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Abstract— We show that small-amplitude periodic motion of
a rigid plate causes point parts on the plate to move as if they
are in a position-dependent velocity field. Further, we prove that
every periodic plate motion maps to a unique velocity field. By
allowing a plate to oscillate with six-degrees-of-freedom, we can
create a large family of programmable velocity fields. We examine
in detail sinusoidal plate motions that generate fields with either
isolated sinks or squeeze lines. These fields can be exploited to
perform tasks such as sensorless part orientation.

I. INTRODUCTION

When parts are in contact with a rigid oscillating surface,
frictional forces induce the parts to move in a predictable
manner. A single rigid plate is therefore a simple and appealing
platform on which to perform a variety of parts manipulation
tasks such as transporting, orienting, positioning, sorting,
mating, etc. Because the motion of the plate is programmable,
it is possible to perform these tasks on parts of various shapes
and sizes without the need to reconfigure hardware for each
new task or part geometry.

In this paper we propose a general model of part motion
for point parts on a six-degree-of-freedom (DoF) oscillating
plate. The key discovery is that small-amplitude periodic plate
motions map to position-dependent velocity fields on the plate
surface, which we refer to as asymptotic velocity fields. For
many plate motions and coefficients of friction, part motion is
well described by the asymptotic velocity field. Although we
do not yet know how to characterize the set of all asymptotic
velocity fields obtainable with a six-DoF oscillating plate, we
do know that it includes fields with nonzero divergence (i.e.,
fields with sinks and sources). The video accompanying this
paper shows parts on our six-DoF prototype device undergoing
motion in such fields.

The rest of the paper is laid out as follows: in Section II
we discuss related work that focuses on programmable force
fields and vibratory surfaces; in Section Il we present a full
dynamic model of the part-plate system; in Section IV we
present a simplified dynamic model which is the basis for our
theorem asserting the existence of asymptotic velocity fields;
in Sections V and VI we explain how to estimate asymptotic
velocity fields and offer examples for sinusoidal plate motions;
and in Section VII we conclude with remarks on future work.
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II. BACKGROUND

For some tasks, such as positioning and orienting parts,
planar force fields with nonzero divergence (e.g., squeeze
fields and sink fields) can be designed to interact with the
part so that the task can be completed without the use of
sensors. Significant theoretical work has gone into developing
algorithms that exploit programmable force fields for sensor-
less positioning and orienting of planar parts (e.g., [1], [2],
[3], [4]). Most devices designed to generate programmable
force fields do so using a planar array of actuators, such as
MEMS elements [5], [6], [7], rolling wheels [8], air jets [9], or
vibrating plates [10]. Although these systems can create a wide
range of fields, the fields are necessarily discrete, whereas most
of the theoretical work assumes continuity. To approximate a
continuous field, the array must contain a large number of
actuators, often making fabrication and control difficult. Our
current prototype vibratory device, which consists of just a
single rigid plate and six voice coil actuators that allow for six-
DoF motion of the plate, is comparatively simple yet powerful
enough to create continuous fields with nonzero divergence.

Our work is a natural extension of the Universal Planar
Manipulator (UPM) designed by Canny and Reznik [11].
The UPM consists of a single rigid horizontal plate that
moves with three degrees-of-freedom (two translational and
one rotational). Systems that restrict the plate motion to the
horizontal plane, such as the UPM, can only generate frictional
force fields with zero divergence [12]. Therefore, position
sensing is required to orient and position parts. What allows
our system to create fields with nonzero divergence is the
plate’s ability to move with all six degrees of freedom. In
particular, the plate’s ability to rotate out of the horizontal
plane while simultaneously translating in the horizontal plane
allows us to generate fields with sinks and sources.

The relationship between a periodic plate motion and the
resultant frictional force acting on a planar part is generally
quite complicated. However, when the plate motion is purely
translational, point parts at all locations experience the same
forces. This results in a single feed rate that is independent of
position. In the simplest one-DoF case, the plate is horizontal
and translates longitudinally. Reznik and Canny examined a
particular type of bang-bang motion for this case in [13]
and [14]. Okabe et al. looked at one-DoF plate motion in which
the plate is also angled with respect to the horizontal [15].
Two-DoF systems, allowing translation both longitudinally
and normal to the surface, are examined in [16] and [10].
In [17], Lynch and Umbanhowar derived optimal plate motions
that maximize part speed on one- and two-DoF translating



rigid plates. The three-DoF UPM is capable of generating
certain position-dependent force fields [12] including localized
ones [18].

