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Abstract— We report a decentralized, vehicle-based extended
information filter designed to enable single-beacon acoustic
navigation of multiple underwater vehicles. In single-beacon
navigation, ranges from a single reference beacon to a moving
underwater vehicle are used in addition to the vehicle’s inertial
navigation sensors to perform absolute (as opposed to relative)
localization and navigation. For this implementation we assume
a moving reference beacon from which range measurements are
calculated using asynchronous acoustic data broadcasts that also
contain information about the reference beacon’s position and
recent sensor measurements. We assume that other than these
acoustic data transmissions the vehicle has no knowledge of the
beacon’s position or sensor measurements. This implementation
allows the simultaneous navigation of multiple vehicles within
acoustic range of the reference beacon. Within this framework
we show that the decentralized information filter yields identical
results to a centralized extended Kalman filter at the instant
of each range measurement; in addition we show that between
range measurements the results from the two filters differ only
by linearization errors. We compare the state estimation results
of the decentralized information filter to that of a centralized
extended Kalman filter using a simulated data set.

I. INTRODUCTION

This paper reports the derivation of a decentralized extended
information filter (DEIF), for single-beacon one-way-travel-
time (OWTT) navigation [6], [7], [26]. This extended infor-
mation filter is designed to run locally on a submerged vehicle
with real-time access to the vehicle’s navigation sensors and
infrequent, asynchronous access to acoustic broadcasts from
a moving reference beacon. The DEIF does not have access
to real-time global positioning system (GPS) measurements
from the reference beacon or any other information except
information that is received acoustically.

Our goal is to enable high-precision absolute navigation
of multiple underwater vehicles over length scales of O(1-
100km). Conventional “dead-reckoning” navigation solutions
rely on strap-down sensors such as Doppler velocity logs
(DVLs) and inertial measurement units (IMUs) to measure the
vehicle attitude, linear and angular velocity, and acceleration.
These measurements can be integrated to estimate relative
change in vehicle position but yield an estimate of local
displacement with errors that are unbounded over time. In or-
der to achieve bounded-error navigation, additional navigation
information is required from an absolute georeferenced source.

Traditional methods such as ultra short baseline navigation
(USBL) and some implementations of long baseline navigation
(LBL) suffer from a lack of scalability where the rate at which
multiple vehicles can receive navigation updates decreases
linearly as the number of vehicles in the water increases [13].
In addition, LBL navigation requires external, fixed reference
beacons that limit the vehicle’s navigable range to 5-10 km
from the beacon. In contrast, the data broadcasts used in
OWTT navigation enable the navigation of any vehicle within
acoustic range and the use of a single, moving reference
beacon eliminates the need for multiple, fixed beacons and
their associated cost and range limitations.

Within the context of single-beacon navigation, the de-
centralized approach provides a flexible, scalable solution
for vehicle navigation. Navigation algorithms that rely on a
centralized observer suffer from the severely limited band-
width and high latency associated with underwater acoustic
communication in comparison to typical land-based radio
frequency communication networks [14]. Given the speed of
sound in water (∼1500 m/s), transmitting acoustic data over
length scales on the order of kilometers results in latency on
the order of seconds. And though the bandwidth of acoustic
modem technology has increased dramatically in recent years,
achieving throughput of up to 2400 bps [22], operationally
the average throughput is on the order of 10-50 bps due to
the low duty cycle with which these messages are typically
transmitted during at-sea operation. The proposed information
filter lends itself to single-beacon navigation because the
sparse structure and additive nature of measurements updates
in the EIF, described in Section III, requires a minimal quantity
of information to be transmitted from the beacon to the vehicle.

This paper is organized as follows: Section II describes
previous work in the area of single-beacon navigation and the
use of information filters in decentralized estimation. Section
III presents the derivation of the decentralized extended infor-
mation filter and shows that it produces identical results to that
of a centralized extended Kalman filter immediately following
each range measurement. Section IV presents the results of the
simulation used to validate the DEIF. Section V concludes.



