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Fig. 2. Left: Graphical model of unsupervised clustering in the initial visual space. Middle: Graphical model of unsupervised dimensionality reduction
based on MoFA [12], [17] (see also [7]). Right: Graphical model of automatically supervised dimensionality reduction in which mechanical measurements
obtained automatically from the robot are used as supervision (proposed in this paper). The automatic supervision in�uences the selection of appropriate low
dimensional representations and helps learn the distinction between different terrain types. The observed random variables are displayed in shaded circles.

will bedonein this framework. To easetheexposition,we �rst
describetwo relatedprobabilisticmodels.

A. Unsupervised clustering
The most straightforward approachto learn to classify

examplescorrespondingto different terrainsis to apply un-
supervisedlearning(clustering).The correspondinggraphical
model is shown in Figure 2, left. The parameters¹ j ; Σj

are the meansand covariancesof each of the K clusters
of visual data X and ¼j are the prior probabilitiesof each
class.The indicator variablesL are latent, i.e. hidden, and
are addedto simplify the inferenceprocess;they de�ne the
class-membershipof eachtraining example, i.e. L ij = 1 if
the i th training example xi belongs to the j th class. The
model is usedto learn the parametersof eachclassand the
classi�cationboundariesbetweenthem.However, inferencein
high dimensionalspacesis numericallybrittle and is limited
by the amountandthe diversity of the availabletraining data.

B. Unsupervised dimensionality reduction
As operatingin high dimensionalspacesis not desirable,

we wish to �nd a lower dimensionalrepresentationU of the
initial visualspaceX . As previouslyshown [7], dimensionality
reduction can be done using Mixture of Factor Analyzers
(MoFA), which canbe expressedprobabilisticallyas follows:

P(X ; U) =
KX

j=1

P(X jU; C = j )P(UjC = j )P(C = j ) (3)

in which it is assumedthatfX jU; C = j g » N (ΛjU+´ j ; Ψj)
and U » N (¹ j ; Σj). In other words, the joint probability of
X andU is assumedto be modeledasa mixture of K local
linear projections,or factors(seeEquation(2)) [7], [17]. In
this paperwe assumethat U are latent variables.This is a
more generalcasethan both [7] and [17]. After introducing
auxiliary latentvariablesL ij , asabove, we canwrite Equation
(3) in the following way (which correspondsto the graphical
model in Figure2, middle):

P(X ; U; L jΘ0) = P(X jU; L; Θ0)P(UjL; Θ0)P(L jΘ0);

where Θ0 = f¹ j ; Σj ; Λj ; ´ j ; Ψj ; ¼jgK
j=1 contains the un-

known parametersof the model. Becauseof the particular
assumptionsabout the model, made in Equation (2), the

probability of a datapoint xi belongingto a terrain classj ,
given a latent representationui, and the probability of the
latent representationui, given the classj , areexpressedas:

P(xijui; L ij = 1) =
e−

1

2
(x i−Λju i−ηj)

T Ψ−1

j
(x i−Λju i−ηj)

(2¼)D/2jΨj j1/2

P(uijL ij = 1) =
1

(2¼)d/2jΣj j1/2
e−

1

2
(u i−µj)

T Σ−1

j
(u i−µj);

whereD and d are the dimensionalitiesof the initial visual
spaceand the projected representation,respectively. Those
distributions are modeled,so that a tractablesolution to the
maximumlikelihoodestimationproblemis achieved.

C. Automatically supervised dimensionality reduction
Previous approacheshave assumedthe projectionsU of

the data are known [12], [17] or have obtained them by
unsupervisedlearning[7]. In this work we wish to have the
automaticsupervisionin�uence which projectionsarechosen
to best representand consequentlydiscriminate the visual
classes.For that purposewe introducesupervisioninto the
wholemaximumlikelihoodframework, thussolvingtheinitial
problemin Equation(1), consideringall the dataavailable to
the system.That is, the ambiguousmechanicalsupervision
also takespart in the maximumlikelihooddecision.

In particular, we have two parts, a vision part, in which
dimensionalityreductionis done,and a mechanicalbehavior
part, in which the slip measurementsact assupervision.They
are linked throughthe fact that they refer to the sameterrain
type,so they bothgive someinformationaboutthis terrain.In
otherwords,during learning,we canusevisual informationto
learn somethingaboutthe nonlinearmechanicalmodels,and
conversely, the mechanicalfeedbackto supervisethe vision
baseddimensionalityreductionand terrainclassi�cation.Our
goalis to make thosetwo differentsetsof informationinteract.

