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Abstract— We present a method for smoothing discontinuous
dynamics involving contact and friction, thereby facilitating the
use of local optimization techniques for control. The method
replaces the standard Linear Complementarity Problem with
a Stochastic Linear Complementarity Problem. The resulting
dynamics are continuously differentiable, and the resulting con-
trollers are robust to disturbances. We demonstrate our method
on a simulated 6-dimensional manipulation task, which involves
a finger learning to spin an anchored object by repeated flicking.

I. INTRODUCTION

Classic control methods focus on forcing a dynamical
system to a reference trajectory. This approach is powerful
but limited. For complex behaviors in underactuated domains,
planning the desired trajectory cannot be easily separated from
the control strategy. Optimal Control offers a comprehensive
framework that solves both the planning and control problems
by finding a policy which minimizes future costs. However,
global methods for finding optimal policies scale exponentially
with the state dimension, making them prohibitively expensive.

Local Optimal Control methods, or trajectory optimizers,
play a key role in the search for nonlinear feedback controllers
that are on par with biological motor systems. These methods
find a solution in a small part of the state-space, but because
their complexity scales polynomially, they may constitute the
only feasible approach to tackling high-dimensional problems.

Locomotion and hand-manipulation, behaviors which en-
compass some of the most interesting control problems, are
crucially dependent on contact and friction. These phenomena
pose a problem for efficient variants of local methods, which
require differentiability to some order. Hard contacts and joint
limits are examples of dynamic discontinuities where veloc-
ities change instantaneously upon impact. Though these two
phenomena can conceivably be modeled with stiff nonlinear
spring-dampers, friction is inherently discontinuous and does
not readily admit a smooth approximation.

If our goal is to produce an accurate simulation, it might
be sensible to use a deterministic model of the dynamics,
since macro-physical systems are often well-modeled as such.
If however we wish to control the system, noise might
qualitatively alter the optimal behavior. We argue that when
the dynamics are discontinuous, an optimal controller must
account for stochasticity in order to generate an acceptable

policy. Because stochastic dynamics are inherently smooth (in
the mean), differentiability issues automatically disappear.

A popular and established method for modeling hard unilat-
eral constraints and friction, involves defining complementarity
conditions on forces and velocities. Simulators based on
this principle are called time-stepping integrators and solve
a Linear Complementarity Problem at each time step. We
propose to instead solve a Stochastic Linear Complementarity
Problem, using the approach proposed in [1]. This method
transforms the complementarity problem into a smooth non-
linear optimization which is readily solved.

The solution effectively describes new deterministic dynam-
ics, that implicitly take into account noise around the contact.
These modified dynamics can qualitatively be described as
featuring a fuzzy “force-field” that extends out from surfaces,
allowing both contact and friction to act at a distance. The
size and shape of this layer are naturally determined by the
noise distribution, without any free parameters.

We test our method on a simplified manipulation task. A
two link planar finger must learn to spin an ellipse that is
anchored to the wall by flicking at it. We use an off-line Model
Predictive Control strategy to patch together a global, time-
independent policy, which robustly performs the task for both
the smoothed system and the original discontinuous one. We
constructed an interactive simulation which allows the user to
actively perturb the controlled system. The controller proved
to be robust, withstanding all these disturbances.

II. A QUALITATIVE ARGUMENT

Consider the simple and familiar task of holding an object.
The force which prevents the object from falling is friction,
related by Coulomb’s law to the normal force exerted by
the fingers. If we now slowly loosen our grip, there is no
discernable change in the positions or velocities of the system
until suddenly, when the the weight of the object penetrates
the friction cone, sticking changes into slipping and the object
drops from our hand.

In the Optimal Control context, the control signal realizes
a tradeoff between a state-cost and a control-cost. Because
the state-cost cannot change until the object begins to slip,
a controller that is optimal with respect to deterministic
dynamics will attempt to hold the object with the minimum
possible force, i.e. on the very edge of the friction cone.



This delicate grip would be disastrously fragile – the smallest
perturbation would cause the object to fall. If, however, there
is uncertainty in our model, we can only maintain our grip
in probability. By grasping with more force than is strictly
necessary, we push probability-mass from the slip-regime into
the stick-regime.