II. PREVIOUS WORK

Single-beacon navigation relies on range measurements
from a single, georeferenced beacon to provide an absolute
position reference. Previous work in the area of single-beacon
navigation is extensively reviewed in [26]. This section reviews
some of the references most relevant to this paper. Naviga-
tion with a single, fixed beacon whose position is known
a priori has been reported using several different estimation
techniques—a least squares approach in [21] and [1], and a
vehicle-based EKF in [16] and [11]. Navigation with respect
to a moving beacon whose position is not known a priori is
reported in [17] using a nonlinear least mean square method;
in [7] using a maximum likelihood method; and in [26] using a
centralized EKF. However, each of these methods, as reported,
is only structurally tractable for post-processing, though the
authors of [17] suggest improvements that would allow for
real-time implementations.

Decentralized estimation in the context of underwater com-
munication and navigation faces unique constraints in terms
of low bandwidth and high latency, which renders many of
the decentralized estimation solutions from land-based ap-
plications unsuitable. Until recently little research has been
done on the topic of decentralized estimators and multi-vehicle
navigation in the field of underwater robotics. However, as the
cost of vehicles has decreased and their reliability improved,
the increased interest in multi-vehicle operations within the
ocean science community has precipitated new research in
this area. In [2] the author presents a method that allows a
vehicle running a Bayes estimator to use range and position
information broadcast from one or more moving beacons. This
work expands on the moving long baseline concept in [24]
to encompass multiple range sources and real-time operation.
The authors of [18] address a similar concept to moving long
baseline and compare the use of the Kalman filter to the
particle filter on the vehicle’s localization performance.

The estimation algorithm that most closely resembles our
work is [8], where the authors rely on a single moving
georeferenced beacon to support the localization of multiple
vehicles through asynchronous acoustic broadcasts. The main
difference between the algorithm presented in [8] and the
algorithm presented herein, is that [8] employs a vehicle-
based EKF and performs range measurement updates using the
absolute position and covariance broadcast from the reference
beacon. The benefit of this formulation is that the algorithm is
trivially robust to packet loss, however excluding the reference
beacon position from the state vector of the filter makes
the results difficult or impossible to compare analytically to
a centralized filter. In contrast, the decentralized algorithm
reported herein recreates the results of a centralized EKF
that has access to measurements from both the vehicle and
the beacon’s navigation sensors. In addition, by keeping both
vehicle and ship states in the filter, range measurement updates
do not risk over confidence in and correlation of observations.
In [2], the work upon which [8] is based, a multi-hypothesis
strategy is employed to avoid over-confidence by preventing

measurement data from being incorporated multiple times.
Finally, we look specifically at the use of the information

filter for navigation in the field of robotics. Derived in detail
in [19], the extended information filter has been employed for
vehicle navigation [3] and SLAM algorithms [20], [23] in the
context of land-based robotics. In the context of underwater
vehicles, the EIF is most widely used for coordinated control,
but there are a few examples of the EIF being employed
in SLAM algorithms [4], [5]. To the best knowledge of the
authors, the present paper is the first to formulate and test
an extended information filter in the context of decentralized
single-beacon navigation for underwater vehicles.

III. DERIVATION OF THE DECENTRALIZED EXTENDED
INFORMATION FILTER

In this section we present a brief review of the update
and measurement equations for the extended information filter
followed by a derivation of the vehicle-based decentralized
extended information filter (DEIF). The implementation of the
DEIF relies on two separate filters, both of which process
sensor data causally and asynchronously. The information
filter on the ship has access to ship sensor data but not
range measurements (we will use the term ship to refer to
the reference beacon for the remainder of this derivation).
The ship-based filter is used to calculate the change in the
ship’s information vector and information matrix between
acoustic broadcasts, and this delta information is acoustically
transmitted to the vehicle. As described in [25], the ship-to-
vehicle range is measured using the one-way-travel-time of
the acoustic broadcast. The DEIF on the vehicle has real-time
access to vehicle sensor data and the asynchronous acoustic
broadcasts from the ship, but does not have access to the
ship’s sensor measurements apart from the acoustic broadcasts.
A centralized EKF (CEKF), which has simultaneous, real-
time access to both vehicle and ship sensor data, provides the
benchmark for the performance of the DEIF. Figure 1 shows
a schematic of the delta ship information transmitted from the
ship to the vehicle.

Fig. 1. A schematic of the information contained in the range packet
acoustically transmitted from the ship to the vehicle.



