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Abstract— This paper presents a numerically robust algorithm
for solving linear complementarity problems (LCPs), and applies
it to simulation of frictional contacts of articulated rigid bodies
each modeled as a general polygonal object. We first point out two
problems of the popular pivot-based LCP solver called Lemke
Algorithm and its extension with lexicographic ordering, due to
numerical errors especially for ill-conditioned LCPs. Our new
algorithm solves these problems by storing all pivot candidates
and searching for a sequence of pivots that leads to a solution.
An LCP-based contact dynamics formulation is combined with
a forward dynamics algorithm for articulated rigid bodies to
perform the whole simulation using a dynamic programming
approach. Simulation examples using a humanoid robot show
that the Lemke Algorithm (with or without lexicographic order-
ing) cannot solve complex contact problems, while our algorithm
can successfully simulate such situations. We also demonstrate
that the simulation results are qualitatively similar to those of
hardware experiments.

I. INTRODUCTION

Modeling collisions and contacts has been a long term
research issue in both robotics and graphics. Most models can
be categorized into penalty- and constraint-based methods. In
penalty-based models, contact force at each contact point is
modeled as the force exerted by a spring and damper. Although
contact forces are easily computed from penetration depths
and relative velocities, the approach suffers from numerical
instability problem due to impulsive forces. This paper deals
with the constraint-based approach, where we determine con-
tact forces such that unilateral constraints on the post-contact
relative motion and force are satisfied.

Constraint-based approaches often employ linear comple-
mentarity problem (LCP) [1] to formulate the constraints. An
n-dimensional LCP is to find a set of vectors w ∈ Rn and
z ∈ Rn that satisfy

w = Mz + q (1)

w ≥ 0, z ≥ 0, wT z = 0 (2)

for a given square matrix M ∈ Rn×n and vector q ∈ Rn. In
the rest of the paper, we shall denote condition (2) as

w ≥ 0 ⊥ z ≥ 0. (3)

LCPs can be solved by either iterative or pivot-based
approach. Iterative approaches (e.g. [2]) utilize the fact that the
solution of an LCP is the equilibrium point of the associated

quadratic cost function and employ numerical root-finding
techniques such as Newton’s method to find the equilibrium.
Pivot-based approaches (such as Lemke Algorithm [3]), on the
other hand, sequentially pivot a pair of elements of w and z
according to specific rules until all elements of q of the pivoted
equation become zero or positive. Once such pivot sequence is
found, we can obtain the pivoted solution by setting w = q,
z = 0 and then moving the pivoted elements back to the
original vectors.

Iterative approaches are generally easier to implement and
numerically robust, although convergence is proven only for a
limited class of M . Pivot-based approaches are theoretically
guaranteed to find a solution with finite number of trials (2n)
for general problems, and several systematic procedures are
proposed to efficiently find a solution [1]. However, it is known
that pivot-based approaches often suffer from numerical prob-
lem especially for large-scale and/or ill-conditioned problems.

There have been a body of research on developing efficient
and robust methods for solving LCPs in the context of colli-
sion/contact modeling. Jourdan et al. [4] applied an iterative
LCP solver similar to Gauss-Seidel algorithm to frictional
contacts of rigid bodies and proved convergence in most
practical cases. Förg et al. [5] utilized the sparsity of M to
accelerate an iterative LCP solver. Stewart et al. [6] formulated
frictional contacts between rigid bodies as an LCP and applied
Lemke Algorithm. Lloyd [7] also utilized the structure of M
in rigid-body contact model for reducing the computational
cost for Lemke Algorithm. Guendelman et al. [8] combined a
number of stabilization techniques to obtain visually plausible
simulation results for highly complex scenes. All of these
papers address contact dynamics between free rigid bodies,
in which case M is generally sparse and the LCP is likely
to be relatively easily solved by both iterative and pivot-based
approaches.

