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Abstract— Database of human motion has been widely used for Samplicnp ! pample C"piﬁ
recognizing human motion and synthesizing humanoid motios. B 1 / i
In this paper, we propose a data structure for storing and —
extracting human motion data and demonstrate that the datalase A D
can be applied to the recognition and motion synthesis proleims EEEEE | R

in robotics. We develop an ef cient method for building a binary
tree data structure from a set of continuous, multi-dimensonal
motion clips. Each node of the tree represents a statistical m layer 1
distribution of a set of human gure states extracted from
the motion clips. We also identify the valid transitions ammg

the nodes and construct node transition graphs. Similar stis m m layer 2
in different clips may be grouped into a single node, thereby

allowing transitions between different behaviors. Using dtabases

constructed from real human motion data, we demonstrate tha E s a e layer 3
the proposed data structure can be used for human motion

recognition, state estimation and prediction, and robot méion .

planning.

I. INTRODUCTION [é @ [;_L] : [é [;_L] [§]|ayerm

Using a collection of human motion data has been a popular
approach for both analyzing and synthesizing human gufég. 1. A binary tree with human motion data. Each x mark repnés

motions, especially thanks to recent improvements of motié frame in one of the sample motion clips. The frames a_retlnel‘gi split
into two descendant nodes. Each frame therefore appeaesimmach layer.

capture systems. In the graphics eld, motion capture dapdtabase size can be reduced by making leaf nodes from teuftines and
have been Widely used for producing realistic animations f&eep only the statistical information of the frames incldide each node.

Ims and games. A body of research efforts have been directed
to techniques that allow reuse and editing of existing nmtio

capture to new characters and/or scenarios. In the robotics . ,
eld, there are two major applications of such databaseQuman-like robots should move. For this purpose, however,

building a human behavior model for robots to recogniz'@mion capture data must be organized so that the planner can

human motions, and synthesizing humanoid robot motions Effectively extract candidates of motions and/or con gigas.

Databases for robotics applications are required to perfof* database should also be able to generate high-qualitpmoti
at least the following two functions: First, they have to pdata, which is also dif cult because sample motion data are
able to categorize human motion into distinct behaviors af§ually compressed to reduce the data size.
recognize the behavior of a newly observed motion. This is N this paper, we propose a highly hierarchical data strectu
commonly achieved by constructing a mathematical model tHgr human motion database. We employ the binary-tree struc-
bridges the continuous motion space and the discrete tmhat#ire as shown in Fig. 1, which is a classical database steictu
space. The problem is that it is often dif cult to come up wittvidely used in various computer science applications bezau
a robust learning algorithm for building the models becau&é search ef ciency. However, constructing a binary-trees-
raw human motion data normally contain noise and error. THé&'e from human motion data is not a trivial problem because
ef ciency of search also becomes a problem as the databdere is no straightforward way to split the multi-dimems6
size increases. continuous motion data into two descendant nodes. Our rst

Another function is to synthesize a robot motion that adapg@ntribution is a simple, efcient clustering algorithm rfo
to current situation, which is computationally demandingplitting a set of sample frames into two descendant nodes
because of the large con guration space of humanoid robot@.construct a binary tree from human motion data.

Motion database is a promising approach because they cahVe also develop algorithms for basic statistical computa-
reduce the search space by providing the knowledge on httens based on the binary tree structure. Using these algo-



rithms, we can recognize a newly observed motion sequence,
estimate the current state and predict future motions, &ard p
new sequences that satisfy given constraints.

Another minor but practically important aspect of the pro-
posed database is the ability to incorporate motion data fro
different sources. For example, we may want to include nmotio
data captured with different marker sets, or include arionat
data from a 3D CG Im. It is therefore important to choose
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a good motion representation to allow different marker sets .
and/or kinematic models. In this paper, we propose a scheme ; @"‘
called virtual marker setso that motion data from different : L =)
sources can be represented in a uniform way and stored in a
single database.