The moral is that optimal control of discontinuous dynamics
cannot give acceptable results with a deterministic model. Our
intuition of what constitutes a reasonable solution implicitly
contains the notion of robustness, which requires the explicit
modeling of noise near the discontinuities.

III. BACKGROUND

A. Dynamics with unilateral contacts

The modeling and simulation of multibody systems with
contacts and friction is a broad and active field of research [2].
One reasonable approach, not investigated here, is to model
discontinuous phenomena with a continuous-time hybrid dy-
namical system which undergoes switching [3]. These methods
require accurate resolution of collision and separation times, so
fixed time-step integration with a fixed computational cost is
impossible. Moreover, collision events can in principle occur
infinitely often in a finite time, as when a rigid elastic ball
bounces to rest. The appropriate control strategy would be
to chop the trajectory into several first-exit problems, where
contact surfaces serve as an exit manifold for one segment,
while the post-collision state serves as an initial condition for
the next one. It is not clear how a trajectory-optimizer for such
a system could deal with unforeseen changes to the switch
sequence, as when a foot makes grazing contact. Furthermore,
such a scheme would mandate that every contact/stick-slip
configuration be considered a hybrid system component, so
their number would grow combinatorially.

Time-stepping avoids all of these problems. We give a brief
exposition here and refer the interested reader to [4]. The
equations of motion of a controlled mechanical system are

Mv̇ = r + u

q̇ = v

where q and v are respectively the generalized coordinates
and velocities, M = M(q) is the mass matrix, r = r(q,v)
the vector of total external forces (gravity, drag, centripetal,
coriolis etc.) and u is the applied control signal (e.g. motor
torques).

It is non-trivial to model discontinuous phenomena like
rigid contact and Coulomb friction in continuous time. Doing
so requires instantaneous momentum transfers via unbounded
forces and the formalism of Measure Differential Inclusions
to fully characterize solutions [5]. Time-stepping integrators
rewrite the equations of motion in a discrete-time momentum-
impulse formulation. Because the integral of force (the im-
pulse) is always finite, unbounded quantities are avoided, and
both bounded and impulsive forces can be properly addressed
in one step.

For a timestep h, an Euler integration step for the momenta1

Mv′ = Mv(t+ h) and coordinates q′ = q(t+ h) is:

Mv′ = h(r + u) + Mv

q′ = q + hv′.

We want a unilateral constraint vector function d(q) to remain
non-negative, for example a signed distance between objects,
which is positive for separation, zero for contact and negative
for penetration. We therefore demand that impulses λ be
applied so that

d(q′) ≈ d(q) + hJv′ ≥ 0,

where J = ∇d(q). This leads to the following complemen-
tarity problem for v′ and λ:

Mv′ = h(r + u) + Mv + JTλ (1a)
λ ≥ 0, (1b)

d(q) + hJv′ ≥ 0, (1c)

λT(d(q) + hJv′) = 0. (1d)

Conditions (1b) and (1c) are read element-wise, and respec-
tively constrain the contact impulse to be non-adhesive, and
the distance to be non-penetrative. Condition (1d) asserts that
d(q′) > 0 (broken contact) and λ > 0 (collision impact), are
mutually exclusive.

Since the mass matrix is always invertible, we can solve
(1a) for v′, and plug into (1c). Defining

A = JM−1JT (2a)

b = d(q)/h+ Jv + hJM−1(r + u), (2b)

we can now write (1) in standard LCP form:

Find λ s.t. 0 ≤ λ ⊥ Aλ+ b ≥ 0. (3)

In order to solve for frictional impulses λf , the Coulomb
friction law ‖λf‖ ≤ µλ must be incorporated. To maintain
linearity, a polyhedral approximation to the friction cone is
often used, though some new methods can handle a smooth
one [7]. In the model of [8], the matrix A is no longer positive-
definite, though a solution is guaranteed to exist. In the relaxed
model of [9], A remains positive-definite. With either model
the problem retains the LCP structure (3).

B. Smoothing methods for LCPs
The Linear Complementarity Problem (3) arises in many

contexts and has stimulated considerable research [10][11].
One method of solving LCPs involves the use of a so-called
NCP function φ(·, ·) whose root satisfies the complementarity
condition

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Due to the element-wise nature of complementarity, is suffices
to consider NCP functions with scalar arguments. Two popular
examples are

φ(a, b) = min(a, b) (4)

1In the derivation we assume M and r to be constant throughout the time-
step, but for our simulations used a more accurate approximation [6].



and
φ(a, b) = a+ b−

√
a2 + b2.