In contrast, we are interested in modeling frictional contacts
between articulated rigid bodies, each represented as a general
polygonal object. A possible solution is to treat all links as
free rigid bodies and extend the work described above to
solve both unilateral (contact) and bilateral (joint) constraints
at the same time. With such modeling strategy M would have
similar structure as in free rigid-body case. This type of model
has been employed in some dynamics engines such as [9].
However, integrating linear and angular accelerations of each



rigid body independently occasionally breaks joint constraints,
which should be corrected by applying heuristic recovering
forces. Weinstein et al. [10] takes a different approach where
joint constraints are maintained by sequentially applying im-
pulses to joints, while contact constraints are handled as
described in [8]. Although these models can generate visually
plausible results for highly complex scenes, they are not
suitable for applications that require physical precision.

Another approach is to combine a forward dynamics al-
gorithm for articulated rigid bodies such as [11], [12] with
an LCP-based contact formulation. Kokkevis [13] utilized
Articulated-Body Algorithm [11] for computing the mass
matrix in the LCP formulation and applied an iterative al-
gorithm for solving the LCP. Gayle et al. [14] applied an
adaptive forward dynamics algorithm [15] based on Divide-
and-Conquer Algorithm (DCA) [12] to a collision and contact
model based on Mirtich et al. [16]. Kry and Pai [17] derived
an LCP-based contact formulation for simulating interactions
between a rigid body and compliant fingers.

The general problem of the latter approach is that the
associated LCP tends to be dense and ill-conditioned, in which
case iterative methods do not guarantee convergence to a
solution. In this paper, we pursue the application of Lemke
Algorithm [3] to simulation of articulated rigid bodies under
frictional contacts because of its potential generality, although
its numerical robustness should be considerably improved
to be practically applicable to complex problems. Lemke
Algorithm has been successfully applied to contact problems
of articulated rigid bodies in Kry and Pai [17], but they only
consider one contact point per finger and hand dynamics is
represented by finger compliance rather than its inertia.

The main contribution of this paper is improvement of
Lemke Algorithm to deal with large-scale and ill-conditioned
LCPs derived from frictional contacts between articulated
rigid bodies of arbitrary geometry. The contact dynamics is
formulated in a similar way as Stewart et al. [6], while the
spatial mass matrix of free rigid bodies are replaced by inverse
articulated-body inertias (IABI) [11] at all contact points. The
contact model is combined with a forward dynamics algorithm
called Assembly-Disassembly Algorithm (ADA) [18], which
internally uses IABI for resolving the joint constraints and
therefore fits well with our contact formulation.

A well-known extension of Lemke Algorithm is lexico-
graphic ordering [1], [19] to solve cycling problem where the
same pivot sequence is infinitely repeated when an inappropri-
ate pivot choice is made. The problem is often encountered in
ill-conditioned problems and the extension has been employed
in [6], [7], [20].

Although lexicographic ordering can theoretically avoid
cycling, we found that it is not enough for solving our
contact problem under round-off errors. We will also point
out another practical problem of numerical instability that, to
our knowledge, has never been described in literature. Our
solver addresses both of these problems. The basic idea of
the method is to store all possible pivots at each pivot step
and, in case a particular choice of pivot sequence resulted in

an infinite pivot loop or numerical instability, track back the
queue of possible pivots and try other possible pivots. In other
words, the method searches for the best pivot sequence that
leads to a solution of the LCP.

The rest of the paper is organized as follows. Section II
reviews the Lemke Algorithm and point out the problems
caused by round-off errors. In section III, we describe our
numerically robust algorithm for solving LCPs. Section IV
presents the LCP formulation of frictional contacts of articu-
lated rigid bodies, along with several implementation issues.
In Section V, we first show that the problems described in
Section II actually happen in practical simulations using a
simple example, and then demonstrate the robustness of the
proposed solver by a number of simulation examples. Finally
we conclude the paper in Section VI.

II. LEMKE ALGORITHM

A. Algorithm Outline

We first show the outline of Lemke Algorithm [3] as
explained in [7]. In general, pivot-based methods try to find a
partition of Eq.(1):(

wα̃

wβ̃

)
=

(
M α̃α M α̃β

M β̃α M β̃β

)(
zα

zβ

)
+

(
qα̃

qβ̃

)
(4)

such that the pivoted system(
zα

wβ̃

)
= M ′

(
wα̃

zβ

)
+ q′ (5)

satisfies the following conditions:

Condition 1: wα̃ and zα contain the same set of indices,
and

Condition 2: q′ ≥ 0.