The rest of this paper is organized as follows. In Section II,
we review related work in graphics and robotics. We then
present the proposed data structure and associated hfgsrit
in Sections Il and IV respectively, and provide severallapp
cation examples in Section V. Section VI demonstrates expefowever, most work in the robotics eld is still focused
imental results using human motion capture data, followed lbn robust learning of human behaviors. Scalability of the
concluding remarks. motion database or synthesizing transitions betweenrdifte
behaviors have not been investigated well.

In the vision community, human motion database has been

In the graphic eld, researchers have been investigativg hised to construct human motion models for human tracking
to reuse and edit motion capture data for new scenes and ngwideos. Sidenbladh et al. [13] proposed a binary-trea dat
characters. One of the popular approaches is motion grap&gucture for building a probabilistic human motion model.
where relatively large human motion data set is analyzqthey rst performed PCA on the entire motion sequence

to build a graph of possible transitions between posturegad then projected each frame data to the principal axes to
Using the graph, it is possible to synthesize new motifbnstruct a binary tree.

sequences based on simple user inputs by employing a graph
search algorithm. Kovar et al. [1] proposed the concept of lll. BUILDING THE DATABASE
Motion Graphs where similar postures in a database are auThe process for building the proposed database is sum-
tomatically detected and connected to synthesize new motimarized in Fig. 2. The user provides one or more sample
sequences. They presented an application of synthesieing rnmotion clips represented as a pair of root motion and joint
locomotion sequence that follows a user-speci ed path. éteeangle sequences, typically obtained by motion capture nd ha
al. [2] employed a two-layered statistical model to repn¢seanimation. The joint angle data are then converted to Mirtua
a database, where the higher-level (coarse) layer is usadrker data through forward kinematics (FK) computation to
for interacting with user inputs and the lower-level (dgtaiobtain the marker positions and velocities, coordinatasira
layer is used for synthesizing whole-body motions. Arikaformation to remove the trunk motion in the horizontal plane
et al. [3] also proposed a planning algorithm based onaad scaling to normalize the subject size. The positions and
concept similar to motion graphs. Related work in the grephivelocities of the virtual markers are used to representtite s
eld mostly focuses on synthesizing new motions from simplef the human gure in each sample frame.
user inputs using, for example, interpolation and numeérica To construct a binary tree, we rst create the root node
optimization [4]. that contains all frames in the sample motion clips. We then
In robotics, learning from human demonstration, or imiteratively split the frames into two descendant nodesgitie
itation, has been a long-term research issue [5]-[7] andm&thod described in Section I1I-B. After the tree is obtdine
number of algorithms have been developed for storing humas count the number of transitions among the nodes in each
motion data and extracting appropriate behaviors. Becauager to construct the node transition graphs as described i
human motion varies at every instance even if the subjeSéction II-C. The binary tree and node transition graptes ar
attempts to perform the same motion, it is necessary #ige main elements of the proposed motion database.
model human behaviors by either statistical models [7], [8 ] ]
nonlinear dynamical systems [9], [10], or a set of high-levé\: Motion Representation
primitives [11]. Related work relevant to this paper indsd There are several choices for representing the state of a
the Hidden Markov Model (HMM) representation of humarirame in sample motion clips. A reasonable choice would be
behaviors [8] and the hierarchical motion database baseduse joint angles [2], [8] because they uniquely de ne a
on HMM [12]. Another hierarchical motion categorizatiorcon guration by minimum number of parameters. However,
method is also proposed using neural network models [1@jint angle representation strictly depends on the skeleto

Fig. 2. Constructing the database.