These functions reformulate the complementarity problem as
a system of (possibly nonsmooth) nonlinear equations, whose
residual can then be minimized. A particular method, closely
related to the one used here, was presented by Chen and
Mangasarian in [12] and proceeds as follows. Rewrite (4) as
min(a, b) = a −max(a − b, 0) and replace max(·, 0) with a
smooth approximation

s(x, ε) → max(x, 0) as ε ↓ 0.

One of several such functions proposed there is

s(x, ε) = ε log(1 + ex/ε). (5)

The authors then present an iterative algorithm whereby for a
positive ε, the squared residual

r(a, b, ε) =
(
a− s(a− b, ε)

)2
(6)

is minimized with a standard nonlinear minimization tech-
nique, ε is subsequently decreased, and the procedure repeated
until a satisfactory solution is obtained.

C. Local optimization
Local Optimal Control methods, with roots in the venerable

Maximum Principle [13], solve the control problem along
a single trajectory, giving either an open-loop or a closed-
loop policy that is valid in some limited volume around it.
They are efficient enough to be used for real-time control of
fast dynamics [14], and scale well enough to handle high-
dimensional nonlinear mechanisms [15]. These methods can
get stuck in local minima, though if neural controllers set the
golden standard, it might be noted that biological suboptimal
minima exist, somewhat anecdotally evidenced by the high-
jump before Dick Fosbury. Their main detraction is that they
solve the problem in only a small volume of space, namely
around the trajectory. To remedy this, new methods [16] use
Sum of Squares verification tools to measure the size of local
basins-of-attraction and constructively patch together a global
feedback controller. Finally, using the control-estimation dual-
ity, the powerful framework of estimation on graphical models
is being brought to bear [17] on trajectory optimizers.

Though policy gradient methods like shooting can also be
considered, we concentrate on Local Dynamic Programming,
i.e. the construction of a local approximation to the Value
function, and restrict ourselves to the finite-horizon case.

The control u ∈ Rm affects the propagation of the state
x ∈ Rn through the general Markovian dynamics

x′ = f(x,u). (7)

The cost-to-go starting from state x at time i with a control
sequence ui:N−1 ≡ {ui,ui+1 . . . ,uN−1}, is the sum of
running costs2 `(x,u) and final cost `f (x):

Ji(xi,ui:N−1) =

N−1∑
k=i

`(xk,uk) + `f (xN ),

2The possible dependence of ` on i is suppressed for compactness.

We define the optimal Value function at time i as the the cost-
to-go given the minimizing control sequence

V ∗i (x) ≡ min
ui:N−1

Ji(x,ui:N−1).

Setting V ∗N (x) ≡ `f (xN ), the Dynamic Programming prin-
ciple reduces the minimization over the entire sequence of
controls to a sequence of minimizations over a single control,
proceeding backwards in time:

V ∗i (x) = min
u

[`(x,u) + V ∗i+1(f(x,u))] (8)

1) First-Order Dynamic Programming: To derive a
discrete-time equivalent of the Maximum Principle, we ob-
serve the following: Given a first-order approximation of the
Value at i+1, if f is affine in u (which holds for mechanical
systems) and ` is convex and smooth in u (so that ∇u` is
invertible), then the minimizing u is given by:

u∗i = −∇u`
−1
(
∇uf

T∇xVi+1

)
(9)

with dependencies on x and u suppressed for readability. Once
u∗i is known, the approximation at time i is given by

∇xVi(x) = ∇x

(
`(x,u∗i ) + Vi+1(f(x,u∗i ))

)
. (10)

The first-order local dynamic programming algorithm pro-
ceeds by alternatingly propagating the dynamics forward
with (7), and propagating ui and ∇xVi(x) backward with
(9) and (10).