In [19] we first demonstrated that fields with nonzero
divergence can be created with a six-DoF rigid plate that
oscillates periodically. This paper extends that work in three
ways: it formally defines asymptotic velocity, it proves that
every periodic plate motion maps to a unique asymptotic
velocity field, and it introduces new plate motions that simplify
the way some of the fields in [19] can be generated.

III. SYSTEM MODEL
A. Plate Kinematics

Consider a rigid plate undergoing small-amplitude vibration.
We define three coordinate systems: a fixed inertial frame WV,
a local frame S attached to the origin of the plate, and an
inertial frame S’ instantaneously aligned with S (Figure 1).
The z-axis of W is in the direction opposite the gravity vector,
which is represented as g = [0,0, —g]” in the W frame. The
zs-axis of § is perpendicular to the plate surface.

We choose to describe the kinematics of the plate in the W
frame. The configuration of the plate is given by

{ f){ 11) } € SE(3),

where R € SO(3). Both R and p are periodic C'! functions
of time with period 7. In the home position, p = 0 and
R = I, where I is the identity matrix. The linear velocity
of the origin of the plate is p and the angular velocity of the
plate is w. The linear acceleration of the origin of the plate
is P = [pu, Py, P-]7 and the angular acceleration of the plate
is @ = [ag,qy, a;]T. In general, we choose to specify the
plate’s motion in terms of p and o.

B. Part Kinematics

Let P be a point part with mass m in contact with the plate.
As illustrated in Figure 1, let q = [zs,ys, 0] be a vector in
Sto P, and r = [z,y, z]T be a vector in W to P such that

r=p+Raq. (1)

Let P* be the point on the plate directly underneath P. The
position of P* is given by the vector r* in the W frame. The
velocity and acceleration of P* in the W frame are given by

" =p+wxRq 2
" =p+wxwxRq+axRq. 3)

The velocity and acceleration of P in the WV frame are given
by

r=p+wxRqg+Rq

=1 +Rq 4)
r=p+wxwxRq+axRqg+2wxRq+Rqg
="+ 2w x Rq + Rq. (5)

Fig. 1. An extremely exaggerated picture of the plate displaced from the
fixed W frame by the vector p. The position of the part P is given by r in
the VW frame and by q in S frame.

C. Part Dynamics

Three forces act on the part: gravity, friction, and the normal
force from the plate (Figure 2). Applying Newton’s second law
in the &’ frame gives

v, +fr,, +fo, = mRTE (©6)
= mRY (r* + 2w X Rq> +mq, (7)

where fn,, = (0,0, N]T, fr,, = [Fys, Fys,0]7, and fg,, =
mRTg are the normal, frictional, and gravitational forces on
the part in the S’ frame. Solving (6) for I yields an expression
for the part’s acceleration in the WV frame:

L1
P=_R (fvg +1fry) + 8 ®)

Explicit expressions for fy,, and fg_, are derived in the
following two sections.

The state vector xyy = [r, 7]7 can be computed by integrat-
ing (8). The state vector xs = [q, ¢]” can be computed from
Xyy noting that (1) and (4) imply

q=R"(r—p) )
q=RT (I —1"). (10)

Our analysis is restricted to situations in which the part
always remains in contact with the plate. Contact is maintained
as long as the magnitude of the normal force is positive.
Additionally, contact implies the acceleration of the part
perpendicular to the plate surface is zero at all times in the S

frame. Mathematically, we express this as
z g =0, (11)

where z = [0,0, 1]7.

D. Normal Force

As noted previously, the normal force has the form fy, =
[0,0, N]T in the S’ frame. Pre-multiplying (7) by z” and
noting (11) yields the following expression for the magnitude
of the normal force, N:

N =mz" [R" (" 4+ 2w x Rq — g)] . (12)
We define the effective gravity as
gr =2 [R" (i* +2w x Rqg —g)], (13)

so that N = mgeg.
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Fig. 2. The three forces that act on the part are due to gravity, friction, and
the normal force from the plate. The gravitational force fo always acts in
the negative z-direction of the W frame, the frictional force fr always acts
tangent to the plate surface, and the normal force £y always acts perpendicular
to the plate surface.