Il. RELATED WORK



model and it is dif cult to map the states between differerpairs of frames. This process can take extremely long time
models. In addition, joint angle representation may not Iz the database size increases.

consistent with visual appearance of the human gure bexaus Here we propose an ef cient clustering algorithm based
the contribution of each joint angle to the Cartesian pos#ti on principal component analysis (PCA) and minimum-error
of the links can vary. thresholding technique. The motivation for using PCA isttha

Another possibility is to use point clouds [1]. This methodt determines the axes that best characterize the sampe dat
is independent of underlying skeleton models and also mdre particular, projecting all samples onto the rst prinalp
intuitive because it directly represent the overall shapthe axis gives a one-dimensional data set with the maximum
gure. The problem is that it is dif cult compute the distagc variance, which can then be used for separating distinct
between two poses because registration between two paamples using adaptive thresholding techniques develimped
clouds is required. binarizing images.

In our implementation, we use a much simpler approachThe process to split nodeinto two descendant nodes is as
called virtual marker set where all motions are representedollows. Assume that nodk containsny, frames whose mean
by the trajectory (position and velocity) &f, virtual markers. state vector isx. Also denote the sample motion data matrix
The virtual marker set is de ned by the database designer ébnodek by X . We compute the zero-mean singular value
that it well represents the motions contained in the datbadecomposition o  as
and can be different from any physical marker sets. Thealirtu .
marker set approach would become similar to the point cloud X =u vT )

method as the number of virtual markers increases, although 0. ) )
each marker in the virtual marker set should be labeled. Where each column of , is obtained by subtracting from

If a motion is represented by joint angle trajectories df€ ©riginal state vectors, is a diagonal matrix whose ele-
a skeleton model, it can be easily converted to the virtuIENts are the singular valuesXfi sorted in the descending
marker set representation by giving the relationship betweC'der, andu andV are orthogonal matrices. The columns
each marker in the virtual marker set and the skeleton us%fdv _repregents the principal a>_(es_fz£fk. OWe obtain the
to represent the original motions. The relationship benNegr!e-(_jlmens_lonal data sel by projectingX | onto the rst
a virtual marker and a skeleton is de ned by specifying thBfincipal axis by ,
link to which the marker is attached, and giving the relative Sk= X vy (4)
position in its local frame. Although this approach regsire

some work on the user's side, it allows the use of multipl\ﬁ(herevl denotes the rst. column OV,' )
skeleton models with simple distance computation. Once the one-dimensional data is obtained, the cluster-

After converting the motion data to the virtual marke["d Problem is equivalent to determining the threshold that

set representation, we perform a coordinate transforméatio minimizes classi cation error. We shall use a minimum-erro
remove the horizontal movement in the motion and scaling fgresholding technique [14] to determine the optimal theés.
normalize the subject size. Each marker position is reptege After sorting the elements &k and obtaining the sorted vector

: ) ool 0 thi : :
in a new reference coordinate whose origin is located on R thiS method determines the index such that the data
oor below the root joint,z axis is vertical, and axis is the Should be divided between sampigsandm +1 using the

projection of the front direction of the subject model orttie t following equation:
oor. The marker velocities are also converted to the rafese

coordinate. m = argmax ilog |_1 +(ng i)log m 2 : (5)
Formally, a sample motion data mati& with Ns frames ' K
is de ned by where ; and , denote the variance of the rdtand last
X =(X1X2 1I1XNsg) (1) nk i elements oY, respectively.

We obtain a binary tree by repeating this process until
the division creates a node containing fewer frames than a
T T T T T 1T prede ned threshold. To ensure the statistical meaningache
Xi = Pi1 Vi1 Pi2 Viz ---Pin, Vin, (2)  node, we also avoid nodes with small number of sample frames

andp; andv; are the position and velocity of markerin by setting a threshold for minimum frame number. If Eq.(5)
sample frame. If multiple motion clips are to be stored in aresults in a node with fewer number of frames than the latter

wherex; is the state vector of theth sample frame de ned
by

and form a single sample motion data matrix. may not be divided if it contains many similar frames.
_ _ Some branches may be shorter than others because we
B. Constructing a Binary Tree extend each branch as much as possible and some of them

A problem of constructing a binary tree for motion datanay hit the thresholds earlier. In such cases, we simplynexte
is how to cluster the sample frames into groups with similahorter branches by attaching a copy of the leaf node so
states. Most clustering algorithms require a large amofint that the length of all branches become the same. Each node
computation because they check the distances betweentladirefore can have 0 (leaf nodes), 1 or 2 descendant nodes.



