
of the data(i.e. dimensionalityreduction).The impact of the
proposedmethodof automaticallysuperviseddimensionality
reductionis that: 1) a better visual representationcan be
createdoby utilizing the supervisionfrom the robot, or the task
at hand;2) the robot canlearnaboutterrainsandtheir visual
representatioby usingits own sensorassupervision3) after
thelearninghascompletedthe expectedmobility behaior on
differentterrainscan be predictedremotely

We have shavn experimentson a datasetcollected while
driving in the eld, in which different terrain types are
learned better from both vision and slip supervisionthan
from vision aloneand unsupervisedlimensionalityreduction.
Signi cant improvements,currently under investigation, can
be done by introducing temporal/spatialcontinuity to the
consecutie/neighboringterrain measurement€xtendingthe
methodto online learningis animportantfuture direction,in
which the main challengesaredeterminingwhich examplesto
keepin memoryand estimatingthe numberof terrains.
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