2) Second-Order Dynamic Programming: By propagating a
quadratic model of Vi(x), second-order methods can compute
locally-linear policies. These provide both quadratic conver-
gence rate and a more accurate, closed-loop controller. We
define the unminimized Value function

Qi(δx, δu) = `(x + δx,u + δu) + Vi+1(f(x + δx,u + δu))

and expand to second order

≈ 1

2

[ 1
δx
δu

]T  Q0 Qx
T Qu

T

Qx Qxx Qxu
Qu Qux Quu

[ 1
δx
δu

]
. (11)

Solving for the minimizing δu we have

δu∗ = argmin
δu

[Qi(δx, δu)] = −Q−1uu (Qu +Quxδx), (12)

giving us both open-loop and linear-feedback control terms.
This control law can then be plugged back into (11) to
obtain a quadratic approximation of Vk. As in the first-order
case, these methods proceed by alternating a forward pass
which propagates the dynamics using the current policy, and
a backward pass which re-estimates the Value and produces a
new policy.



D. Optimal Control of discontinuous systems

To date, there has not been a profusion of research on
Optimal Control of discontinuous dynamics. Stewart and An-
itescu’s recent contribution [18] includes a literature review. In
that paper, the authors describe a method whereby a smooth
approximation replaces the discontinuities. They show that in
some limit, the solution of the smooth system converges to
the solution of the nonsmooth one, and proceed to apply their
method to the “Michael Schumacher” racing car problem. We
would argue that though a solution is obtained, it might be
a solution to the wrong problem. Qualitatively, it reaches the
very limits of tire traction, and passes within a whisker of the
walls. The smallest disturbance would send the car crashing.
Their example is appropriate since this extreme driving well-
describes the car racing profession, but the optimum is clearly
non-robust. A driver who thinks that the road is slippery or the
steering wheel is inaccurate, would most likely be considered
a “better driver” by other standards.

The method presented in the next section describes a
specific way of accounting for stochasticity when controlling
dynamics with complementarity conditions, but in general,
noise has a profound effect on optimal solutions. For deter-
ministic continuous-time systems, even infinitely differentiable
ones, the Value function, which satisfies the Hamilton Jacobi
Bellman PDE, is often discontinuous. A solution always
exists in the Viscosity Solution sense [19], but the fact that
a special formalism is required is conspicuous. If, however,
the dynamics are a stochastic diffusion with positive-definite
noise covariance, the HJB equation gains a second-order Itô
term, and the solution is always unique and smooth, regardless
of discontinuities in the underlying dynamics.

IV. THE PROPOSED METHOD

Instead of solving for contact impulses with an LCP, we
propose instead to solve a Stochastic LCP. The incorporation
of stochasticity makes the contact impulses a differentiable
function of the state, facilitating the use of local control
methods. Because a controller must always overcome noise
(process, observation, modeling), the noise-induced smooth
dynamics constitute a better model for control purposes,
even if they are a worse approximation of the real physical
mechanism.

A. New and old formulas for SLCPs

The study of Stochastic Linear Complementarity Problems
is a fairly recent endeavor, see [20] for a survey. The general
problem could be written

0 ≤ x ⊥ A(ω)x + b(ω) ≥ 0. (13)

Where ω is random variable. In this form the problem is
obviously not well-posed, since it is not clear in what sense x
satisfies the constraints. The Expected Residual Minimization
approach of [1], proposes that we minimize

rERM(x) = E
[
‖Φ(x, ω)‖2

]
(14)

where
Φ(x, ω)i = φ

(
xi,

(
A(ω)x + b(ω)

)
i

)
is a vector of NCP residuals.

As detailed in section IV-B, in our case A can be considered
constant to first order. This variant is discussed in section 3
of [1], where after a simple proof that rERM(x) is continu-
ously differentiable, it is explicitly computed for a uniformly
distributed b. Because we are ultimately trying to model a
diffusion, the Normal distribution would be more appropriate.
Considering scalar arguments a and bN , with

bN ∼ p(bN ) = N (bN |b, σ) =
1

σ
√

2π
exp

(
− 1

2

(
bN−b
σ

)2)
and cumulative distribution

P (bN ) =

bN∫
−∞

p(t)dt =
1

2

(
1 + erf

(
bN−b
σ
√
2

))
,

the expectation produces

E
[
min(a, bN )2

]
=

a2 − σ2(a+ b)p(a) +
(
σ2 + b2 − a2

)
P (a). (15)