C. Node Transition Graphs A. Optimal Node Transition
After constructing the binary tree, we then build the node The probability that the observed moti¢h was produced

transition graphs based on the transitions observed betwég a node transitiotN = fnq; ny; :::; nyv g is given by
nodes in each layer. Because we know the set of frames ¥
included in each node, we can easily determine the transitio P(NjR) = Pe(ni 1:ni)Ps(nijRi) @)

probabilities by dividing the number of transitions to acpe
node by the total number of frames in the node.

We build two kinds of node transition graphs at each lay
The global transition graphdescribes the average node trans
tion probabilities observed in all sample clips. The trtosi
probability from nodem to noden in the same layer is
computed by - _ Po(xjK)P (k) _ Pg(xjk)P (k)

_ ton Ps(kjx) = S = = =
Pmn = ——l (6) (x) i Po(X]i)

i T

i=1

hereP;(k; 1) is the transition probability from nodk to |
P(no;n1) = 1) andPs(kjx) is the probability that the state
was at nodek when the observed state was Pg(kjx) is
obtained by the Bayesian inference:

(8)

whereP,(xjk) is the likelihood that state vector is output

wherety, denotes the total number of transitions from nodef§om nodek andP (k) is thea priori probability that the state
k to | observed in all sample clips. lip transition graphde- 5 4t nodek.

scribes the node transition probabilities observed in &ispe  The actual form ofPo(xjk) depends on the probability

sample clip. We can use the same equation (6) to cOMpP¥iginution used for each node. In this paper, we assume a
the transition probabilities, except thiat only considers the simple Gaussian distribution with meaq, and covariance

transitions within thg_same sample clip. o v, in which caseP,(xjk) can be computed by
The global transition graph at each layer is similar to

motion graphs [1] in the sense that all possible transitios (y i\ = p_l ex 1 x x)7  Yx  x
between nodes are included. However, the way we construgt( i C 2)Nj «j P 2( )k )

the graph is different from existing motion graph technigjue
resulting in a more ef cient database construction. Ourhrodt
generally require©(N logN) for a database witiN sample
frames because the depth of the tree is typicalfkog N ) and

spl!ttlng the framgs at each layer requi@N ) co_mputatlon_s, uniform distribution for each clip transition graph, exting
whllg most motion graph and other clustering technlqw{:ﬁe nodes that did not appear in the sample clip.
require O(N ?) computations because they usually compute Obtaining the optimal node transitidth is the problem of

tht::‘”(]mstal_nc? bet\{\t/_een eacr;] pair of _fra_lmest mhthe datgbsse_. nding the node sequence that maximizes Eq.(7). A common
del clip. raﬁ'v;lc\)/ln ggapl s are tS||_r|n|\|/|z:/|r bo l:jman € ‘1\/' ethod for this purpose is to perform forward-backward algo
Models using S [8]. In mos -based approach€s, ., o dynamic programming. However, such algorithms can

a simple left-to-right m_odel or single-chain FYCI'C_ modaiiw .be computationally expensive for long sequences or densely
xed number of nodes is assumed because it is dif cult torirai

HMM with arbit lenath bitrarily int ¢ dconnected graphs. We could omit nodes far enough from
an with arbitrary fength or arbitranly Interconnecltes, , ., gpserved frame using a threshold, but it is dif cult to
nodes. In our method, we do not assume the structure

. termine the threshold so that enough number of candidates
the node transition or the number of nodes used to represg