A. Extended Information Filter Equations

The EIF is characterized by the information matrix, Λ, and
the information vector, η, which can be defined in terms of
the mean, µ, and covariance, Σ, of the state vector, x, [12],
[19], as

Λ = Σ−1 (1)
η = Λµ (2)

where

µ = E[x] (3)

Σ = E
[
(x− µ)(x− µ)>

]
. (4)

1) Process Prediction: For the general process prediction
equations we consider a state vector with two states in it, the
current state xk and a previous state xp, so that

xk|k =

[
xk
xp

]
(5)

and

Λk|k =

[
Λkk Λkp

Λpk Λpp

]
(6)

ηk|k =

[
ηk
ηp

]
. (7)

The process prediction equations for the information filter,
which represent the distribution p(xk+1,xp|Z1:k,U1:k+1), are

Λk+1|k =

[
Ψk Q−1k F kΩ

−1
k Λkp

ΛkpΩ
−1
k F

>
kQ
−1
k Λpp −ΛpkΩ

−1
k Λkp

]
(8)

ηk+1|k =

[
Q−1k F kΩ

−1
k ηk + Ψk(f(µk|k,uk+1)− F kµk|k)

ηp −ΛpkΩ
−1
k η

∗
k

]
(9)

where Z1:k are the vehicle sensor measurements up to time k
and U1:k+1 are the control inputs up to time k + 1, f(·) is
the nonlinear process model, F k is the Jacobian, Qk is the
covariance of the discretized process model noise, and

Ψk = (Qk + F kΛ
−1
kkF

>
k )−1 (10)

Ωk = Λkk + F>kQ
−1
k F k (11)

η∗k = ηk − F
>
kQ
−1
k (f(µk|k,uk+1)− F kµk|k) (12)

as derived in [5], [23].
2) Process Prediction with Augmentation: In equations (8)

and (9), the current state at time k is propagated to time k+1,
so that

xk+1|k =

[
xk+1

xp

]
. (13)

If instead we augment the state vector to include the state at
time k + 1 in addition to the original states,

xk+1|k =

 xk+1

xk
xp

 , (14)

the process prediction equations, which represent the distri-
bution p(xk+1,xk,xp|Z1:k,U1:k+1), have a very different
structure, [5],

Λk+1|k =

 Q−1k −Qk
−1F k 0

−F>kQ
−1
k F>kQ

−1
k F k + Λkk Λkp

0 Λpk Λpp

 (15)

ηk+1|k =

 Q−1k (f(µk|k,uk+1)− F kµk|k)

ηk − F
>
kQ
−1
k (f(µk|k,uk+1)− F kµk|k)

ηp


(16)

using the same definitions as in (8) and (9). Equation (15),
can be written as the sum of two matrices—one containing
the process prediction information and the other containing
the previous information matrix.

Λk+1|k =

 Q−1k −Q−1k F k 0

−F>kQ
−1
k F>kQ

−1
k F k 0

0 0 0

+

 0 0 0
0 Λkk Λkp

0 Λpk Λpp

 (17)

As was first noted in [5], this results in Λ having a sparse,
block-tridiagonal structure. The sparsity of Λ is important
in the context of acoustic navigation because it bounds the
amount of information that must be acoustically transmitted
in order to fully reconstruct the ship’s state (see Section III-
B).

3) Measurement Update: The measurement update equa-
tions for the extended information filter are

Λk|k =Λk|k−1 +H>kR
−1
k Hk (18)

ηk|k =ηk|k−1 + · · ·
H>kR

−1
k (zk − h(µk|k−1) +Hkµk|k−1) (19)

where zk is the measurement, Rk is the covariance matrix of
the measurement noise, h(·) is the measurement model, Hk

is the Jacobian of the measurement with respect to x

Hk =
∂h(x)

∂x

∣∣∣∣
x=µk|k−1

(20)

and µk|k−1 is the mean of the state vector [12], [19], [23].

B. Ship-Based Information Filter

The DEIF, running on the vehicle, relies on acoustic data
transmissions from the ship to make range measurements. The
acoustic transmission contains a range packet with ship state
information from an independent ship-based information filter
that is used to maintain both current and historic ship state
estimates. This filter is independent of the vehicle state, vehicle
sensor measurements, and range measurements.