The main problem is that the decision about the terrain
typesandlearningof theirmechanicalbehavior arenotdirectly
related(i.e. they are donein different,decoupledspaces)but
they do refer to the sameterrains.We cando that decoupling
by usingagain the hiddenvariablesL which de�ne the class-
membershipof eachtraining example(hereL ij = 1 if the i th

training example (xi;yi; zi) has beengeneratedby the j th

nonlinearslip modelandbelongsto the j th terrainclass).As



Input: Training datafxi;yi; zigN
i=1, wherexi are the vision domaindata,yi are the geometrydomaindata,

zi are the mechanicalsupervisionmeasurements.Output: Estimatedparameters£ of the system.

Algorithm: Initialize the unknown parameters£0 . Set t = 0. Repeatuntil convergence:

1. (E-step)Estimatethe expectedvaluesof L ij , uij (we denoteuij = E (ujxi; L ij = 1)):

Lt+1
ij =

P (xi j Lij=1,Θt)P (yi,zi j Lij=1,Θt)πt
jP

K

k=1
P (xi j Lik=1,Θt)P (yi,zi j Lik=1,Θt)πt

k

, wherex i » N (Λt
jµ

t
j + ηt

j , Ψ
t
j + Λt

jΣ
t
j(Λ

t
j)

0)

u t+1
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j)
0(Ψt

j)
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2. (M-step)Selectthe parametersΘt+1 to maximizeCL(X, U, Y, Z, LjΘt) . Let l t+1
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3. t = t + 1

Fig. 3. EM algorithm updates (see [1] for details).

an additional step, a dimensionalityreductionof the visual
part of the datais done,so now the supervisioncanaffect the
parametersrelatedto the dimensionalityreductiontoo. This
essentiallymeanspreferringprojectionswhich �t thedata,and
thereforealso the supervision,well. Now, given the labeling
of an example is known, the slip supervisionmeasurements
and the visual informationare independent.So, the complete
likelihoodfactorsas follows:

P(X ; U; Y; Z; L jΘ) =

P(X jU; L; Θ)P(UjL; Θ)
| {z }

Vision part, dim. red.

P(Y; Z jL; Θ)
| {z }

Autom. supervision

P(L jΘ)
| {z }

Prior

whereΘ = f¹ j ; Σj ; Λj ; ´ j ; Ψj ; µj ; ¾j ; ¼jgK
j=1 containsall the

parametersthat need to be estimatedin the system.µj are
the parametersof the nonlinear �t of the slip data and ¾j

are their covariances(here they are the standarddeviations,
as the �nal measurementis one dimensional).The graphical
modelcorrespondingto this caseis shown in Figure2, right.
This model allows the automatically obtained mechanical
supervisionto affect both the dimensionalityreduction and
the clusteringprocess,thus improving a purely unsupervised
learningfor the purposesof the task at hand.Note that here
the lower dimensionalrepresentationis hidden and that the
supervisionpart can in�uence the visual learning and the
dimensionalityreductionthroughthe latentvariablesL ij .

The supervisionpart is as follows. The mechanicalmea-
surementdataareassumedto have comefrom a nonlinear�t,
which is modeledasa GeneralLinearRegression(GLR) [18].
GLR is appropriatefor expressingnonlinearbehavior and is
convenient for computationbecauseit is linear in terms of
the parametersto be estimated.For eachterrain type j , the
regressionfunction Z̃ (Y ) = E (Z jY ) is assumedto have
come from a GLR with Gaussiannoise: f j(Y ) · Z (Y ) =

Z̃ (Y )+²j , whereZ̃ (Y ) = µ0
j +

P R
r=1 µr

j gr(Y ), ²j » N (0; ¾j),
and gr are several nonlinear functions selectedbefore the
learninghasstarted.Someexamplenonlinearfunctionsto be

used as building blocks for slip approximationare: x, x2,
ex, log x, tanh x (those functions are used later on in our
experimentswith the differencethat the input parameteris
scaled�rst). The parametersµ0

j ; :::; µR
j ; ¾j are to be learned

for eachmodelj . We assumethe following probabilitymodel
for zi belongingto the j th nonlinearmodel conditionedon
yi:

P(zijyi; L ij = 1; µj ; ¾j) =
1

(2¼)1/2¾j
e
−

1

2σ2

j

(zi−G(y i,θj))
2

;

where G(y; µj) = µ0
j +

P R
r=1 µr

j gr(y) and µj =
(µ0

j ; µ1
j ; :::; µR

j ). P(yi) is given an uninformative prior (here,
uniform over a rangeof slopes).

