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Abstract—This paper considers the problem of motion plan-
ning for a nonholonomic unicycle despite uncertainty that scales
both the forward speed and the turning rate by an unknown but
bounded constant. We model the unicycle as an ensemble control
system, show that the position of this ensemble is controllable, and
derive motion planning algorithms to steer this position between
a given start and goal. We apply our work to a differential-drive
robot with unknown but bounded wheel radius, and validate our
approach with hardware experiments.

I. INTRODUCTION

In this paper we consider the problem of motion planning
for a nonholonomic unicycle in the presence of uncertainty
that scales both the forward speed and the turning rate by
an unknown but bounded constant. We focus on the unicycle
because its kinematic model can be used to represent many
different car-like vehicles of practical interest. We focus on
bounded uncertainty of this special form—scaling the control
inputs by an unknown constant—both because it serves as a
useful pedagogical example for the development of new plan-
ning algorithms and because it is encountered in a surprising
variety of real robotic systems.

In particular, consider a single unicycle that rolls without
slipping. We describe its configuration by q = (x, y, θ)
and its configuration space by Q = R2 × S1. The con-
trol inputs are the forward speed u1 ∈ R and the turning
rate u2 ∈ R. Corresponding to these inputs, we define vector
fields g1, g2 : Q → TqQ by

g1(q) =

cos q3
sin q3

0

 g2(q) =

0
0
1


and write the kinematics of the unicycle in the standard form

q̇(t) = g1(q(t))u1(t) + g2(q(t))u2(t). (1)

Given start and goal configurations qstart and qgoal, the motion
planning problem for a single unicycle is to find inputs

u1(t) : [0, T ]→ R
u2(t) : [0, T ]→ R,

that result in q(0) = qstart and q(T ) = qgoal for free final
time T . Depending on the nature of the unicycle (e.g., car-
like, differential-drive, etc.) these inputs might be subject to
constraints like |u2(t)| ≤ |u1(t)| ≤ 1 that enforce a maximum

speed and a minimum turning radius. Similarly, we might
require that q(t) ∈ Qfree to consider collision-avoidance.

We will solve this same motion planning problem, but under
uncertainty that can be captured by scaling both the forward
speed u1 and the turning rate u2 by some unknown, bounded
constant. The resulting kinematic model has the form

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t)) , (2)

where ε ∈ [1 − δ, 1 + δ] for some 0 ≤ δ < 1. However,
rather than try to steer a single robot governed by the uncertain
kinematic model (2), our approach is to steer an uncountably
infinite collection of robots parameterized by ε, each one
governed by the exact kinematic model

q̇(t, ε) = ε
(
g1 (q(t, ε))u1(t) + g2 (q(t, ε))u2(t)

)
. (3)

Following the terminology introduced by recent work in con-
trol theory [1]–[7], we call this fictitious collection of robots an
ensemble and call the model (3) an ensemble control system.
The idea is that if we can find a single set of inputs u1(t)
and u2(t) that result in q(0, ε) = qstart and q(T, ε) = qgoal for
all ε ∈ [1− δ, 1 + δ], then we can certainly guarantee that the
actual robot, which corresponds to one particular value of ε,
will move from start to goal.

We will begin in Section II with a brief review of ensemble
control theory and other related work. In Section III, we
will proceed to show that although the system (3) is not
fully controllable, it is nonetheless controllable with respect
to position—in other words, we can achieve any arbitrary
position x(T, ε) and y(T, ε), even if we cannot achieve any
arbitrary heading θ(T, ε). Given that one can interpret what
we are doing as steering an uncountably infinite number of
unicycles under the constraint that every one of them receives
the same control input, this controllability result may come
as a bit of a surprise. Based on this result, we will derive a
practical motion planning algorithm in Section IV that steers
the system (2) from start to goal, regardless of ε. Finally, in
Section V we will apply our work to a differential-drive robot
with unknown but bounded wheel radius, showing that (2) is
an appropriate model and validating our approach to motion
planning with hardware experiments. We do not consider
obstacle-avoidance within the scope of this paper—this and
several other possible extensions will be discussed in our
concluding remarks (Section VI).