The vectors (zT
α wT

β̃
)T and (wT

α̃zT
β )T are called basic and

non-basic variables, respectively.
M ′ and q′ are computed from the original matrix and vector

as follows:

M ′ =
(

M−1
α̃α −M−1

α̃αM α̃β

M β̃αM−1
α̃α M β̃β −M β̃αM−1

α̃αM α̃β

)
(6)

q′ =
(

q′
α̃

q′
β̃

)
=

( −M−1
α̃αqα̃

qβ̃ −M β̃αM−1
α̃αqα̃

)
. (7)

Once such pivot is found, we can easily obtain the solution as
wα̃ = 0,wβ̃ = q′

β̃
,zα = q′

α̃,zβ = 0.

Lemke Algorithm is one of the systematic methods to
efficiently find an appropriate pivot. In Lemke Algorithm, we
first introduce an auxiliary variable z0 and modify the original
LCP (1) as follows:

w = M̄

(
z
z0

)
+ q (8)

where

M̄ =
(

M c
)

c = (1 1 . . . 1)T
.

The solution of Eq.(8) can be found by the following steps:



Step 0 If q ≥ 0, stop: w = q,z = 0 is the solution.
Otherwise, obtain r = arg min qi/ci and pivot z0

with wr. Compute M̄
′

and q′, and set the driving
variable yr = zr.

Step 1 Let m′ denote the column vector of M̄
′

correspond-
ing to yr. If m′ ≥ 0, stop: there is no solution or this
algorithm cannot solve the LCP. Otherwise, obtain
s = arg min {−qi/m′

i : m′
i ≤ 0} and let ys denote

the s-th element of the basic variables.
Step 2 Pivot ys with yr and update M̄

′
and q′. If ys = z0,

stop: q′ gives the solution. Otherwise set yr to the
complement of ys and return to Step 1.

After Step 0, q′ ≥ 0 holds with the choice of r and the
update rule Eq.(7). Similarly, all elements of subsequent q′ are
always equal to or larger than 0 with the choice of s in Step 1.
The second condition above is therefore satisfied at every
iteration. In Step 2, the first condition is met by setting the
driving variable to the complement of the previously pivoted
basic variable ys, and by terminating when z0 returns to a
non-basic variable.

B. Problems of Lemke Algorithm

A well-known problem of Lemke Algorithm is that the
minimum ratio test in Step 1 can result in tie, i.e. −qi/m′

i

can take the same minimum value at multiple i’s, in which
case the LCP is said to be degenerate. This problem often
occurs when the LCP includes redundant constraints, such as
when there are more than three contact points between a pair
of rigid bodies. Inappropriate choice of pivot in such cases
can lead to cycling and should be avoided. It is known that an
extension of Lemke Algorithm by lexicographic ordering [1],
[19] (Lexicographic Lemke Algorithm) can resolve the tie by
considering additional columns of M̄

′
.

According to our experience, however, this solution still has
a problem if the algorithm is implemented and executed on
computers. In computer programs, exact tie of floating-point
numbers almost never happens due to round-off errors even
if two numbers are analytically equal. They would have very
small difference and Step 1 would proceed without encounter-
ing a tie. However, the choice of pivot in such situations does
not have any logical basis and, if the choice was inappropriate,
the algorithm would fall into cycles. Alternatively, we could
set some small threshold to determine if two values are equal.
This approach however imposes another issue of choosing an
appropriate threshold because if the threshold is too small the
desirable pivot may be discarded due to numerical errors, and
if too large even lexicographic ordering may not be able to
discriminate the best pivot choice.

Another problem that, to our knowledge, has never been
addressed in literature is that M α̃α to be inverted in Eq.(6)
may be close to singular with some of the pivots encountered
during the process. In such cases, even if a solution is found, it
may have large error with respect to the original equation (1).
In contact simulation, this problem would result in physically
unrealistic behavior such as penetration.