E. Frictional Force

We assume Coulomb friction in our model. Since frictional
forces can only act in the z-y plane of the S’ frame we define
the matrix S, that projects vectors in R® onto the z-y plane.

The frictional force acting on a part located at r depends
on the state of the system. There are three cases, which we
summarize mathematically as:

q .
—Hk:Nm7 all > 05
S..,RTH* .

‘ lall =0

s N,
fre, =4 1 1S, RTE| (14)

HSzyRTr*” > s Geffs
mS, RTi, lalf =0
HSM/RTI‘*H < s Getfs

where p and ps are the respective kinetic and static coeffi-
cients of friction between the part and the plate.

IV. MAPPING PERIODIC PLATE MOTIONS TO
POSITION-DEPENDENT PART VELOCITIES

It is usually difficult to gain conceptual insight into the
relationship between plate motion and part motion using
the full dynamic model presented in the previous section.
However, by running numerical simulations of the system, we
observed that there is a unique average velocity v,(r) such that
a point part at r, moving with any other average velocity (when
averaged over one cycle), tends toward v,(r). We call v,(r)
the asymptotic velocity at r. Thus, a part’s motion on the plate
is given approximately by the position-dependent asymptotic
velocity field, where the quality of the approximation depends
on the rate of convergence to the asymptotic velocity at each
location.

The simplified system model presented in this section allows
us to justify the position-dependent asymptotic velocity ob-
served in the simulations and leads to further insight about part
motion induced by small-amplitude periodic plate motions.

A. Simplified System Model

To simplify the system model, let us assume that the part
is sliding at all times. Let us also operate in a regime where
the period, linear displacement, and angular displacement of

the plate are small enough so that we may assume p ~ 0
and R =~ I. It follows that the part’s position vector in the W
frame can be approximated as r ~ q = [x,,0]”, and that the
gravitational, frictional, and normal forces acting on the part
can be considered aligned with the WV axes. In other words,
the configuration of the plate is assumed to correspond to the
home position at all times.

With the assumptions above, the approximate acceleration
of the part in the horizontal plane, denoted by a, is obtained
by simplifying the x and y components of (8):

7

a= |y
0

. q
= Spyl = — i Geff 7o - (15)
Y all

The effective gravity g and the relative velocity vector
q that respectively dictate the magnitude and direction of
a can be approximated by simplifying (13) and (10) and
further assuming that Coriolis and centripetal accelerations are
insignificant:

o (16)
a7

Gett 2 (P+oaxr—g)
q~ Sy, (T —1").

In summary, the simplified system model assumes the
part is always sliding, the configuration of the plate always
corresponds to the home position, and Coriolis and centripetal
accelerations are negligible.

B. Asymptotic Velocity of Sliding Parts

Let v and v* be the respective velocities of the part and
the plate at a location r projected onto the x-y velocity plane
in the W frame. We refer to this plane of velocities as V.

Let rpy = [z,y]T. At a given r,,, v* sweeps out a closed
trajectory in V,, for all periodic plate motions. Let CH”
denote the convex hull of this trajectory in the V), plane.

Even if the part has a nonzero velocity, we assume its
displacement is negligible during a cycle of plate motion. Let
us therefore denote by X a system consisting of

1) a plate undergoing periodic motion;

2) a part with a fixed value of r,,, but with a velocity that
may be nonzero, and an acceleration given by (15) of
the simplified dynamic model.

The following theorem asserts the existence of a unique
asymptotic velocity for this type of system.

Theorem 1: For a system 3, the part asymptotically con-
verges from any initial velocity to a unique stable limit cycle
of period T on or inside CH*.

Sketch of Proof: We first show that the part’s velocity
converges asymptotically to CH" in the V,, plane. From (15)
and (17), the part accelerates such that v moves in the direction
of v* at each instant in the V,,, plane. Recalling that v* sweeps
out a closed trajectory, it follows that if v is outside of CH*
it must always move closer to CH*, and if v is contained in
CH™ it can never escape.