II. RELATED WORK

A. Ensemble Control

Ensemble control, as presented in [1]–[7], extends the
theory of nonlinear controllability from finite-dimensional
systems, for example of the form (1) in Section I, to a
particular class of infinite-dimensional systems characterized
by a dispersion parameter, for example of the form (3) where
this parameter is ε. Such an extension is necessary because
infinite-dimensional systems typically evolve on configuration
spaces that are not compact, a condition that is used in the
proof of standard controllability theorems. Chow’s theorem,
for instance, implies that the drift-free system (1) is locally
controllable because the vector fields g1, g2, and

[g1, g2] =
∂g2
∂q

g1 −
∂g1
∂q

g2

are linearly independent and span the tangent space TqQ at
every configuration q ∈ Q (e.g., see [8]), but this theorem says
nothing about the nearly identical system (3). To get around
this problem, we take the same basic approach as in [7], using
repeated bracketing to get higher-order powers of ε and then
using polynomial approximation to construct arbitrary vector
flows. However, systems like ours are ignored by [7] after
noting that the drift-free control system

q̇(t, ε) = ε

m∑
i=1

gi (q(t, ε))ui(t)

is not controllable if g1, . . . , gm generate a nilpotent Lie alge-
bra. We will show explicitly that (3) is not fully controllable in
Section III, but we will then proceed to show that this system
is nonetheless controllable with respect to position.

The origins of this approach are within the physics commu-
nity. In this context, an “ensemble” is a very large collection of
identical or nearly identical molecules, atoms, or elementary
particles, and the goal of “ensemble control” is to manipulate
the average properties of such an ensemble. Early work in this
area was done, for example, by Simon van der Meer, who won
the 1984 Nobel prize in physics for controlling the density
at which circulating protons are packed in an accelerator
using applied magnetic fields [9]. The more recent work of
Brockett, Khaneja, and Li has found primary application so far
to quantum systems, for example manipulating nuclear spins
in Nuclear Magnetic Resonance (NMR) spectroscopy [1]–
[7]. Robotics researchers are also beginning to adopt the
term “ensemble,” for example in the context of multi-robot
formations [10], but the formal methodology of ensemble
control has yet to be applied. We should also note that
other approaches to dealing with infinite-dimensional systems
(such as taking advantage of differential flatness) have been
developed in parallel, as in [11].

B. Motion Planning Under Uncertainty

There is a vast literature on motion planning under uncer-
tainty in robotics, excellent reviews of which may be found
in texts such as [12]–[14] and examples of which range from

early work on preimage backchaining [15] to very recent work
on needle-steering using the stochastic motion roadmap [16].
As one example, we have drawn particular inspiration from
work on sensorless manipulation [17]. In this work, like
our own, the basic idea is to explicitly maintain the set of
all possible robot configurations and to select a sequence
of actions that reduces the size of this set and drives it
toward some goal configuration. Carefully selected primitive
operations can make this easier. For example, sensorless
manipulation strategies often use a sequential composition of
primitive operations, “squeezing” a part either virtually with a
programmable force field or simply between two flat, parallel
plates [18]. Sensorless manipulation strategies also may take
advantage of limit cycle behavior, for example engineering
fixed points and basins of attraction so that parts only exit
a feeder when they reach the correct orientation [19], [20].
These two strategies have been applied to a much wider array
of mechanisms such as vibratory bowls and tables [21], [22]
or assembly lines [18], [23], [24], and have also been extended
to situations with stochastic uncertainty [25], [26] and closed-
loop feedback [27], [28]. Our interest in this particular collec-
tion of work also stems from our belief that ensemble control
theory may provide new insight into sensorless manipulation
of large numbers of objects at once.

III. ANALYSIS OF CONTROLLABILITY

A. Method of Approach

In this section we will establish controllability results for
the systems (1) and (3), which we described in Section I but
reprint here for convenience:

q̇(t) = g1(q(t))u1(t) + g2(q(t))u2(t) (1)

q̇(t, ε) = ε
(
g1 (q(t, ε))u1(t) + g2 (q(t, ε))u2(t)

)
. (3)

In both of these expressions, the control vector fields g1, g2
are given by

g1(q) =

cos q3
sin q3

0

 and g2(q) =

0
0
1

 .
In our presentation, we follow the general framework outlined
by [8] (also see [14], [29], [30]). To begin, recall that any
drift-free control system of the form

q̇(t) =

m∑
i=1

gi(q(t))ui(t) (4)

is controllable if for every qstart, qgoal ∈ Q there exist in-
puts u1(t), . . . , um(t) such that if q(0) = qstart then q(T ) =
qgoal for some T > 0. We assume here that the configura-
tion space Q is a smooth n-dimensional manifold and that
(u1, . . . , um) ∈ U for a constraint set U ⊂ Rm containing the
origin in the interior of its convex hull.