After presenting our new LCP solver and contact model in
the following sections, we will demonstrate that these numeri-
cal problems actually occur in real simulation in Section V-A.

III. ROBUST PIVOT-BASED SOLVER FOR LCPS

The idea of our new algorithm is to store all the pivot
candidates at every iteration of Steps 1 and 2, and return to
them when cycling or numerical problem occurs. We store
the i-th row as a pivot candidate at Step 1 if m′

i < 0 and the
minimum element of q′ after pivoting at row i is larger than
a user-defined threshold. The threshold is usually chosen as
a negative value with small absolute value to allow round-off
errors. We define the cost function as a decreasing function
of the minimum value of q′ to prioritize pivot sequences with
smaller errors.

In the algorithm, we construct a search tree composed of
nodes each representing one pivot between a pair of basic and
non-basic variables. The descendants of a node represent the
possible pivots found in Step 1. The goal node is the one that
includes z0 in the pivot pair, and a successful sequence of
pivots is reconstructed by tracing the ancestor nodes from the
goal. We also construct a queue of nodes in which the nodes
are sorted in the ascending order of the cost associated to each
node.

Algorithm 1 shows the higher-level search algorithm, where

• Q is a queue of nodes,
• Q.appendNode(x) adds a new node x to the queue,
• Q.getBest() finds and pops the node with the smallest

total cost,
• x.isGoal() determines if node x is a goal by checking if

z0 is in the non-basic variables, and
• Q.addDescendants(x) adds all possible descendant

nodes of x to Q.

Details of Q.addDescendants(x) is described in Algo-
rithm 2, where

• x.q min(i) computes the smallest element of q′ after the
i-th basic variable is pivoted,

• ε is a user-defined positive constant,
• x.newNode(i) creates a new node representing a pivot

of the i-th basic variable, and
• x′.error() computes the norm of the current error wx′−

Mzx′−z0x′c−q where wx′ , zx′ and z0x′ are the values
of w, z and z0 after performing the pivot x′,

• emax is a user-defined permissible numerical error,
• Q.unique(x′) returns true if Q does not include the same

pivot set as x′.
After updating M ′ and q′ in accordance with the current

pivot set, the addDescendants() function checks the min-
imum element of q′ when the i-th basic variable is further
pivoted (line 4). The minimum value would ideally be zero
when −qi/m′

i is the minimum and negative otherwise. In our
problem, however, there may be multiple i’s that yield small
negative qmin due to round-off errors as mentioned in the
previous section. We keep such rows as pivot candidates if
qmin > −ε (ε > 0) (line 5). For each pivot candidate, we



Algorithm 1 Search Pivot Sequence
Require: an LCP

1: perform Step 0
2: create initial (dummy) node x0

3: Q.appendNode(x0)
4: while Q not empty do
5: x← Q.getBest()
6: if x.isGoal() then
7: return x
8: end if
9: Q.addDescendants(x)

10: end while
11: return NULL

Algorithm 2 Q.addDescendants(x)

1: update M̄
′

and q′

2: for i = 1, 2, . . . , n do
3: if m′

i < 0 then
4: qmin ← x.q min(i)
5: if qmin > −ε then
6: x′ ← x.newNode(i)
7: x′.totalCost← x.totalCost + exp(−qmin)
8: if x′.error() ≤ emax and Q.unique(x′) then
9: Q.appendNode(x′)

10: end if
11: end if
12: end if
13: end for

verify that the error is smaller than the user-defined permissible
error and that the same pivot set has never been visited before
to avoid cycling (line 8).

The advantage of this method over directly comparing
−qi/m′

i as in Lemke Algorithm is that |qmin| has a clear
physical meaning: either contact force or relative velocity
in the normal direction, and therefore it is much easier to
choose the threshold. The cost of each node is computed by
exp(−qmin) (line 7), which takes the maximum value exp(ε)
when qmin = −ε. This cost penalizes the pivots with larger
error, and as a result the optimal solution would be more
physically reasonable.

Choosing ε and emax is much easier than it would be with
the threshold for determining tie in lexicographic ordering
because we only have to make sure that it is sufficiently
large not to drop correct pivots from the candidate list. Larger
threshold degrades the speed because more candidates are kept
in the queue, but it does not harm the result because the pivot
sequence with the minimum cost is chosen anyway.