A possible variant of equation (14), would be to exchange
squaring and expectation, giving what might be termed Resid-
ual Expectation Minimization:

rREM(x) = ‖E [Φ(x, ω)] ‖2 (16)

Due to Jensen’s inequality, rREM(x) ≤ rERM(x), and is thus
a weaker bound, though their minima coincide as σ ↓ 0. A
benefit of this residual is that the expectation gives simpler
formulae. In particular, if bL has a Logistic distribution

bL ∼ L(bL|b, σ) =
1

σ

(
exp

(
bL−b
2σ

)
+ exp

(
b−bL
2σ

))−2
then the expectation produces

E[min(a, bL)] = a− σ log(1 + e
a−b
σ ). (17)

It is clear that this residual is identical to (6) with the
smoothing function (5), where σ takes the place of ε. This
immediately provides us with a new interpretation to the
method of [12], and gives us access to the literature which
investigates it (e.g. [21]).

With these smooth approximations3 to φ, the minimizing x
is now a differentiable function of A and b.

3Although we only used formulae (15) and (17) in our experiments, for
completeness we also provide the expectation of the min(·, ·) function with
a Normally distributed argument:

E[min(a, bN )] = a− σ2p(a)− (a− b)P (a),

and of min(·, ·)2 with a Logistically distributed argument:

E[min(a, bL)
2] = a2 − 2aσ log(1 + e

a−b
σ ) + 2σ2 Li2(−e

a−b
σ ),

where Li2(x) is the Dilogarithm function Li2(x) = −
∫ 0
x

log(1−t)
t

dt.



B. Determining the noise covariance
How should the noise covariance σ be determined? Assume

that a gaussian state distribution is estimated from observations
by some filter, and we are given

Σq = E[qqT] and Σv = E[vvT].

Examining (2a) we see that A is a function of the mass matrix
M and the constraint Jacobian J. Both of these depend on
q but often smoothly and slowly. In contrast, since h must
be small due to the Euler integration, its presence in the
denominator of the first term of the RHS of (2b), suggests
that the appropriate first-order approximation is

Σb = E[bbT] ≈ JΣqJ
Th−2

To account for the second term as well, one would use

Σb ≈ J(Σqh
−2 + Σv)JT.

The element-wise nature of the complementarity conditions
allows us to ignore the off-diagonal terms and use

b(ω)i ∼ N (ω|bi,
√

(Σb)ii) or L(ω|bi,
√

(Σb)ii),
(18)

to define the vector residual as

Φ(x, ω)i = φ
(
xi, Aix + b(ω)i

)
.

C. Making global controllers from trajectories
The output of the second-order trajectory optimizer of

section III-C.2 is a time-dependent sequence of linear feedback
policies u()1:N−1

u(x)i = ui −Qi−1uuQiux(x− xi).

Ideally, we would like to use an online Model Predictive
Control strategy, whereby we iteratively use u()1 for one time-
step and re-solve the problem. Our simulations were not fast
enough for that (see below), so we resort to an off-line MPC
strategy, as in [15]. Once a solution trajectory is obtained
for some x1, we save u()1, and proceed to solve for a new
trajectory starting at x1+d for a small offset d. We can use the
previous control sequence shifted by −d and appended with
d copies of the last control

uNEW()1:N−1 = [u()1+d:N−1 u()N−1 u()N−1 · · · ], (19)

as our initial guess for the policy of the shifted trajectory.
Because we are usually not far from the optimum, we enjoy
the quadratic convergence properties of second-order methods.
The trajectory thus propagates forward, leaving behind it a
trail of time-independent controllers u()k, all with horizon
T = hN . We now use this collection of local linear controllers
to construct a global controller that can be used online, by
following a simple nearest neighbor rule:

u(x) = u(x)j with j = argmin
k
‖x− xk‖2. (20)

This is similar to the Trajectory Library concept [22]. If, as
in the case below, the solution lies on a limit cycle, the time-
independent trajectory will converge to it. Now we can perturb
the initial state x1 every several time steps, and explore the
state space around the limit cycle.

θ1

θ2

θ3

Fig. 1. The “flicking finger” dynamical system. The controller actuates θ1
and θ2 in order to spin the free ellipse around θ3.