. . . Fg left for the search.
a sample clip. If a sample clip includes a cyclic pattern,

for examole. our method automatically models the cvcle Instead of searching the entire node sequence at a single
mple, ¢ . Y e oy l?é(yer, we utilize the binary tree data structure by starfiom
producing a single transition loop, while a left-to-righbdel

ries t de the whol ithi . b thF top layer. Because the top layer only contains the single
r:l)edseso encode the whole sequence within a given number g, noder, the trivial optimal sequence at the top layir, ,

is to visit the root nodeM times, i.e,N; = fr;r; 115 rg.
IV. ALGORITHMS Starting from this initial sequence, we perform a dynamic
rogramming to nd the best way to trace the descendants
fthe nodes in the sequence all the way down to the bottom
) N layer. We could also terminate at an intermediate layer if we
nd the optimal node transition to generate a newlyqg not need precise results, in which case the result would be

P (k) can be either a uniform distribution among the nodes,
or weighted according to the number of sample frames in-
cluded in the nodes. In our implementation, we use a uniform
distribution for the global transition graph. We also use a

For a given tree and node transition graph, we should ﬁ
able to perform the following two basic operations:

observed motion clip, and obtained faster.
compute the probability that a newly observed motion
clip is generated by a node transition graph. B. Motion Generation Probability

In the rest of the section, we shall denote the newly observedMotion generation probability is de ned as the probability
motion comprisingVl frames byX = (%1 R, ::: ®y ) where that a node transition graph generates the observed motion.
R; is the state vector at framie Here we assume that bothThis probability can be used for identifying the type of
positions and velocities of virtual markers are given. behavior. We can compute the motion generation probability



TABLE |

by summing up the probability of generating the motion by all PROPERTIES OF THE TWO DATABASES

possible node transitions. However, there may be huge numbe

. " . " Database 1| Database 2
of possible node transitions for long motions or large titéors T offrames | 5539 11456
graphs. # of layers 17 16
An alternative used in this paper is to use the dynamic _ #ofnodes) 1372 1527
# of nodes in bottom laye 167 205

programming described in the previous subsection to nd
multiple node sequences. Because the algorithm returns nod
sequences in the descending order of probability, we can
approximate the total motion generation probability byngsi frames in a node is set to 16 in both databases. The properties
the top few node sequences. of the databases are summarized in Table I.

The rst set Patabase ] consists of 19 motion clips
including a variety of jog, kick, jump, and walk motions, all
A. State Estimation and Prediction captured separately in the motion capture studio at Urityers

Estimating the current state is accomplished by taking ti#é Tokyo. The motions were captured using our original
last node in the most likely node transition in the global modmnarker set consisting of 34 markers. This marker set is also
transition graph. Once the node transition is estimateth wigsed as the virtual marker set to construct all the databases
high probability, we can then predict the next action byitrgc in the experimentsDatabase 1lis used to demonstrate the
the node transition graph. By combining the probability cnalysis experiments.
the node transition and the probability of the future traosi ~ The second seDatabase 2is generated from selected clips
candidate, we can also obtain the con dence of the predictidn a publicly available motion library [16] and will be used

for the planning experiment. The database includes two long

B. Motion Recognition locomotion sequences with forward, backward and sideward

Motion recognition is the process to nd a motion clip in thevalk of the same subject. Althoudbatabase Zontains twice
database that best matches a newly observed motion sequeadgénany sample frames Baitabase 1it resulted in relatively
This is accomplished by comparing the motion generati@mall number of layers and nodes probably because they

V. APPLICATIONS

probability from the clip transition graphs. consist of similar motions and hit the minimum frame number
_ _ threshold earlier.
C. Motion Planning Because the virtual marker set consists of 34 markers, the

The global transition graph can also be used for planningdémension of the state vector is 204.
new motion sequence subject to kinematic constraints. dii+ ad
tion, because the tree has multiple layers that model thplsamB. Properties of the Database
clips at different granularities, motion planning can ats®