We assume a constant-velocity linear kinematic process
model for the ship, which, in the experience of the authors, is a
reasonable assumption for ship motion in the context of AUV
survey operations. For the ship’s process model the state vector



contains the ship’s xy-position, heading, and the respective
velocities,

xs = [xs, ys, θs, ẋs, ẏs, θ̇s]
>. (21)

The ship process model is identical to that reported in [26],
to which the reader is referred for further details.

1) State Vector Augmentation: The independent ship filter
maintains an estimate of the current ship state as well as
copies of historic ship states. Each time a new acoustic range
packet is broadcast, i.e. at the time-of-launch (TOL), a copy
of the current ship state is appended onto the ship state vector.
This results in a state vector, after n range packets have been
transmitted, of the form

xsk|k =


xsk

xsTOLn

...
xsTOL2

xsTOL1

 (22)

where we have adopted the following convention: xsk|k de-
notes the entire ship state vector at time k; xsk is the current
ship state; and xsTOLn

is the ship state when the nth range
packet was broadcast. Note that we are using > for the matrix
transpose operator. Because in practice it is undesirable, and
unnecessary, for the state vector to grow without bound, we
marginalize out [5] the oldest historic ship states in order to
maintain a fixed-length state vector.

2) Acoustic Data Packets: What differentiates the DEIF
from other estimators used in decentralized single-beacon
navigation is the information that is transmitted with the range
measurements and how that information is incorporated into
the decentrialized vehicle navigation filter in conjunction with
the range measurement. To initiate a range measurement, the
ship broadcasts an acoustic data packet, or range packet, con-
taining information about the ship state. In other formulations
of single-beacon navigation, such as [2] and [8], the range
packet contains the mean and covariance of the ship’s current
x-y position, which is used by the filter on the vehicle to
perform a range measurement update. This approach, while
certainly reasonable, does not contain enough information to
allow the vehicle to recreate the global state of the system,
including full state recovery of both the vehicle and the ship.

In this formulation, the range packet contains the change
in Λs and ηs between the time of the current acoustic broad-
cast, TOLn, and the time of the previous acoustic broadcast,
TOLn−1,

∆ΛTOLn
= ΛsTOLn

−ΛsTOLn−1
(23)

∆ηTOLn
= ηsTOLn

− ηsTOLn−1
(24)

where, for conformability, ΛsTOLn−1
and ηsTOLn−1

have been
padded with zeros to match the size of ΛsTOLn

and ηsTOLn

respectively. These range packets are reassembled subsea in
the DEIF.

The contribution to ∆ΛTOLn
and ∆ηTOLn

from the ship
sensor measurement updates, (19), and prediction with aug-

mentation, (17), are independent of other measurements, be-
cause of the additive nature of the respective operations and
the linear ship process model. As a result, the ∆ΛTOLn and
∆ηTOLn

calculated from the ship-based filter, which has no
knowledge of the vehicle and is not subject to range mea-
surement updates, is identical to what the DEIF would have
calculated if it was performing the ship process predictions and
ship sensor measurement updates even though the ship states
in the DEIF have been modified by prior range measurements.
This is discussed in more detail in Section III-C.

C. Vehicle-Based Decentralized Extended Information Filter

The DEIF uses a constant velocity nonlinear process model
with a 12 degree-of-freedom (DOF) state vector,

xv = [s>,ϕ>,υ>,ω>]> (25)

where s is the local-level vehicle pose in the local frame, ϕ
is the local-level vehicle attitude (Euler roll, pitch, heading),
υ is the body-frame linear velocity, and ω is the body-frame
angular velocity. The vehicle process model is identical to that
reported in [26], to which the reader is referred for further
details.

1) DEIF State Vector: In addition to the current vehicle
state, the DEIF maintains a copy of the historic ship states re-
constructed from the delta information acoustically broadcast
from the ship. As a result, the DEIF state vector consists of
two parts, the current vehicle state and the historic ship states,

xvk|k =


xvk

xsTOLn

...
xsTOL1

 (26)

where we adopt the convention that xvk|k denotes the entire
vehicle state vector at time k; xvk is the current vehicle state;
and xsTOLn

is the ship state when the nth range packet was
broadcast. Note that by definition, because acoustic broadcasts
have a non-negligible time delay associated with them, the
DEIF state vector cannot contain information about the current
ship state, it can only contain information about historic ship
states.