Fig. 2. The contact surface in the configuration space [θ1 θ2 θ3]T. The
torus-like shape is the zero-valued isosurface of the distance function d(q).
It corresponds to the set of points where the finger-tip makes contact with the
free ellipse. Points inside and outside the surface correspond to penetration
and broken contact respectively. A cylindrical coordinate system was chosen
because θ3 is a periodic variable (with period π rather than 2π due to
symmetry).

V. EXPERIMENTS

A. Setup

We performed our experiments with the 6-dimensional
system of Figure 1. This planar system is composed of two
articulated ellipses, with angles θ1 and θ2, and a free-spinning
ellipse, whose angle is given by θ3. The full state of the system
is thus

x = [θ1 θ2 θ3 θ̇1 θ̇2 θ̇3]T

The controller can apply two torques u = [u1 u2]T to θ1
and θ2. We make it the controller’s goal to spin the free



ellipse in the positive direction, by defining a negative state-
cost proportional to θ3 with a quadratic control-cost:

`(x,u) = −cxθ3 + cu‖u‖2

Note that it would be very difficult to solve this task with
control techniques that force the system to a pre-planned
trajectory, since it is not clear how such a trajectory would
be found.

In Figure 2, we depict the d(q) = 0 isosurface in the
configuration space [θ1 θ2 θ3]T.

B. Parameters and methods
The following values can all be assumed to have the

appropriate units of a self consistent unit system (e.g. MKS).
The major and minor radii of the finger ellipses are .8 and
.25 respectively. Those of the free ellipse are .7 and .5. The
masses and moments of inertia correspond to a mass density
of 1. The vertical distance between the two anchors (black
dots in Figure 1) is 3. Angle limits are −π ≤ θ1 ≤ 0 and
−2π/3 ≤ θ2 ≤ 0. The drag coefficients of the finger joints and
of the free ellipse axis are .2, .2 and .7, respectively. Gravity
in the vertical direction is -4. The control-cost coefficients
were cu = 0.05 and cx = 1. The time step h = 0.05 and
the number of time steps per trajectory N = 75, for a time
horizon of T = 3.5.

Both angle constraints and the contact constraint were
satisfied with impulses, as described in section III-A. We used
a friction coefficient of µ = 0.5, with the friction model
of [9]. Since we did not estimate the dynamics, we used a
constant

√
(Σb)ii = 0.1, which was chosen as a trade-off

between good convergence and small softening of the contact
(described below). For the SLCP residual, both (15) and (17)
gave qualitatively similar results, and we used (17) in the
results below, because it is computationally cheaper.

We avoided the matrix inversions of (2) by directly solving
the (stochastic) mixed complementarity problem of (1). This
is easy to do with NCP functions, by setting φ(a, b) = b for
those indexes where equality is desired.

We propagated the receding-horizon trajectory 400 times,
with an offset d = 4, giving us a library of 400 locally linear
feedback controllers. Every 15 time-steps, the velocities of
initial state were perturbed by normal noise of variance 4.
The reason only the velocities were perturbed is that random
perturbations of the angles might lead to illegal (penetrative)
configurations. When selecting the nearest neighbor of equa-
tion (20), we used a Euclidian norm scaled by the covariance
of all the xi. In Figure 3, we plot the locations of the origins
xi, projected onto the first 3 dimensions of the state-space.

Our simulator4 was written in MATLAB for versatility and
code readability, but is therefore not very efficient. One
forward-backward pass of the local method took ∼5s on a
quad-core Core i7 machine. Starting from the zero policy,
convergence was attained in ∼60 passes. In receding-horizon
mode, starting from the shifted previous policy (19), ∼8 passes
sufficed, due to quadratic convergence.

4Available online at http://alice.nc.huji.ac.il/˜tassa/

Fig. 3. The trajectory library. The dots correspond to the origins of 400 linear
feedback controllers which we select with the nearest-neighbor rule (20). The
global policy is effectively a Voronoi tessellation of these policies.

Fig. 4. The limit-cycle of a controlled trajectory. The color of the trajectory is
proportional to the contact impulses, showing the points when flicking occurs.

C. Results

Our use of the SLCP when solving for velocities and
impulses has the qualitative effect of creating a “force field”
which extends from surfaces and lets contact and friction
impulses act at a distance. If we could simulate the true
stochastic system, some probability mass would experience
contact before the mean would. The “fuzzy” force layer in
our new deterministic system is an approximation to the mean
force that would act on the mean of the distributed state.