Updating M ′ and q′ (line 1) based on Eqs. (6)(7) requires
the inversion of a matrix of the size of pivot number, which
can be computationally expensive for large problems. In fact,
the update can be performed incrementally with less computa-
tional cost by using the M ′ and q′ in the direct ancestor [7].

f1

f2v1

v2

......
1 2

.

.

Fig. 1. Inverse articulated-body inertia.

IV. CONTACT MODEL FOR ARTICULATED RIGID BODIES

A. IABI [11]

Inverse articulated-body inertia (IABI) is the inverse of
the apparent inertia matrix of articulated bodies. This matrix
describes the relationship between a force applied to a link
called handle and resulting spatial acceleration, at current
configuration. Furthermore, we can consider multiple handles,
in which case we need m2 IABIs to describe the relationship
between forces and accelerations of m handles. In Fig. 1, for
example, suppose links 1 and 2 are handles. The relationship
between forces f1,f2 and accelerations v̇1, v̇2 is described
using IABIs Φij (i, j = 1, 2) as follows:

(
v̇1

v̇2

)
=

(
Φ11 Φ12

Φ21 Φ22

) (
f1

f2

)
+

(
φ1

φ2

)
(9)

where φ1 and φ2 are the bias accelerations of links 1 and 2,
respectively. IABIs can be computed recursively as described
in [12].

Forward dynamics algorithms such as DCA [12] and
ADA [18] utilize IABI to describe the equation of motion
of articulated bodies. We may be able to directly use IABIs
in our contact model. The contact model of Kokkevis [13] is
based on Articulated-Body Algorithm (ABA) [11], which uses
articulated-body inertia (ABI) rather than IABI. In [13], IABIs
are computed by applying unit test forces to the contact links
and computing link accelerations by ABA. Gayle et al. [14]
uses an extension of DCA as the basic forward dynamics
engine; however, they apply a method similar to [13] to
compute IABIs between contact links. In our implementation,
we explicitly specify contact links as handles and let the
forward dynamics algorithm compute IABIs between contact
links.

B. LCP Formulation of Contacts

We apply the formulation in [7] to articulated rigid bodies,
whose dynamics is represented by ABIs instead of spatial
inertia matrix of rigid bodies.

Suppose NL links are mutually in contact at NC contact
points. We first compute IABIs Φ̂ij (i, j = 1, 2, . . . , NL) and
bias accelerations φ̂i (i = 1, 2, . . . , NL) of the NL links using
DCA or ADA. These IABIs describe the relationship between
forces applied to contact links and their accelerations as

˙̂v = Φ̂f̂ + φ̂ (10)



where v̂ ∈ R6NL and f̂ ∈ R6NL are vectors composed of the
spatial velocities and forces of all links respectively, and

Φ̂ =

⎛
⎜⎜⎜⎝

Φ̂11 Φ̂12 . . . Φ̂1NL

Φ̂21 Φ̂22 . . . Φ̂2NL

...
...

. . .
...

Φ̂NL1 Φ̂NL2 . . . Φ̂NLNL

⎞
⎟⎟⎟⎠

φ̂ =
(

φ̂
T

1 φ̂
T

2 . . . φ̂
T

NL

)T

.

Let f ∈ R3NC and v ∈ R3NC denote contact forces
and relative velocities at contact points, respectively. The
relationship between forces and velocities of links and contact
points can be described by a Jacobian matrix J as

v = Jv̂ (11)

f̂ = JT f . (12)

Substituting Eqs.(11)(12) into Eq.(10) yields

v̇ = JΦ̂JT f + Jφ̂ + J̇ v̂

= Φf + φ (13)

Φ
�
= JΦ̂JT

φ
�
= Jφ̂ + J̇ v̂

which represents the dynamics at contact points.
We then discretize the equation of motion Eq.(13). Let v−

and v+ denote relative velocities at contact points before and
after the current integration. Assuming that we apply Euler
integration with time step Δt, we can write v+ as

v+ = Φ̄f + φ̄ (14)

where

Φ̄ = ΔtΦ (15)

φ̄ = v− + Δtφ. (16)

We now derive an LCP formulation of unilateral constraints
to model the contact, similar to the one used in [7]. The friction
cone is approximated by an M -sided polyhedral cone. We
also assume that each contact point has the same static and
slip friction coefficients. Let ni denote the normal vector at
contact i, and cim (m = 1, 2, . . . ,M) the normal vectors of
the side faces of the cone projected onto the contact tangential
plane and normalized.