The reconstructed ship states are not subjected to process
predictions or measurement updates other than range measure-
ments, because the DEIF has no knowledge of the ship process
model or measurement from ship sensors. The ship states
remain unchanged over time except for range measurement
updates and when new information from acoustic broadcasts
is incorporated.

2) Incorporating Delta Ship Information: At the time-of-
arrival (TOA) of a range packet at the vehicle, the delta ship
information included in each range packet is incorporated
in the DEIF, and then the range measurement update is
performed. The delta ship information is incorporated into the
DEIF simply by addition, in the analogous operation to (23)



and (24):

ΛvTOAn
= Λ̄vTOAn

+ ∆ΛTOLn (27)
ηvTOAn

= η̄vTOAn
+ ∆ηTOLn

(28)

where Λ̄vTOAn
is the information matrix before the delta ship

information is incorporated and ΛvTOAn
is the information

matrix after the delta ship information is incorporated, ac-
counting for conformability. As noted in Section III-B.2, the
delta ship information encapsulates all of the information that
the filter has gained about the ship state since the last range
packet was transmitted. The simplicity of this computation is
one of the advantages of the information filter.

3) Range Measurement Updates: At the time-of-arrival
(TOA) of the range packet, after the delta ship information is
incorporated, the range measurement update (19) is performed.
The observation model for the range measurement is

zk =
√

(xvxyz − xsxyz )>(xvxyz − xsxyz ) + vk (29)

where xvxyz
is the vehicle pose at the TOA, xsxyz

is the ship
pose at the TOL, and vk ∼ N (0, Rk).

D. CEKF Delayed Measurement Update

Immediately after performing a range update, the current
state of the vehicle recovered by the DEIF is identical to
the vehicle state recovered from the CEKF. There are several
subtleties in this observation that we address here.

At the TOA of the range packet, the range measurement is
made between xvTOA

and xsTOL
. Comparing the probability

distributions of the two filters immediately after the range
measurement update, we find that they are not identical:

DEIF: p
(
xvk ,xsTOL

|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v , Z1:TOL
s

)
(30)

CEKF: p
(
xvk ,xsTOL

|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v , Z1:TOA
s

)
(31)

where zTOA
rng is the most recent range measurement, Z1:TOA

v

are the vehicle sensor measurements up to the TOA, U1:TOA
v

are the vehicle control inputs up to the TOA, and Z1:TOL
s are

the ship sensor measurements up to the TOL. Note that the
CEKF has access to ship sensor measurements between the
TOL and the TOA of which the DEIF has no knowledge.
This is illustrated in Figure 2 where the CEKF has access
to the GPS and gyrocompass measurements made at the ship
between the TOL and TOA, while the DEIF does not.

The ramifications of this are that the DEIF performs a
range measurement between the current vehicle state and the
the best estimate of the ship’s state at the TOL given ship
sensor measurements only up to the TOL. In contrast, the
CEKF performs a range measurement between the current
vehicle state and the best estimate of the ship’s state at the
TOL given ship sensor measurement up to the TOA. The
CEKF is essentially performing a smoothing operation on the

Fig. 2. At the TOA, the CEKF has access to the GPS and gyrocompass
measurements made at the ship after the TOL, while the DEIF does not.

ship’s state at the TOL, because it has access to additional
information from the ship’s sensors after the data packet was
broadcast at the TOL.

To address this discrepancy we use a two-step delayed
measurement update in the CEKF, first performing a mea-
surement update for the range measurement with only ship
measurements up until the TOL, (32), and then performing
another measurement update for the ship measurements that
happened between the TOL and the TOA, (33):

p(xvk ,xsTOL
|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v , Z1:TOL
s ) (32)

p(xvk ,xsTOL
|zTOA

rng ,Z
1:TOA

v ,U1:TOA

v ,Z1:TOL

s , ZTOL:TOA
s )

(33)

so that now the DEIF distribution in (30) is identical to the
CEKF distribution in (32), without compromising the CEKF’s
final distribution, i.e. (33) is identical to (31).

Between range measurements, the CEKF and DEIF esti-
mates of the vehicle’s state will not be identical because of
linearization errors, as seen in (30) versus (31). However, at
the instant of each range measurement, through the two-step
delayed update, the filters estimates will be identical.