In many drift-free control systems of interest, the number
of inputs m is strictly less than the dimension n of the tangent
space TqQ at each configuration q ∈ Q. For example, in our



system (1) the number of inputs is m = 2 and the number of
dimensions is n = 3, reflecting the nonholonomic constraint

q̇1 sin q3 − q̇2 cos q3 = 0

that says a unicycle—rolling without slipping—cannot in-
stantaneously move sideways. The situation is worse for
the ensemble control system (3), where again m = 2 but
n = ∞. The key question is if these differential constraints
are integrable—in other words, if we are “stuck” on an m-
dimensional manifold in Q or if, through a clever sequence of
inputs, we can span the entire space.

For the finite-dimensional system (4), this question is an-
swered by computing the Lie algebra generated by g1, . . . , gm.
Recall that the configuration reached from q0 ∈ Q by applying
the sequence of inputs ui = 1, uj = 1, ui = −1, and uj = −1,
all for some small time t, is given approximately by the Taylor
series

q(4t) = q0 + t2
(
∂gj
∂q

gi −
∂gi
∂q

gj

)
+O(t3),

where we recognize the t2 term as the Lie bracket

[gi, gj ] =
∂gj
∂q

gi −
∂gi
∂q

gj .

This bracket is a new control vector field that can be followed
approximately, although at a slower rate than either gi or
gj . The Lie algebra is the linear span of all such vector
fields, generated by repeated bracketing. If the Lie algebra
has rank n, then a finite-dimensional drift-free control system
of the form (4) is controllable [8]. As an example, the Lie
algebra of (1) is given by the span of g1, g2, and

[g1, g2] =

 sin q3
− cos q3

0

 ,
where we note that [g1, g2] is the previously forbidden control
vector field that is normal to the direction of rolling. This Lie
algebra has rank 3 everywhere, so (1) is controllable.

For infinite-dimensional systems like (3), we cannot directly
apply the Lie algebra rank condition because the configuration
space is no longer compact. Instead, our approach will be to
explicitly approximate any desired control vector field, in this
case some smooth function f(ε) ∈ TqQ of ε ∈ [1−δ, 1+δ], by
a polynomial approximation in powers of ε generated using a
sequence of higher-order Lie bracket motions. This approach
is inspired by the one taken in [1]–[7].

B. Finding a Controllable Subsystem
Unfortunately, the ensemble control system (3), as we

have expressed it so far, is not controllable. This result was
suggested by [3] and we will now prove it by construction. In
particular, notice that for any u1 and u2 we have

q̇3(t, ε) = εu2(t).

As a consequence, if we define an auxiliary state γ(t) ∈ S1

such that γ(0) = 0 and

γ̇(t) = u2(t),

then it is clear that

q3(t, ε) = q3(0, ε) + εγ(t)

for all ε ∈ [1−δ, 1+δ]. In other words, the change in heading
of each robot in the ensemble after the application of any input
is a linear function of ε. This result implies that if

q3(T, ε)− q3(0, ε)

ε
6= constant,

as will certainly hold in general, then it is not possible to
achieve any arbitrary qgoal ∈ Q. Hence, the system (3) is not
controllable.

However, this result also suggests the construction of a
subsystem that, as we will show in the following section, is
controllable. We write the configuration of this subsystem as

p(t, ε) = (x(t, ε), y(t, ε), γ(t)) ,

where γ(t) is the auxiliary state we have just introduced above.
We will denote the configuration space by P . We have just
shown that the evolution of this subsystem is governed by the
alternate kinematic model

ṗ(t, ε) = εh1 (p(t, ε), ε)u1(t) + h2 (p(t, ε), ε)u2(t), (5)

where

h1 (p(t, ε), ε) =

cos (q3(0, ε) + εp3(t, ε))
sin (q3(0, ε) + εp3(t, ε))

0


h2 (p(t, ε), ε) =

0
0
1

 (6)

and q3(0, ε) is the initial heading given by qstart, as before. For
convenience, we will abbreviate

c3(t, ε) = cos (q3(0, ε) + εp3(t, ε))

s3(t, ε) = sin (q3(0, ε) + εp3(t, ε))

so that

h1 (p(t, ε), ε) =

c3(t, ε)
s3(t, ε)

0

 . (7)

Since there is no longer any functional dependence of p3(t, ε)
on ε, it is clear that we have removed the feature of (3) that
allowed us to conclude a lack of controllability. We will see
that the resulting subsystem (5) is, in fact, controllable.