With the help of the hiddenvariablesL , the completelog
likelihoodfunction (CL) canbe written as:

CL(X, U, Y, Z, LjΘ) =

NX

i=1

KX

j=1

Lij [log P (x iju i, Lij = 1, Λj , ηj , Ψj)+

log P (u ijLij = 1, µj , Σj) + log P (y i, zijLij = 1, θj , σj) + log πj ]

Theintroductionof thehiddenvariablesL is crucial to sim-
plifying the problemandallows for it to be solved ef�ciently
with theExpectationMaximization(EM) algorithm[5], which
tries to maximizethe completelog likelihood(CL). The EM
algorithm updatesappliedto our formulation of the problem
areshown in Figure3 (the detailedderivationsof the updates
are provided in [1]). In brief, the algorithm performs the
following stepsuntil convergence.In the E-step,the expected
valuesof the unobserved variablesuij and label assignments
L ij areestimated.In the M-step, the parametersfor both the
vision andthe mechanicalsupervisionsideareselected,so as
to maximize the completelog likelihood. In other words, at
eachiterationbetterparametersΘ areselected,in a sensethat
they increasethe likelihoodof the availabledata.As the two
views are conditionally independent,the parametersfor the
vision and the mechanicalside are updatedindependentlyof



oneanotherin theM-step.Notethatit is throughthevariableL
thatthevisualdataandthemechanicalsupervisioninteractand
that the automaticsupervisioncanaffect the local projections
de�ning the dimensionalityreductionthroughthe variableU.
The interactionhappensin the E-stepof each iteration, by
updatingthe expectedvaluesof L and U which dependon
both the visual data and the supervision.The new variables
introducedin Figure3 arede�ned asfollows: L t

j is a diagonal
N xN matrix which has L t

1j ; :::L t
Nj on its diagonal,G is a

N x(R + 1) matrix suchthat Gir = gr(yi), Gi(R+1) = 1, and
Z is a N x1 vectorcontainingthe measurementszi [1].

D. Discussion
The main difference from previous ap-

proaches [7], [12], [17] is that we have incorporated
automatic supervision into the framework, which directly
affects the lower dimensionalityprojectionsand the terrain
classi�cation. Furthermore,the variablesU correspondingto
the low dimensionalrepresentationare latent (unlike [12],
where they are known and obtainedfrom Isomap,prior to
learning)andcanhave arbitrarymeansandcovarianceswhich
are learned(unlike [7], where they are assumedto be zero
meanand unit variance).This is an importantpoint, because
it is through the latent variables U that the supervision
can in�uence the dimensionality reduction processduring
learning.

The proposedmaximum likelihood approachsolves the
abovementionedcombinatorialenumerationproblem[10] ap-
proximatelyby producinga solution which is guaranteedto
be a local maximumonly. Indeed,the EM solution is prone
to getting stuck in a local maximum.For example,one can
imaginecreatingadversarialmechanicalmodelsto contradict
the clusteringin visual space.In practice,for the autonomous
navigationproblemwe areaddressing,our intuition is that the
mechanicalmeasurementsarecorrelatedto a largeextentwith
the vision input and will be only improving the vision based
classi�cation.This is seenlater in the experiments.

V. EXPERIMENTAL EVALUATION

In this section we apply the proposedautomaticallysu-
perviseddimensionalityreductionalgorithm to vision-based
learning of different terrain types, using slip supervision
obtainedby the robot.

The learning setup is as follows. The robot collects data
by building a map of the environment and obtaining geom-
etry and appearanceinformation for eachmap cell. When a
particularcell is traversed,the robot measuresthe amountof
slippageoccurring and saves a training example composed
of a visual featurevector (correspondingto a terrain patch),
geometry feature vector (here only the slope angle), and
the correspondingslip. The collected training examplesare
used for learning of the mapping betweenthe input visual
and geometricfeaturesand the output slip. This strategy is
commonly applied to learning traversability or other terrain
propertiesfrom vision [2], [11], [24]. VO [15] is used for
robot localization.