We write the contact force at contact point i, f i, as a linear
combination of ni and cim (m = 1, 2, . . . ,M) by the non-
negative coefficients ai and bik (k = 1, 2, . . . ,M), i.e.

f i = aini +
M∑

m=1

bimcim

= aini + Cibi (17)

where

Ci =
(

ci1 ci2 . . . ciM

) ∈ R3×M (18)

bi =
(

bi1 bi2 . . . biM

)T ∈ RM . (19)

By combining Eq.(17) at all contact points, we obtain

f = Na + Cb (20)

where

N = diag {ni} ∈ R3NC×NC

a =
(

a1 a2 . . . aNC

)T

C = diag {Ci} ∈ R3NC×NCM

b =
(

bT
1 bT

2 . . . bT
NC

)T

and diag{∗} denotes a block diagonal matrix.
The linear complementarity condition for normal directions

is described as
NT v+ ≥ 0 ⊥ a ≥ 0. (21)

The condition for the friction force and tangential velocity
is described as

μa−Eb ≥ 0 ⊥ λ ≥ 0 (22)

CT v+ + ET λ ≥ 0 ⊥ b ≥ 0 (23)

where λ ∈ RNC is a Lagrangian, μ is a diagonal matrix
composed of the friction coefficients at all contact points, and
E ∈ RNC×NCM is a constant block-diagonal matrix defined
as

E = diag{1}, 1 =
(

1 . . . 1
) ∈ RM . (24)

Substituting Eqs.(14)(20) into Eqs.(22)(23), we obtain the
whole LCP:⎛
⎝ NT Φ̄N NT Φ̄C 0

CT Φ̄N CT Φ̄C ET

μ −E 0

⎞
⎠

⎛
⎝ a

b
λ

⎞
⎠ +

⎛
⎝ NT φ

CT φ
0

⎞
⎠

=

⎛
⎝ wa

wb

wλ

⎞
⎠ (25)

⎛
⎝ a

b
λ

⎞
⎠ ≥ 0 ⊥

⎛
⎝ wa

wb

wλ

⎞
⎠ ≥ 0. (26)

C. Implementation Issues

As with many contact models, the most important factor in
determining the computational cost is the number of contact
points. Because our collision detection library handles gen-
eral polygonal objects, many contact points are detected for
complex objects. We accelerate the computation by removing
unnecessary contact points such as those placed within some
small distance δ from another point or inside the contact area.
Note that there still may be redundant constraints even after
removing some contact points. Although in some papers [16],
[21] contact points with positive normal velocities are also
removed, we found that ignoring these points can cause
penetration because contact forces at other points may change
their normal velocities negative.

We also applied a two-step solution to further accelerate
the computation. We first solve the frictionless version of the
contact problem by considering only the normal direction of



each contact point to identify which points are likely to be
active in the current contact state. We then solve the frictional
problem from the initial guess that the normal directions of all
active contact points are constrained (zero velocity and positive
contact force), while others are unconstrained. We expect that
this method greatly reduce the number of additional pivots
required to reach a solution.

V. RESULTS

The experiments presented in this section were executed on
a workstation with a Pentium Xeon 3.8GHz processor. The
code was written in C++ and the compiler was Microsoft
Visual Studio .NET 2003 with optimization. We used 4-th
order Runge-Kutta integration with 1 ms time step except
when otherwise noted. Collision detection between general
polygonal objects was performed by a library called PQP [22]
with an extension to compute penetration depths and normal
vectors [23]. The constants were set as emax = 1 × 10−3,
ε = 1×10−3, M = 8 and δ = 1×10−3 (m), and we employed
the incremental update of M ′ and q′ mentioned in the last
paragraph of Section III. The search queue is implemented as
a binary tree to efficiently find the node with minimum cost.