Now we show that the part’s velocity converges to a unique
stable limit cycle in CH*. Let P; and P, be two point parts
located at r,, with identical coefficients of kinetic friction,
k. Let the velocities of Py and Py in the V,, plane be v,



and va. Let Av = ||vy — va|| be the distance between v and
vy in the V,, plane (Figure 3).

From (16) the value of ger is the same for both P; and
P5. Thus, (15) implies that at all times P; and P, accelerate
with equal magnitude in the direction of v* in the V,,, plane.
It immediately follows that %(Av) < 0. The nondecreasing
case (%(Av) = O) corresponds to when vy, vo, and v* are
collinear such that v* is not between v, and v,. However, the
periodic motion of the plate ensures that there will always be
a duration of time 7 > 0 during the cycle when vi, vo, and
v* are not collinear, or vq, vo, and v* are collinear such that
v* is between vy and vs. In either case, %(Av) < 0 during
this time, ensuring a contractive mapping over the course of
a cycle. Thus, all parts located at r,, must converge to a
unique stable limit cycle on or inside CH* that we call the
asymptotic trajectory at rg,. The time-averaged velocity of
the points on the asymptotic trajectory at r,, is the unique
asymptotic velocity v,(ry,).

Finally, we show that the period of the asymptotic trajectory
must be the same as that of the plate. Consider an arbitrary pe-
riodic plate motion with period 7'. Assume that an asymptotic
trajectory at r on or inside CH" exists for this plate motion
with period T” such that T' # T".

For the case in which 7' > 7" there must exist at least one
point on the part’s asymptotic trajectory that corresponds to
at least two different points on the plate’s trajectory in the
Vuy plane. From (15) and (17), this implies that the part must
accelerate in two different directions simultaneously, which is
not physically possible.

For the case in which T' < T’ there must exist at least
two points on the part’s asymptotic trajectory that correspond
to a single point on the plate’s trajectory. Suppose that two
parts, P, and P, have initial velocities in the V), plane
corresponding to v; and v at the instant when the plate has
velocity v*. By definition, the velocities of P, and Ps are once
again vy and vo every nT’ seconds, where n = 1,2,3,....
However, because n can be chosen such that n7” > T, this
is a contradiction since the distance between vy and v on or
inside CH* must decrease during any cycle of plate motion
(i.e., any duration of 7" seconds). [ |

Figure 4 shows simulation results that illustrate the ideas
presented in Theorem 1. The plots are for the location r;, =
(0.06,0)” m on a plate undergoing the motion described in
Figure 5(k). In Figure 4(a), two parts with different initial
velocities are shown converging to the same asymptotic tra-
jectory in CH*. This is also highlighted in Figure 4(b), which
shows Awv decreasing over time, and in Figure 4(c), which
shows the individual = and y velocities of the two parts
converging in time. The markers in Figure 4(a) and (c) are
plotted every half cycle to show that the asymptotic trajectory
and the plate’s trajectory have the same period.

C. Computing Asymptotic Velocity

Theorem 1 allows us to formally define the asymptotic
velocity at ry, as

1

t+T
Va(Tay) = T/t v/ (t)dt, (18)

y-velocity

x-velocity

Fig. 3. The Vgy plane at an arbitrary location r, in which the velocity of
the plate v* sweeps out a closed trajectory. From (15), the tangent to the
trajectory of any point part (e.g., vi) passes through v* at each instant.

where v'(¢) is the unique limit cycle from Theorem 1. For
some simple plate motions, the asymptotic velocity field as
a function of r;, can be determined analytically from (18)
(see e.g., [19], [17], [20]). Otherwise, it can be determined
numerically by computing the asymptotic velocity at a discrete
set of points on the plate as follows:

1) Set the part’s initial velocity to zero.

2) Simulate the part dynamics (without updating the posi-
tion) for one cycle of plate motion.

3) Subtract the part’s velocity at the end of the cycle
from its velocity at the beginning of the cycle. If the
magnitude of the difference is not within a predefined
tolerance e, repeat step 2, but use the part’s velocity at
the end of the current cycle as its initial velocity for the
next cycle.

4) Average the part’s velocity over the cycle.

V. ESTIMATING ASYMPTOTIC VELOCITY

Although the asymptotic velocity can always be computed
numerically, in this section we explain how to estimate it
using the notion of transient acceleration. The advantage of
this is that the transient acceleration is defined such that it
is independent of the part’s velocity and therefore does not
require simulation to compute.