. e ) . We rst visualize Database 1to investigate its properties.
performed at different precision levels. The only issueds/h 9 prop

In Fig. 3, the spheres (light-blue for readers with color rgs)
because those information are removed from the databas(fepresent all nodes in the bottom layer and the red lines
u : : v fepresent the transitions among the nodes. The white mesh

Our solution is to use the marker velocity data to Obta!l%presents the plane of rst and second principal axes. The

the root velocity, and then integrate the velocity to obtai rojection onto the rst-second principal axes plane isoals

root trajgctory. The vglocity can be qbtained _by employingqown in Fig. 4. Figure 5 shows the nodes and global tramsitio
a numerical inverse _kmemaucs _algonthm, which eSSdW'algraphs at layers 4 and 7, with the top layer numbered layer 1.
solves the following linear equation: ; . A
The location of each node is computed by projecting its
_=Jv (9) mean vector onto the rst three principal components of the
] o o . ) root node of the tree. The size of the node is proportional to
where —is the joint velocities including the root linear antthe maximum singular value of the sample motion data matrix
angular velocitiesy is the vector of all marker velocities of the node.
extracted from the mean vector of a node, ahdis the  fFigyre 6 shows the mean marker positions and velocities
Jacobian matrix of the marker positions with respect totjoiR the nodes marked in Fig. 4. These images clearly show the

angles. This is usually an overconstrained IK problem beeauyeometrical meaning of the rst and second principal axie: t
the virtual marker set contains more markers than necessary i axis represents the vertical velocity and the seconis ax

determine the joint motion. We therefore apply the singar represents which leg is raised. Apparently there is no Wigrba
robust (SR) inverse [15] o} to obtain — explainable meaning in the third axis.

VI. RESULTS Figure 7 shows the node transition graphs of two represen-
tative clips. As expected from the above observation, nmstio
A. Sample Data Set such as jump that involves mostly the vertical motion stay in
We use two different sets of data to demonstrate thiee rst and third axes plane, while jog, kick and walk motson
generality of our approach. The minimum number of samp#tay in the second and third axes plane.



Fig. 6. Mean marker positions and velocities of selectedesodhe lines
rooted at markers denote the velocities. From left to rigbtdes 1369, 1362,
1361, and 1366 as marked in Fig. 4.

Fig. 3. Visualization of the database in the three princgpeds space.

Fig. 7. Node transition graphs of selected clips. Left: jumght: kick.

are included in the transition graph of the kick samples. The
last node in the sequence is likely to transit to the dark blue
node in the left gure with the probability of 0.36, which
corresponds to the marker positions and velocities in tilet ri
gure. Similarly, the result of Fig. 9 indicates that the daase

can correctly identify that the subject is in preparation &o
Fig. 4. Visualization of the database in the rst (horizdptand second jump.
(vertical) principal axes space.

D. Motion Recognition

o o Figures 10-11 show the results of motion recognition exper-
C. State Estimation and Prediction iments. The three graphs in Fig. 10 show differences between

We experimented the state estimation ability by providingyers for the same observation. We computed the motion
the rst 0.2 s of a novel kick motion by the same subject angeneration probability of new motions with respect to the
a jump motion by a different subject. The results are showpde transition graph of each sample motion clip. Becausse th
in Figures 8 and 9 respectively. Note that the global nod€w motion is 2.5 s long and computatmplof the probapllmes
transition is used to compute the best node sequence, ghiholfkes long time, we computed the probability of generatireg t
only the node transition in relevant sample clip is drawn in
each gure for clarity.

actions before they actually occurred. In Fig. 8, all nod
on the identi ed node sequence (drawn as yellow spherdi——

Fig. 8. Result of state estimation and prediction for a kicttion of the
same subject. Left: the nodes on the identi ed node tramsitire drawn in
yellow. Right: the marker positions and velocities cormgfing to the blue
Fig. 5. Nodes and global transition graphs at layers 4 and 7. node in the left gure.
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Fig. 9. Result of state estimation and prediction for a jumptiom of a
different subject. Left: the nodes on the identi ed nodensision are drawn

in yellow. Right: the marker positions and velocities cepending to the blue Fig. 12. Time pro le of generation probability of a lifting ation (bottom
node in the left gure. layer).
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Fig. 13. Result of motion planning. Left: path of the root iorizontal plane.
Right: postures at selected frames.