A. Comparison with Conventional Algorithm

We first compare our LCP solver with Lemke and Lex-
icographic Lemke algorithms. The example used here is a
squat motion of a small 20-joint humanoid robot [24] on a
horizontal flat floor. The simulated robot is under high-gain
feedback mode, i.e. the joint angle, velocity and acceleration
computed from the reference trajectory were directly applied
to each joint. The geometry data of the links were extracted
from the CAD model.

We used our own implementations of the conventional
algorithms with the following details (refer to the algorithm
outline in Section II-A):

• Lemke Algorithm—Always chooses the row with the
minimum −qi/m′

i for pivot in Step 1. In case of tie (in
the sense of floating-point numbers), the row with the
minimum index is chosen.

• Lexicographic Lemke Algorithm—A row is regarded as
tie if its −qi/m′

i is within a threshold Δ from the
minimum, and the lexicographic ordering test is repeated
until a unique minimum is identified using the same
threshold. If multiple rows are in tie in the last test, the
row with the minimum value is chosen. If z0 is among
the tie rows in any test, it is immediately chosen as the
pivot variable and hence the algorithm terminates.

The implementations were tested using the examples in [1]
that are known to be solvable by Lemke and/or Lexicographic
Lemke algorithms.

There are the following three possible failure modes:
1) no solution is the case when m′ ≥ 0 occurred in Step 1,
2) cycle is emitted when the same set of pivot was already

found in one of the previous steps, and
3) error is emitted when the error of the solution is larger

than emax.

TABLE I

COMPARISON OF THE PROPOSED SOLVER, ORIGINAL LEMKE ALGORITHM

AND LEXICOGRAPHIC LEMKE ALGORITHM WITH FOUR DIFFERENT

THRESHOLDS Δ.

proposed Lemke Lexicographic Lemke
0 10−8 10−6 10−4

contacts 15.4 16.1 16.0 15.9 12.1 15.5
active 2.18 3.03 3.02 3.03 2.30 2.55

total frames 999 998 998 998 1000 1000
success 999 506 514 900 990 996
failure 0 492 484 98 10 4

no solution 0 52 27 17 3 3
cycle 0 157 147 18 2 0
error 0 283 310 63 5 1

If the algorithm failed in solving the LCP with friction and the
frictionless LCP was successfully solved, the frictionless result
is applied to prevent penetration, although it causes slipping.
The number of frames where both LCPs failed was at most
three and resulting penetration was practically negligible in all
simulations.

The results are summarized in Table I. The first two rows
represent the average numbers of detected contact points and
those identified to be active respectively, and the next three
rows represent the number of total frames with contact, suc-
cessfully terminated frames, and failure frames respectively.
The number of frames with each failure mode is shown in
the last three rows. We also tested Lexicographic Lemke
Algorithm with Δ = 10−3 but the robot fell down due to
a slip caused by applying a frictionless solution.

The three algorithms behaved differently even for this rela-
tively static motion. The results obviously show the advantage
of our algorithm. Lemke Algorithm could solve only around
half of the frames, and Lexicographic Lemke Algorithm did
not help much either when the threshold is too small. Δ =
10−4 gave the best result in this example, but still had a few
failure frames. In contrast, our algorithm successfully solved
the LCP in all frames.

Note that 12 to 16 contact points were detected in average
even with the contact point reduction described in Section IV-
C, and only 2 to 3 of them were identified to be active. This is
physically reasonable because three contact points are enough
to constrain the motion of the robot in high-gain feedback
mode, and the original contact points would yield highly ill-
conditioned LCP. This is probably the reason for failures in
conventional algorithms.

Fig. 2 compares real and simulated total vertical forces of
left and right feet. The simulation was performed using the
proposed algorithm, and a single force plate measured the total
contact forces and moments at the feet. The simulated force
exhibits qualitatively similar pattern to the real one, but the
measured force shows more oscillation. This discrepancy is
probably because the real hardware has some elasticity in the
links, joints and controller. The constant offset is due to the
error in the mass parameters estimated from the CAD model
that does not include wires and screws.
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Fig. 2. Measured and simulated vertical forces for the humanoid motion.