For some plate motions a qualitative estimate of the transient
acceleration can be obtained by simple inspection. This is
useful for gaining intuition about the properties of the fields
generated by certain classes of plate motions, as discussed in
Section VI. It also leads to insight about the inverse problem:
finding a plate motion that approximately generates a desired
field.

A. Transient Acceleration

Let a point part located at r,,,, have an initial velocity v = 0
in the V,, plane. Unless the part happens to begin exactly on
the asymptotic trajectory, there is a transient period during the
first few cycles of plate motion in which the part converges to
the asymptotic trajectory at r,,. During the transient period the
average acceleration of the part is nonzero in order to bring the
average cycle velocity closer to the asymptotic velocity. Thus,
to a good approximation, the asymptotic velocity at r, is
proportional to the average transient acceleration over a small
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Fig. 4. A detailed look at two parts located at (0.06,0) m with different

initial velocities on a plate undergoing the motion specified in Figure 5(k).
The period of the plate’s motion is 7' = 0.03 s, and the markers in (a)
and (c) are plotted every half cycle (0.015 s). In (a), the trajectory of the
two parts in the Vy plane is shown for four cycles of plate motion. Both
parts rapidly approach a nearly circular asymptotic trajectory centered around
(—0.01, —0.025) m/s that is fully contained the convex hull of the plate’s
trajectory. The asymptotic trajectory and the plate’s trajectory each have two
markers per cycle indicating that they have the same period. The distance
between the parts’ velocities in the V. plane rapidly approaches zero without
ever increasing, as shown in (b). The x and y-components of the velocity are
plotted individually vs. time in the top two graphs of (c); the effective gravity
is plotted in the bottom graph of (c). The dashed vertical line in (c) denotes
the time at which geg is @ maximum.

number of cycles at r;,, arising from the initial condition v =
0.

We use (15) to estimate the part’s acceleration a during
the transient. To estimate g we use (16), rewritten below
explicitly in terms of acceleration components:

o (19)

g~z (DPHaxr—g)=p, +a,y —ayz+g.

To estimate g we assume that during the transient period the
magnitude of the plate’s velocity v is much greater than the
part’s velocity v*. Thus, (17) reduces to

—Pz + Wy

—Py — W
0

4~ Sy (—5%) = Sy (P —w x 1) =

(20)

We make the important observation that in our model of the
transient acceleration neither ge.¢ nor g depends on the motion
of the part: from (19) the magnitude of a during the transient
is a function of ., o, and «,; from (20) the direction of a
during the transient is a function of p;, py, and w,. We refer to
Dz, 0z, and oy, as the out-of-plane acceleration components of
the plate’s motion. We refer to p,, p,, and w, as the in-plane
velocity components. In-plane velocity components can be
obtained by integrating the in-plane acceleration components
Dz, Py, and o, of the plate’s motion.

Intuition about the qualitative properties of the field can
often be gained by assuming that the part’s dynamics are
dominated by the portion of the cycle when ges (and thus the
transient acceleration of the part) is largest. This is discussed
below for sinusoidal plate motions.

B. Sinusoidal Motion Primitives

We now focus on the class of plate motions whose linear
and angular acceleration components are sinusoidal with the
same frequency, f:

P = Aypsin(2mw ft + ¢.)
Py = Ay sin(2m ft + ¢y)
Py = A, sin(2rw ft + ¢.)

This 11-dimensional space of plate motions is parameterized
by the six amplitudes and five phases (one phase is chosen to
be zero without loss of generality). We refer to plate motions
of this form as sinusoidal motion primitives.

To qualitatively estimate the transient accelerations asso-
ciated with sinusoidal motion primitives we assume that the
frictional force during the instant in the cycle when geg is
a maximum dominates the overall part dynamics. Thus, the
average magnitude of a during the transient period is roughly
proportional to the maximum value of gey. Similarly, the
average direction of a during the transient period roughly
corresponds to the direction of g at the instant when ges is a
maximum.