C. Controllability Via Polynomial Approximation

We will now show that the infinite-dimensional subsystem
(5) with control vector fields defined by (6)-(7) is controllable.



Taking Lie brackets, we have

[εh1, h2] = ε

(
∂h2
∂p

h1 −
∂h1
∂p

h2

)

= 0− ε

0 0 −εs3
0 0 εc3
0 0 0

0
0
1


= ε2

 s3
−c3

0


and

[[εh1, h2], h2] = 0− ε2
0 0 εc3

0 0 εs3
0 0 0

0
0
1


= −ε3

c3s3
0


= −ε3h1.

Let us define

h3 =

−s3c3
0

 ,
so that [εh1, h2] = −ε2h3. All possible control vector fields
that can be generated by repeating this process to an arbitrary
level of bracketing k can be written in the form

f(ε) = ch2 +

k∑
i=0

(
aiε

2i+1h1 + biε
2i+2h3

)
(8)

for some freely chosen set of coefficients ai, bi, and c. Just as
for finite-dimensional systems, a Taylor series analysis tells
us that each of these control vector fields can be followed
approximately by some sequence of inputs u1 and u2.

For a given configuration p(t, ε) and a given value of ε, the
vector fields h1, h2, and h3 are orthonormal, so that

hT1 h1 = hT2 h2 = hT3 h3 = 1

and
hT1 h2 = hT2 h3 = hT3 h1 = 0.

As a consequence, we may write (8) as a set of three scalar
equations

hT1 f(ε) =

k∑
i=0

aiε
2i+1

hT2 f(ε) = c

hT3 f(ε) =

k∑
i=0

biε
2i+2.

We have already established that p3 is constant in ε, so that
by necessity hT2 f(ε) is also constant in ε. Furthermore, the
Stone-Weierstrass Theorem [31] tells us that given η > 0 and
a continuous real function

ν(ε) : [1− δ, 1 + δ]→ R,

there exists a polynomial function ρ(ε) such that

|ρ(ε)− ν(ε)| < η

for all ε ∈ [1 − δ, 1 + δ]. As a corollary, as long as δ < 1, it
is possible to choose ai and bi so that

hT1 f(ε) ≈
k∑

i=0

aiε
2i+1

hT3 f(ε) ≈
k∑

i=0

biε
2i+2,

with error vanishing in k. This result implies that we can get
arbitrarily close to any desired control vector field f(ε) ∈ TpP .
We immediately conclude that the subsystem (5) is control-
lable. In other words, it is always possible to find inputs
u1(t) and u2(t) that steer an uncountably infinite number of
unicycles to any arbitrary position x(T, ε) and y(T, ε), even if
the heading θ(T, ε) must remain a linear function of ε.

IV. MOTION PLANNING ALGORITHM

In the previous section, we showed that the subsystem (5)
is controllable (i.e., that the ensemble control system (3) is
controllable with respect to position). Based on this result, we
will now derive a motion planning algorithm that steers the
system (5) from start to goal. We will assume that “start” and
“goal” are given as continuous functions pstart(ε) and pgoal(ε)
of the parameter ε. For our application of interest—where (5)
captures the range of possible outcomes for a single vehicle—
it will always be the case that these functions are constant and
have the form

pstart(ε) = (xstart, ystart, 0)

pgoal(ε) = (xgoal, ygoal, 0) .

However, our motion planning algorithm does not depend on
this structure, so we ignore it for now. Our general strategy
will be to use piecewise-constant inputs of a particular form,
as suggested by [32] and reviewed in [8], [29], [33].