The controller that was synthesized is very robust. We tested
it on both the smoothed system and the original non-smooth
one. For both systems, the controller dependably spun the
ellipse, and recovered from disturbances. As an indicator of
robustness, the controller worked well for time-steps different
than the one which it was trained. We built a real-time
simulator with a graphical front-end, which allows the user
to perturb the system as it is being controlled, by interactively
pulling on the ellipses with the mouse cursor. We were unable
to perturb the system out of the controller’s basin-of-attraction.

In order to assess the contribution of the smoothing to
robustness, we solved again, with a smaller noise covariance

http://alice.nc.huji.ac.il/~tassa/


0 0.39 0.78 1.17 1.56 1.95

2.34 2.73 3.12 3.51 3.9 4.29

Fig. 5. Animation frames from the limit cycle. The third frame (time=0.78) and eighth frame (time=2.73) correspond to the contacts on the left and right
side of Figure 4, respectively.

√
(Σb)ii = 0.05. The resulting controller was less robust in

all of the senses described above. In particular, this controller
sometimes entered into a non-productive limit-cycle where
no contact was achieved. For smaller noise covariances the
trajectory optimizer did not converge, so a direct comparison
was not possible.

In Figure 4, we show the limit-cycle that a controlled
trajectory makes in configuration space, with h = 0.03.
The dynamics used were those of the original, nonsmooth
system. The color of the trajectory is proportional to the
contact impulses, showing the points when flicking occurs.
The contact on the left of the figure corresponds to a weak
tap that repositions the ellipse at a favorable angle, while the
second one on the right side, exploits this position to deliver
a stronger flick, that spins the ellipse. In Figure 5 we show
animation frames from this sequence. The first and second
contacts correspond to frame 3 (t=0.78) and frame 8 (t=2.73).

VI. DISCUSSION

Our purpose here was to investigate the applicability of local
methods to nonlinear control problems involving contact and
friction. Our proposed method involves modifying the contact
solver of the modeled dynamics, in a way which takes into
account the controller’s uncertainty regarding the state of the
system. Though we present promising preliminary results that
include a working robust controller, open issues remain.

Folding the noise into the dynamics, as we do here, is an
approximation of what we would really like to do, namely
simulate the full stochastic system, and measure costs WRT
distributions rather than points. This option however has its
own problems. The actual distributions which are propagated
by the true dynamics become multimodal upon contact and
require either a nontrivial parameterization, or a large number
of “particles” for a non-parametric representation. In the case
where distributions are represented as a mixture of samples,
whether particles or σ-points, the dynamics would still be non-
differentiable.

Local minima are still a significant problem for local
methods like the ones used here. If we had not included gravity

in the simulation, the initial trajectory with ui = 0 would have
never achieved contact with the free ellipse, and the controller
wouldn’t have “known” about the possibility of contact. One
option is to inject noise into the system during the initial
stages of learning, for exploration purposes. Another option
is to use the action-at-a-distance effect of the SLCP solution.
By first solving for a system with very large postulated noise
covariance, and then gradually reducing it, a scaffolding effect
might be achieved.

The SLCP solution effectively replaces hard contact with
a nonlinear spring-damper. However, unlike some arbitrary
spring, it does not require setting the unknown parameters
(spring and damper coefficients, form of the nonlinearity),
and is derived in a principled way from the noise covariance.
Additionally, unlike conventional springs which deform in
proportion to the applied force, the forces which we compute
scale with the effective inertia, so that a heavy and a light
object experience the same smoothing.

A non-differentiable distance function d(q) would result in
non-differentiable dynamics. For the ellipses used here, the
signed distance is indeed differentiable, but this is not true for
other shapes.

The complementarity conditions in (1) apply for quantities
of different units: λ is an impulse while d(q′) is a distance.
Because the smoothed NCP function φ(·, ·) effectively mixes
these quantities, a different choice of units would ostensibly
lead to different results, which is clearly undesirable. This
is a fundamental issue that requires further investigation. As
famously observed by Stewart [4], “in many ways it is easier to
write down a numerical method for rigid-body dynamics than
it is to say exactly what the method is trying to compute”.
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