As an example, consider the point r, = (0.06,0)” m on a
plate undergoing the motion given in Figure 5(k) with period
T = 0.03 s. The circular trajectory of the plate’s velocity v*
is depicted in Figure 4(a). In Figure 4(c) we see that g is
a maximum at ¢t = %T. By examining the = and y velocities

ay = Agsin(2mft + ¢g)
ay = A, sin(2r ft + @)
o, = Ay sin(2m ft + ¢y).



of the plate at this time we expect the asymptotic velocity
to have a negative y-component and no x-component. This is
very nearly true—the asymptotic trajectory to which the parts
are converging in Figure 4(a) has an average y-velocity that is
negative and an average x-velocity that is very close to zero,
although slightly negative.

VI. ASYMPTOTIC VELOCITY FIELDS ARISING FROM
SINUSOIDAL MOTION PRIMITIVES

In this section we look at two classes of sinusoidal motion
primitives. For these classes, we use estimates of transient ac-
celerations to predict the qualitative behavior of the asymptotic
velocity fields. Numerically calculated versions of these fields,
as well as several other fields, are shown in Figure 5. Below
each field is the sinusoidal motion primitive from which the
field is generated and the approximate form of the asymptotic
velocity. Six seconds of simulated motion of a point part
starting from rest is overlaid on each field. The simulation and
the fields are based on the full dynamic system model given in
Section III (using the simplified system model in Section IV
to generate the fields gives visually indistinguishable results).
After a brief transient period, agreement between the simulated
motion and the asymptotic velocity field is very good in all
cases.

A. Combining In-Plane Translation with Out-of-Plane Rota-
tion: Nodal Line Fields

The class of nodal line sinusoidal motion primitives com-
bine the in-plane acceleration components p,, and p, with the
out-of-plane acceleration components «, and «, as follows:

Pr = Ag sin(27 f1) g = Agsin(2m ft + ¢)
Py = Aysin(2m ft) oy = A,sin(2m ft + o).

From (19) and (20), the effective gravity and relative veloc-
ity vector can be written as

Gett = Agsin(2w ft + @)y — A, sin(2r ft + ¢z + g

Ay
f cos(2m ft)

yoe | —p - A
0 onf cos(2m ft)

0

We note that g is position-dependent; its maximum value
increases with distance from the line through the origin in
the direction of (Ag, A,). We refer to this line as a nodal
line. We also note that q is position-independent and points in
the direction of the vector (A;, A,). It follows that during
the transient period a part will accelerate in a direction
corresponding to £ (A, A,) with a magnitude that scales with
its distance from the nodal line.

Let us examine the special case where A, = Ay = 0,
implying that q is always aligned with the z-axis and that the
maximum value of g increases with distance from the y-axis.
Thus, we expect the magnitude of the transient acceleration to
increase with distance from the y-axis. Further, whenever g
is a maximum on one side of the y-axis it is a minimum
on the other side. This introduces an asymmetry that causes

the direction of the part’s transient acceleration to differ on
opposite sides of the y-axis. Depending on the phase ¢ the
part will accelerate toward or away from the nodal line.

For example, if ¢ = %w, gett and q are out of phase
with each other for positions satisfying z < 0 (i.e., for parts
with negative z-positions, the plate moves in the positive
z-direction during the instant in the cycle when g is a
maximum). On the other hand, the plate moves in the negative
z-direction during the instant in the cycle when gey is a
maximum for parts satisfying « > 0. It follows that during
the transient period parts with < 0 tend to get accelerated
in the positive z-direction whereas parts with x > 0 tend
to get accelerated in the negative x-direction. As illustrated
in Figure 5(c), the asymptotic velocity field for this case
corresponds to a squeeze field converging on the y-axis. We
refer to this as a LineSink field.

In general, the class of nodal line sinusoidal motion prim-
itives create a nodal line of zero velocity in the direction of
the rotation axis (i.e., the direction of the vector (Ag, A,)).
The value of ¢ determines whether the nodal line is attractive
or repulsive. As illustrated in Figure 5(e)-(g), Az, Ay, Ao,
A,, and ¢ can be chosen to create fields such as SkewSink,
SkewSource, and Shear.

B. Combining In-Plane Translation with Out-of-Plane Rota-
tion: Nodal Fields

The class of nodal sinusoidal motion primitives combine
the in-plane acceleration components p,, and p, with the out-
of-plane acceleration components «, and «,, as follows:
oy = Agsin(2m ft + @)
ay = A, sin(2rft + /2 + ¢).