Before proceeding, notice that the vector field h1 in (6) may
be expressed

h1 (p(t, ε), ε) = R(ε)

cos εp3
sin εp3

0


where

R(ε) =

cos q3(0, ε) − sin q3(0, ε) 0
sin q3(0, ε) cos q3(0, ε) 0

0 0 1

 ,
so if we apply the transformation

p′start(ε) = 0

p′goal(ε) = R(ε)T (pgoal(ε)− pstart(ε)) ,

then without loss of generality it is always possible to as-
sume q3(0, ε) = 0 for all ε. For convenience here, we will
also assume that inputs are constrained by |u1| ≤ 1 and



|u2| ≤ 1 but that there is no minimum turning radius,
corresponding to the differential-drive vehicle that we will
consider in Section V. This assumption is easily relaxed.

A. Motion Primitives with Piecewise-Constant Inputs

Now, for a non-negative integer i, a positive angle φ, and
freely chosen a′i, b

′
i ∈ R, consider a motion primitive of the

following form:

(u1, u2) =



(0, 1) 0 ≤ t < iφ

(1, 0) iφ ≤ t < iφ+ a′i
(0,−1) iφ+ a′i ≤ t < 3iφ+ a′i
(1, 0) 3iφ+ a′i ≤ t < 3iφ+ a′i + b′i
(0, 1) 3iφ+ a′i + b′i ≤ t ≤ 4iφ+ a′i + b′i.

This primitive specifies the following sequence of actions:

1) turn left in place an angle iφ
2) drive straight a distance a′i
3) turn right in place an angle −2iφ
4) drive straight a distance b′i
5) turn left in place an angle iφ.

We can think of this sequence as a simple piecewise-constant
approximation to a sinusoidal input of magnitude iφ. It is easy
to show by direct calculation that the result, if applied to the
system (5) and assuming that p3(0, ε) = 0, is to achieve

∆p(ε) =

(a′i + b′i)ε cos εiφ
(a′i − b′i)ε sin εiφ

0

 .
With the input transformation

a′i =
ai + bi

2

b′i =
ai − bi

2

for freely chosen ai, bi ∈ R, we can write this expression in
the decoupled form

∆p(ε) =

aiε cos εiφ
biε sin εiφ

0

 .
Because primitives of this form leave p3 invariant, we are free
to concatenate them. In particular, the result after applying
k+ 1 primitives with i = 0, . . . , k, followed by a final turn in
place through an angle c, is to achieve

∆p(ε) =

∑k
i=0 aiε cos εiφ∑k
i=0 biε sin εiφ

c

 .
Just as in Section III, our problem has been reduced to function
approximation. Denote the first two components of p′goal by
x(ε) and y(ε), respectively. We have assumed that both x(ε)
and y(ε) are continuous, so we can select coefficients ai and

bi making the following series converge as k →∞:

x(ε) ≈
k∑

i=0

aiε cos εiφ (9)

y(ε) ≈
k∑

i=0

biε sin εiφ. (10)

B. Numerical Computation

To actually compute ai and bi in (9)-(10), we solve a linear
programming problem. It is clear that each set of coefficients
may be computed independently, and we apply the same
procedure in both cases, so for ease of exposition we will
focus on ai. First, we sample N values ε1, . . . , εN equally
spaced in [1− δ, 1 + δ]. Then, we construct the matrix

W =

 ε1 ε1 cos ε11φ . . . ε1 cos ε1kφ
...

...
...

εN εN cos εN1φ . . . εN cos εNkφ


and the vector

v =

x(ε1)
...

x(εN )

 ,
so that (9) may be written in discrete form as

Wa ≈ v. (11)

To minimize the resulting path length, we want to find the
vector of coefficients a minimizing ‖a‖∞ subject to the
constraint that ‖v −Wa‖∞ ≤ e for a given error tolerance
e > 0. Introducing an auxiliary decision variable s, we can
write this linear program in the standard form

minimize s

subject to − 1e ≤ v −Wa ≤ 1e

− 1s ≤ a ≤ 1s.

As we discussed above, some k always exists making this
linear program feasible for any e > 0. By increasing the
number of sampled points N , we can also guarantee by
continuity of x(ε) that (11) is a good approximation of (9).