Due to the cumulative nature of this navigation technique,
packet loss is an operational concern for real-time implemen-
tation. The authors are currently investigating several viable
options for addressing the effects of packet loss, including
broadcasting redundant range packets or reformulating the
delta information in order to mitigate the effect of packet loss.

A final note on this derivation, mentioned briefly in Section
III-B.2, is that the ship process model must be linear in order
for the delta ship information calculated in the independent
ship filter to be identical to a centralized filter. A linear
process model guarantees that the process prediction and
measurement updates are independent of the ship’s current
state. This is essential because the independent ship filter will
have a different estimate of the ship’s current state than a
centralized filter, because the centralized filter’s estimate is
conditioned on previous range measurements. This presents a
non-trivial challenge for future work where we would like to
incorporate range measurements from other vehicles that will
not necessarily have linear process models.



TABLE I
SIMULATED NAVIGATION SENSORS: SAMPLING FREQUENCY AND NOISE

Vehicle Sensors Frequency Noise
h: 0.1◦

rp: 0.01◦
OCTANS a 3 Hz

ḣ: 0.5◦/s
ṙṗ: 0.25◦/s

depth sensor 0.9 Hz 5 cm
DVL 3.0 Hz 1 cm/s
modem every 2.5 min 4 m

ah, p, and r are heading, pitch, and roll respec-
tively; ḣ, ṗ, and ṙ are heading, pitch, and roll rates.

Ship Sensors Frequency Noise
GPS 1.0 Hz 0.5 m
gyrocompass 2.0 Hz 0.1◦

IV. SIMULATION

The DEIF is tested using a simulated 6 hours survey at
3800m depth. As described in detail in Section III, the DEIF
has real-time access to vehicle sensor data and asynchronous
acoustic broadcasts from the ship that are used to make range
measurements. The DEIF does not have access to the ship’s
sensor measurements apart from these acoustic broadcasts. To
test the validity of the filter, we compare the DEIF estimation
results to those obtained with a CEKF, reported in [26], at
every time step.

A. Simulation Setup

For comparison purposes this simulation is designed to
mimic the experimental setup of the deep water survey [26].
In the simulated mission presented here, the vehicle drives
ten 700 m tracklines spaced 80 m apart at a velocity of 0.35
m/s. The vehicle’s depth is constant at 3800 m. The vehicle
takes approximately 6 hours to complete the survey, during
which time the ship drives around the vehicle’s survey area
in a diamond pattern at 0.5 m/s, broadcasting acoustic data
packets every 2.5 minutes.

We assume that the ship is equipped with a differential
global positioning system (DGPS) receiver and a gyrocompass
to measure heading. The vehicle has an OCTANS fiber-optic
gyrocompass to measure attitude and attitude rates; a Parosci-
entific pressure sensor to measure depth; and an RDI Doppler
velocity log (DVL) to measure bottom-referenced velocities.
Acoustic modems are used to measure the range between the
ship and the vehicle. The vehicle and ship navigation sensors,
their sampling frequencies, and the noise statistics for each
sensor are given in Table I.

B. Results

The results of the simulation are shown in Figures 3, 4 and
5. Figure 3 shows the estimated vehicle trajectory overlaid with
the 3-sigma covariance of the vehicle position as estimated
by the DEIF. The GPS-reported position of the ship as it

moves around the vehicle survey area is also shown. Figure 4
shows the difference between the vehicle’s true position and
the estimate from the DEIF of the vehicle’s position over the
course of the simulated dive. The error at the end of the dive
between the DEIF’s estimate of the vehicle position and the
true vehicle position is 3.7 m cross-track and 0.2 m along-
track both with 3.1 m standard deviation. For comparison,
had the vehicle relied solely on dead reckoning throughout
the dive with no range measurements, the error at the end of
the dive between the estimated and true vehicle position would
have been 8.8 m cross-track and 5.6 m along-track with a 7.8
m standard deviation. The 3-sigma error bars are included to
show that the filter maintains consistency over the course of
the dive.