E. Motion Planning

Fig._ll. Time pro le of generation probability of a walk moti of a different We performed a simple motion planning test with onIy start
subject (bottom layer). . . .
and goal position constraints. Figure 13 shows the planned
motion when the goal position is given as 2.0 m front and
1.0 m left of the current position. The planner outputs a
reasonable motion under the available samples, which is to
sequences within a sliding window of width 0.4 s. The graphgalk forward for 2 m and do a side walk to the left for 1 m. We
depict the time evolution of probabilities when we moved thean observe that the feet occasionally penetrate the oer. W
window from [0:0s; 0:4s] to [2:0s; 2:45]. The lines are colored would need the contact status information to x this problem
according to the type of motions. We use same line color and
type for very similar sample clips for clarity of presentati VII. CONCLUSION

The rst three graphs show the probability of a new walk |n this paper, we proposed a new data structure for stor-
motion by the same subject as the database, while a Wy multi-dimensional, continuous human motion data, and
motion from a different subject was used for Fig. 11. Thesfemonstrated its basic functions through experiments. The
results show that the model can successfully recognize #gin contributions of the paper are summarized as follows:
type of observed mouon even for different _SUbJeCtS' It Eoal 1) We proposed a method for constructing a binary tree data
suggested that the statistical models at different layexse h structure from human motion data. We applied PCA and
different granularity levels because the variation of [ataib- a minimum-error thresholding technique to ef ciently
ties is smaller for upper layers. In particular, similar roos nd the optimal clustering of sample frames.

such as walk and jog begin to merge at layer 7. 2) We proposed to build a global node transition graph
Figure 12 show the result at the bottom layer for a com-  representing the node transitions in all sample clips,

pletely unknown motion (lifting an object from the oor). i$ as well as a clip transition graph representing the node

clear that the database cannot tell whether the motion ipjum  transitions in each sample motion clip.

or kick, which is intuitively reasonable because thesedghre 3) We developed two algorithms for computing the most

motions start from small bending. probable node transition and generation probability for



Fig. 10. Time pro le of generation probability of a new walkotion of the same subject. From left to right:

a given new motion sequence, based on the binary trg#
data structure.
We demonstrated three applications of the proposqg]
database through experiments using real human motion
data.

[4]

There are several functions yet to be addressed by our
database. We currently do not support incremental learningl
of new motions because all sample frames must be availal
to perform the PCA. If the new sample clips do not dras-
tically change the distribution of whole samples, we could
apply one of the extensions of PCA for online learning techl”
niques [17]. Some techniques for balancing binary trees for
multi-dimensional data could also be employed to reorganiz8]
the tree [18].

It should be relatively easy to add segmentation and clusteyo)
ing functions because the sample motion clips are abstracte
by node transition graphs. We can easily detect same oragimil
node transitions in different motion clips, which could tx=d [10]
for segmentation. Clustering of sample clips can be acHieve
by evaluating the distance between motion clips based on
their node transition graphs and applying standard clingfer [11]
algorithms [19].

Our current database only contains the marker position aﬂg]
velocity data. It would be interesting to add other modeaditi
such as contact status, contact forces, and muscle ten&ions
particular, we would be able to solve the contact problem LEIE']
our planning experiment if we have access to the contactssta
information. Contact force and muscle tension information
would also help generating physically feasible motions fot4l
humanoid robots. [15]
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