C. Results in Simulation

Figure 1 shows the results of applying our motion planning
algorithm to an ensemble control system of the form (5) for
which δ = 0.2 and pgoal(ε) = (1, 0, 0). In this example, we
specified the error tolerance e = 10−4 and used k = 6 motion
primitives. To generate a clean plot, we chose N = 100, but
the results are nearly identical even with coarse sampling of
ε, for example when N = 10. We claimed in the presentation
of our planning algorithm that the minimum achievable error
decreases with the number of motion primitives k. Figure 2
provides empirical evidence supporting this claim for the same
example as in Fig. 1.



Fig. 1. An ensemble with ε ∈ [0.8, 1.2] moving a unit distance in the x
direction, achieving an error tolerance of e = 10−4. Thin lines show the path
followed by robots with particular values of ε. Thick lines show the entire
ensemble at instants of time.
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Fig. 2. For the example in Fig. 1, the minimum error e that can be achieved
decreases with the number of motion primitives k.

V. HARDWARE EXPERIMENTS

In this section we will apply our motion planning algorithm
to a differential-drive robot with unknown but bounded wheel
radius. First, we will describe the robot we used in our
experiments. Then, we will show that (2) is an appropriate
model of this robot. Finally, we will show the results of
hardware experiments.

A. Experimental Setup

Figure 3 shows the robot we used in our experiments. It is a
differential-drive robot with a caster wheel in front for stability.
It moves on a flat tile floor without obstacles and uses only
dead-reckoning for navigation. In particular, the robot runs a
feedback control loop to read the wheel encoders, update a
dead-reckoning position estimate, and regulate the speed of
each motor. Although we use no other sensors for feedback
control, global position data is available from an off-board
vision system for later analysis. This vision system records
pose information at 27Hz with a position accuracy of 2cm
and an orientation accuracy of 1◦.

Fig. 3. The differential-drive robot used for experimental validation.

Before conducting our experiments, we applied a standard
calibration procedure to find the effective wheelbase and wheel
radius in order to reduce systematic dead-reckoning error [34].
The calibration was done with wheels of diameter 12.7cm.
However, these wheels are interchangeable—in our experi-
ments, we used four sets that varied between 10.16-15.24cm
in diameter, as shown in Fig. 4. We did not recalibrate for
these other wheels, and assumed that the wheel diameter was
unknown but bounded in the set [10.2, 15.2], or in other words
the set [0.8, 1.2] relative to the nominal diameter 12.7cm.

B. Application of the Model to a Differential-Drive Robot

We will show that

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t))

is a valid kinematic model of our robot, where

g1(q) =

cos q3
sin q3

0

 and g2(q) =

0
0
1

 .
It suffices to show that the forward speed v and turning rate ω
of a differential-drive robot are given by v = εu1 and ω = εu2,
respectively, for control inputs u1, u2 ∈ R. Recall that for
wheel radius r and wheel separation b, the forward speed and
turning rate of a differential-drive robot are given by

v =
r(ωR + ωL)

2
and ω =

r(ωR − ωL)

b
,

where ωR and ωL are the angular velocities of the right
and left wheels, respectively. Assume that the wheel radius, a
positive constant, is unknown but bounded according to r ∈
[rmin, rmax]. If we define

r̄ =
rmax + rmin

2
and δ =

rmax − rmin

2r̄

then we can write r = εr̄ for some ε ∈ [1− δ, 1 + δ], so that

v = ε

(
r̄(ωR + ωL)

2

)
and ω = ε

(
r̄(ωR − ωL)

b

)
.



Fig. 4. We used four wheel sizes for experimental validation. These wheels
are 10.16, 10.48, 12.7 and 15.24 cm in diameter.

↖
10.16 cm wheels

↖
10.48 cm wheels

↙
12.7 cm wheels↙

15.24 cm wheels

0 2 4

0

2

Fig. 5. Ground truth data gathered from camera system, starting at (0, 0)
with goal (4.25, 2.25). Five runs for each wheel set are shown. Loops at
the corners are artifacts from the camera system. Plots correspond to 10.16,
10.48, 12.7 and 15.24 cm wheels. Units are in meters.

This expression simplifies if we select wheel angular velocities

ωR =
2u1 + bu2

2r̄
and ωL =

2u1 − bu2
2r̄

for any given u1, u2 ∈ R, so that

v = εu1 and ω = εu2,

and we have our result.