Fig. 4. Top: Example frames from driving on soil (left) and on gravel (right).
Bottom: Patches from the classes in our dataset. The variability in texture
appearance is one of the challenges present in our application domain. The
dataset is collected under various weather conditions.

A. Dataset
The datasethasbeencollectedby an autonomousLAGR1

robot while driving on three terrainswith different mobility
in a natural park: soil, gravel and asphalt.Figure 4 shows
example patchesfrom the terrains and Figure 1 shows the
collectedslip measurementsin the dataset.It is not known
to the algorithm which terrain classesthe input examples
belongto: the slip andslopemeasurements(Figure1) arethe
only information to be usedfor automaticsupervision.The
datasetis quite challengingas it is obtainedin outdoor, off-
roadenvironments.In particular, a lot of intra-classvariability
can be observed in the appearanceof the terrain patchesand
the mechanicalslip measurementsarevery noisy.

B. Visual representation
Each terrain patch is representedas the frequency of oc-

currence(i.e. a histogram)of visual features,called textons,
within a patch [23]. The textons are collected by using k-
meansof 5x5 pixel neighborhoodsextractedat randomfrom
a pool of trainingimagescomingfrom all theclasses(see[23]
for details). In this case, 5 textons are selectedfor each
terrain classin the data,constructinga 15-dimensionalinput
featurevector. This representation,basedon both color and
texture, hasbeenshown to achieve satisfactory classi�cation
resultsfor generictextures[23], aswell asfor naturaloff-road
terrains[2].

1LAGR stands for Learning Applied to Ground Robots and is an experi-
mental all-terrain vehicle program funded by DARPA



in Figure 6. The resultantslip models when learning with
automaticsupervisionareverysimilar to theonesgeneratedby
humansupervision,which is dueto having learnedthecorrect
terrainclassi�cationin thevisualspace.Notethat,althoughthe
correctslip modelshave beenlearned,therearestill examples
which are misclassi�ed for both learning scenariosbecause
only the visual information is usedduring testing. The slip
model used here has less inputs than in [2] and its main
purposeis to act as supervisionrather than achieve a good
approximationof theslip signal.Now, giventhat therobothas
automatically learnedhow to visually discriminateterrainsby
using the slip signalsas supervision,the �nal slip prediction
resultscanbe further improved by applyinga moreadvanced
slip learningalgorithm,e.g.by taking into considerationmore
inputs [2].

Our resultsshow that using additional, automaticallyob-
tained, signals as supervisionis worthwhile: it outperforms
purely unsupervisedvision-basedlearning and has the po-
tential to substitute the expensive, tedious, and inef�cient
humanlabelingin applicationsrelatedto autonomousnaviga-
tion. Secondly, as more descriptive high dimensionalfeature
representationsarecrucial to achieving betterrecognitionper-
formance,performing dimensionalityreductionand utilizing
theautomaticsupervisionin theprocessis moreadvantageous
thanworking with simpler lower dimensionalrepresentations.

VI . CONCLUSIONS AND FUTURE WORK

We have proposeda novel probabilistic framework for
dimensionalityreductionwhich takesadvantageof ambiguous
andnoisysupervisionobtainedautomaticallyfrom the robot's
onboardsensors.As a result, simultaneouslearning of the
lowerdimensionalrepresentation,theterrainclassi�cation,and
the nonlinear slip behavior on each terrain is done by us-
ing only automaticallyobtainedmeasurements.The proposed
methodstandsin betweenreasoningunderuncertaintyusing
probabilistic models and retrieving the underlying structure
of the data(i.e. dimensionalityreduction).The impactof the
proposedmethodof automaticallysuperviseddimensionality
reduction is that: 1) a better visual representationcan be
createdby utilizing thesupervisionfrom therobot,or the task
at hand;2) the robot can learnaboutterrainsandtheir visual
representationby usingits own sensorsassupervision;3) after
the learninghascompleted,theexpectedmobility behavior on
different terrainscanbe predictedremotely.

We have shown experimentson a datasetcollectedwhile
driving in the �eld, in which different terrain types are
learned better from both vision and slip supervision than
from vision aloneandunsuperviseddimensionalityreduction.
Signi�cant improvements,currently under investigation, can
be done by introducing temporal/spatialcontinuity to the
consecutive/neighboringterrain measurements.Extendingthe
methodto online learningis an importantfuture direction, in
which themainchallengesaredeterminingwhich examplesto
keepin memoryandestimatingthe numberof terrains.
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