P = Az sin(2w ft)
Py = Ay sin(2w ft + 7/2)

From (19) and (20), the effective gravity and relative veloc-
ity vector can be written as

geit & Apsin(2m ft + @)y — A, sin@rft + /2 + )z +yg
Ay
_pz ? COS(27Tft)

0 —ﬁ sin(27 ft)
0

The relative velocity q is position-independent and rotates
at a constant rate with a constant magnitude. This implies
that the part can potentially accelerate in any direction at any
location during the transient period. However, we can rule out
many possibilities by examining ges. In particular, we expect
the transient acceleration to be an odd function of position
because when gegi(z,y,t) is a maximum ge(—x, —y,t) is a
minimum. Further, the magnitude of the transient acceleration
should increase with distance from the origin because the
maximum value of g increases in this manner.

In general, nodal sinusoidal motion primitives create fields
with a node of zero velocity at the origin of the plate.
The value of ¢ determines whether the node is attractive or
repulsive as well as whether the field is oriented clockwise
or counterclockwise. The values of A,, A,, Ap, and A,
determine the strength, orientation, and eccentricity of the
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(0.15z — 0.3y, 0.3z + 0.15y)

Numerically calculated asymptotic velocity fields based on the full dynamic model corresponding to sinusoidal motion primitives (when the fields
are calculated with the simplified dynamic model the results are visually indistinguishable). The fields are calculated for a point part with p = ps = 0.3.
Arrows are drawn in 2 cm increments. The arrows are missing in the corners of (i)—(1) because the part lost contact with the plate at those locations before
reaching an asymptotic velocity. The sinusoidal motion primitive for each field is listed below it; linear and angular accelerations are in m/s?
respectively. All acceleration components have a frequency of 33 Hz (T" = 0.03 s). Below each sinusoidal motion primitive is an approximate form of the
asymptotic velocity field given in units of m/s. Overlaid on each asymptotic velocity field is a six second (200 cycle) simulation of a point part starting from
rest incorporating the full system dynamics. The position of the part is plotted every 0.3 seconds (every 10 cycles).

and rad/s2
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Fig. 6. Two asymptotic velocity fields with broken symmetries generated
from sinusoidal motion primitives. The saddle on the left has nonorthogonal
axes. The sink on the right biases motion in the y-direction and its node is
shifted to the right and above the origin of the plate. Details about how the

fields and simulated part motions were generated are given in the caption of
Figure 5.

field. As illustrated in Figure 5(i)-(l), nodal fields include
Sink, Source, Whirlpool, and Centrifuge.

C. The Set of Obtainable Fields for Sinusoidal Plate Motion

Based on the expressions for v, given in Figure 5, we
hypothesize that the class of sinusoidal motion primitives
generate quadratic asymptotic velocity fields of the form

Va(ray) = rfyAr:cy + Br,, +c, 21

where A € R?*2%2. B ¢ R?*2, and ¢ € R2. The six com-
bined elements of B and c can all be chosen independently,
but there are constraints on A that are not yet fully understood.

This set of fields is a small subset of all possible asymptotic
velocity fields obtainable with a six-DoF oscillating plate.
Nonetheless, it is an interesting subset because it includes
common fields with nonzero divergence. Figure 6 shows two
asymptotic velocity fields that can be described by (21) that
exhibit less symmetry than those in Figure 5.

VII. CONCLUSIONS

We have presented a model that predicts a relationship
between small-amplitude periodic motions of a rigid plate and
position-dependent velocity fields for point parts in contact
with the plate. The model predicts the existence of velocity
fields with nonzero divergence; the accompanying videos of
our six-DoF prototype device qualitatively verify that these
fields can indeed be generated in practice. Numerical simula-
tions in this paper support the theoretical validity of the model.

There are four broad areas that we see as fruitful for future
work. The first is to gain more insight about the scope of
obtainable fields for more general periodic plate motions. The
second is to develop a comprehensive understanding of how to
map a desired field to its associated periodic plate motion(s).

The third is to better understand how the coefficient of friction
and the motion of the plate affect the rate of convergence to the
asymptotic velocity. The fourth is to extend the work presented
in this paper to handle parts with planar extent. These results
will allow us to address a variety of applications including
planar parts sorting, feeding, and assembly.
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