C. Experimental Results

Figure 5 shows the results of our experiments, which suc-
cessfully validated our approach. We selected a goal location at
x = 4.25, y = 2.25 m with the robot starting at the origin, and
an error tolerance of 2cm. We applied the algorithm described
in Section IV to plan a single sequence of inputs—i.e., single
path—that will take the robot from start to goal regardless of
its wheel size. Five runs were recorded for each wheel size.
Fig. 5 shows the resulting trajectories, all of which reached a
small neighborhood of the goal position.

The effects of dead-reckoning drift are obvious in Fig. 6.
This drift is due to wheel slip, gear backlash, surface irreg-
ularities, wheel flex and other unmodeled disturbances. The
vision system adds additional error. Ground truth position
information was calculated from markings on the top of
the robot. These markings were level and centered over the
wheelbase for the 10.48 cm wheels, but tilted by 10◦ for the

← end position
10.16 cm

← end position
10.48 cm

← end position
12.7 cm

end position
15.24 cm →

4.1 4.2 4.3

2.1

2.2

Fig. 6. Ending position for each run. Large ‘+’ for goal position, ‘x’ for
expected ending position under zero odometry drift, ‘o’ for actual ending
positions. The four symbol types correspond to 10.16, 10.48, 12.7 and 15.24
cm wheels. Units are in meters.

TABLE I
IN-GROUP ERROR MEASUREMENTS

wheel distance distance θ θ
diam(cm) mean(m) var (m2) mean(rad) var(rad)2

10.16 0.10 3.2e-5 -0.002 1.9e-6
10.48 0.02 4.1e-5 -0.002 6.1e-7
12.70 0.08 1.2e-4 -0.008 2.5e-5
15.24 0.19 2.2e-4 -0.017 1.9e-4

largest wheels. These effects are most noticeable when the
robot turns in place.

Table I shows the in-group mean and variance for the
different wheel sets. The smallest variance is seen for the 10.48
wheels because the system was calibrated for these wheels.
The 10.48 cm wheels are aluminum with rubber o-rings
stretched over the rim, while the other wheels are 0.64 cm
thick ABS plastic with a molded rubber traction ring covering
the rim. The edge of the plastic wheels has a rectangular cross
section, making the effective wheel base slightly larger than for
the aluminum wheels. This causes larger errors on the ABS
wheels. The means and variances tend to increase with the
wheel diameter because the wheel diameter linearly scales all
disturbance perturbations. The group mean error for distance
is 0.098 m, five times larger than the specified terminal region,
and the group variance is 0.004 m2. The group mean error for
heading is -0.007 rad and the group variance is 0.0001 rad2.

VI. CONCLUDING REMARKS

In this paper we applied the framework of ensemble control
theory to derive a motion planning algorithm that steers a
nonholonomic unicycle from start to goal despite uncertainty
that scales both the forward speed and the turning rate by an
unknown but bounded constant. We validated our approach us-
ing a differential-drive robot with unknown but bounded wheel



radius and showed the results with hardware experiments.
Ensemble control theory is a recent development, and we

feel that its application to robotics has raised a number
of interesting questions for future work. For example, our
algorithm constructs feasible inputs, but what are the optimal
ones? We have shown controllability, but what about small-
time local controllability that would allow us to deal in a
systematic way with obstacles? (The fact that Fig. 1 simply
scales with distance traveled indicates that small-time local
controllability likely holds, but we require a proof.)

We would also like to address what may seem like an
obvious flaw in our approach, particularly in the context of
our chosen hardware demonstration. Within the scope of this
paper, the plans we construct are paths. By ignoring the
error that would result if a robot actually followed these
paths, we are implicitly assuming the existence of a feedback
control policy. Such a policy would require sensors, and these
sensors might also be used to simply identify the unknown
parameter ε, thus obviating the problem we consider. This
objection is certainly reasonable, but there are two points to
keep in mind. First, sensor data may be sufficiently noisy
or come at a sufficiently low rate to make online system
identification impractical while still allowing periodic course
corrections (perhaps more intriguing, the feedback control
policy might be sufficient to drive system uncertainty back to
a 1-D manifold, but not to resolve position on this manifold).
Second, although we focus here on planning for one robot
with unknown ε, some applications—in particular, those that
involve micro/nano-scale robotic systems—require planning
for many robots, each with slightly different ε. In this latter
case, online system identification is essential but does not
remove the problem we consider. Regardless, this topic is an
opportunity for future inquiry.
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