TABLE II

COMPARISON OF SUCCESS RATE AND AVERAGE COMPUTATION TIME OF

LEXICOGRAPHIC LEMKE AND PROPOSED ALGORITHMS FOR THE

HUMANOID EXAMPLE.

Lemke proposed
contacts 6.89 7.19

active 2.02 1.70
total frames 9656 9670

success 9620 9670
failure 36 0

no solution 13 0
cycle 7 0
error 16 0

LCP solve time (ms) 0.375 0.182
simulation time (ms) 3.49 3.54

total pivots 71102 34335

B. Tap-Dancing of a Humanoid Robot

We perform another comparison including computation time
using a tap-dancing motion of the same humanoid robot.
This is a more challenging task because it includes frequent
collisions as well as static contacts. We applied our solver
and Lexicographic Lemke Algorithm. The best Δ was 10−10

in this case, which implies the necessity of finding threshold
tailored to each task.

The result is shown in Table II, where “LCP solve time”
indicates the time for solving the main frictional LCP. The
time for solving the frictionless one is included in the total
simulation time. Lexicographic Lemke Algorithm still failed to
find a solution in about 0.4% of the frames with contact, while
the proposed algorithm succeeded in all frames. Our LCP
solver is also faster because lexicographic ordering requires
more pivot computations than the search in our algorithm as
shown in the “total pivots” row, although the total simulation
time is longer because of the larger number of contact points
that require preprocessing. A visual comparison of simulated
and actual motions is shown in Fig. 3. Note the qualitatively
similar behaviors such as yaw rotation.

TABLE III

COMPUTATION TIME FOR THE LONG AND CLOSED CHAIN EXAMPLES.

hoist hoist (10 ms) ring net
duration (s) 10 10 4 2

contacts 34.2 48.4 26.1 25.7
active 20.8 23.0 21.7 16.9

total frames 9357 935 3926 1818
failure 0 0 0 0

LCP solve time (ms) 62.0 96.5 35.0 9.72
simulation time (ms) 120 187 80.6 62.5

C. More Complex Scenarios

Figure 4 shows three simulation examples involving com-
plex collisions and contacts of open and closed articulated
rigid bodies. In the hoist example, a string-like object modeled
as a 25-joint chain is subject to continuous contact with the
rod and therefore takes long time for solving the LCP. We
also varied the time step for integration. The simulation result
with 10 ms timestep was similar to that with 1 ms and the total
computation time was about 4.5 times shorter, although each
step requires longer computation time because the penetration
depth tends to be larger due to integration errors and more
contact points are detected.

The ring example includes a number of contacts of non-
convex objects. Each wire is composed of five spherical joints
with two ring-shaped links at the ends. In the net example,
five cylinders fall onto a net composed of four strings each
modeled as a 16-joint chain with both ends fixed to the inertial
frame, forming closed loops. Our algorithm still yields realistic
results without failure.

VI. CONCLUSION

The conclusions of this paper are summarized by the
following three points:

1) We pointed out two numerical issues of Lemke and
Lexicographic Lemke algorithms, and proposed a robust
algorithm for solving general LCPs. The main idea of
the new algorithm is to store all pivot candidates at
each step, and back trace the queue in case a numerical
problem is found.

2) We modeled frictional contact of articulated rigid bod-
ies as an LCP using inverse articulated-body inertia
(IABI) [11], and applied above algorithm to solve the
LCP. We combined the formulation with a forward
dynamics algorithm called ADA [18] but it can also be
combined with DCA [12].

3) Experimental results showed that our algorithm can
robustly solve LCPs formulating contact dynamics of
articulated bodies, which cannot be solved by Lexico-
graphic Lemke Algorithm.
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Fig. 3. Comparison of simulated (left) and actual (right) motions of humanoid tap-dancing.

Fig. 4. Examples of contact simulation of articulated rigid bodies; from the top row: hoist, ring, and net.
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