Comparing the mean of the vehicle’s 12 degree-of-freedom
(DOF) state vector as estimated by the DEIF versus the CEKF,
Figure 5 shows the norm of the difference over the course
of the simulation. The lower plot highlights the norm of the
difference immediately after a range measurement, as marked
by the asterisks. Note that the y-axis on the lower plot has been
scaled down by two orders of magnitude to show the precision
with which the DEIF is able to reproduce the results of the
CEKF. The average difference between the filters across the
entire dive is 5.68e-3 (5.7 mm) in x-y position and 3.35e-8 in
the other state elements. The average difference immediately
after a range measurement is 8.27e-5 m in x-y position and
1.70e-10 in the other vehicle states.

C. Discussion

As discussed in Section III-D, we expect the DEIF to
produce state estimates that are comparable to the CEKF:
immediately after each range update the results should be iden-
tical; between range updates, the results should differ only due

START

END

ship

vehicle

Fig. 3. Ship and vehicle trajectories. The vehicle started in the northwest and
proceeded east, ending at the southwest corner of the survey. The ship moved
counter-clockwise around the diamond starting at the eastern-most apex.
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Fig. 4. The difference between the true vehicle position and estimate from
the DEIF over time. The error bars are 3 times the standard deviation in each
degree of freedom.

to linearization errors. The results from the simulation shown
in Figure 5 support this within the tolerance of numerical
precision. Over the course of the 6 hour simulated dive the
difference in x-y position between the DEIF and the EKF is,
on average, 8.27e-5 m immediately after each range update. In
addition, the difference between the filters due to linearization
errors (averaged over the entire dive) is 5.7 mm on average
with a maximum difference of 4.9 cm.

0 1 2 3 4 5 6
0

0.02

0.04

0.06

mission time [hr]

n
o

rm
 o

f 
s
ta

te
 e

rr
o

r

Norm of the Difference in Vehicle State
   between DEIF and CEKF               

0 1 2 3 4 5 6
0

1

2

3
x 10

−4

mission time [hr]

n
o

rm
 o

f 
s
ta

te
 e

rr
o

r

 

 

DEIF vs CEKF

range measurements

Fig. 5. The sum of the squared error between the mean vehicle position as
estimated by the DEIF versus the CEKF.

Because these results are based on a simulated data set, there
are several possible discrepancies compared to experimental
data. The assumed noise characteristics of the navigation
sensors in Table I are used both in the simulation of noisy
sensor data and in the measurement models in the DEIF and
CEKF. As a result the measurement models exactly predict

the performance of the navigation sensors. In addition, the
noise model of every sensor is assumed to be Gaussian. While
these assumptions may be reasonable for common vehicle
navigation sensors that have been tested extensively in the
field [15], acoustic range measurements suffer from highly-
variable, non-Gaussian noise sources including multi-path and
ray-bending errors. In an attempt to account for this, we use
a large assumed variance for the range measurements. In a
real-world context outlier filtering of the range data would be
necessary.

V. CONCLUSIONS AND FUTURE WORK

The structure of the information filter makes it a natu-
ral choice for a decentralized implementation. Delayed ship
updates are simply additive and require a minimal amount
of information to be acoustically transmitted that is well
within the function limits of available acoustic modems [9],
[10]. In this paper we have derived a vehicle-based extended
information filter that is able to estimate a vehicle’s state,
including x-y position, using only vehicle-based inertial nav-
igation sensors and asynchronous acoustic broadcasts from a
single, moving, georeferenced beacon. The DEIF is able to
locally recreate vehicle state estimates that are commensurate
with the results from a centralized extended Kalman filter
within a margin of numerical error, and did so over the
course of a simulation that is representative of an actual,
deep-water survey in both physical scale and the frequency
of measurements. In addition, the filter in its current form
could be used on multiple underwater vehicles where each
vehicle simultaneously receives acoustic data broadcasts from
the reference beacon. Given the favorable results in simulation
of the DEIF, we look forward to experimentally validating this
algorithm and continuing to work towards a full multi-vehicle
implementation.

In the future, the natural expansion of this algorithm is to
incorporate acoustic broadcasts from other vehicles in addition
to broadcasts from the reference beacon. The addition of
vehicle-based acoustic broadcasts would generate inter-vehicle
range information that could be used to further constrain each
receiving vehicle’s navigation solution. Incorporating inter-
vehicle ranges presents a number of challenges for continued
research, including the nonlinearity of the process models
of the vehicles initiating the acoustic broadcast, and the
problem of over confidence associated with double counting
information passed between the vehicles.
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