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Abstract—In many physical human-robot interaction scenar-
ios, such as haptic virtual environments for training and rehabil-
itation, it is desirable to carefully control the apparent inertia of
a robot. Inertia compensation can be used to mitigate forces
felt by the user during free-space motion, and rendering of
additional inertia is desired for particular rehabilitation and
training procedures. Many factors influence the stability and
accuracy of rendering for haptic display of a pure mass, including
device mechanical properties, sample rate, control structure,
and human behavior. Inspired by the “Z-Width” approach to
haptic device stability and performance analysis, we introduce
“M-width”, which we define as the dynamic range of virtual
masses renderable in a stable manner. We identify the important
parameters for system stability, find stability boundaries, and
describe the expected accuracy of the haptic rendering for a
canonical haptic system. These results serve as a design tool
for creating stable and accurate haptic virtual environments,
establish limits of performance, and lay the groundwork for new
controllers to improve mass rendering.

I. INTRODUCTION

In many applications of haptic virtual environments, we
desire the user to feel a very specific set of mechanical proper-
ties, which arise from inherent device dynamics, programmed
virtual environment dynamics, and (potentially unexpected)
interactions between the two that depend on control structure,
sampling rate, and other system properties. Consider the
example application shown in Figure 1. Here, researchers wish
to test the hypothesis that damage to the cerebellum (a region
of the brain that plays an important role in motor control)
holds a dynamic model of the body used in feed-forward
planning of movements. Patients with cerebellar damage who
exhibit ataxia (uncoordinated movements) are asked to make
fast reaching movements in a backdrivable, planar exoskeleton
robot. If a rendered inertia could be found that eliminates
the ataxia, this would provide significant evidence toward the
theory that cerebellar damage results in a specific bias in
internal modeling of body dynamics, and it would open up
a host of potential new rehabilitation therapies for patients
with ataxia. However, modifying the effective inertia of the
user/robot combination to be a specific value evokes funda-
mental challenges in haptic device control.

Haptic interfaces should be simultaneously stable and accu-
rate. Unstable behavior can cause damage to a haptic device,
injure the human user, and generate unrealistic and unexpected
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Fig. 1. Example application of inertia rendering in rehabilitation. (a) A user
makes single-joint reaches to a 30◦ target in an exoskeleton robot, during
which rendered inertia alters his movement. (b) A patient with hypermetria
(tendency to overshoot) is predicted to benefit from decreased effective arm
inertia. (c) A patient with hypometria (tendency to undershoot) is predicted
to benefit from increased effective arm inertia. While neuromechanical mod-
els predict these effects, implementing inertia rendering requires improved
understanding of system stability and accuracy.

haptic sensations. Accurate haptic virtual environments should
feel exactly as desired, with no unwanted effects of haptic
device dynamics (e.g., the inherent inertia of the mechanism).
In the rehabilitation example given above, stability and ac-
curacy are both necessary for the scientific validity of the
study. Yet, there exists a classic tradeoff between ensuring the
stability of a haptic display and the range of impedances that
it can render. Mass rendering (presenting a force proportional
to acceleration) presents a particular challenge because mea-
suring acceleration on a typical impedance-type haptic device
is noisy; it involves double discrete differentiation of a noisy
position signal. While system improvements (e.g., the addition
of new sensors) can improve mass rendering, an improved
understanding of the performance of a canonical haptic de-
vice will yield insight as to what modifications in hardware,
sensing, and control will improve mass rendering. The long-
term goal of this work is to develop stable and accurate mass
rendering for rehabilitation applications, and predict the limits
of performance. Here, we begin by developing a framework



for analyzing the stability and accuracy of mass rendering with
theory applicable to a one-degree-of-freedom linear system.

Colgate and Brown [5] define “Z-Width” as the dynamic
range of impedances that can be rendered passively. Passive
systems are incapable of generating a net amount of energy,
and the coupling of passive systems is guaranteed to be
stable. However, conditions for passivity can be conservative
compared to conditions for stability. Although Z-width is a
general term spanning all impedances, it has generally been
discussed as relating to haptic rendering of virtual springs
and dampers. In addition, Colgate and Schenkel [6] derived
a general theorem for the passivity of haptic interfaces.

This paper introduces “M-Width”, the dynamic range of
virtual mass renderable in a stable manner. We allow for
positive virtual mass, corresponding to mass rendering, as well
as negative virtual mass, corresponding to mass compensation.
The definition of M-width differs from Z-width in three
key ways: (1) we consider BIBO (bounded input, bounded
output) stability, not passivity – to avoid an overly conservative
implementation, (2) it models the human operator as a specific
impedance, not a general passive element, and (3) the desired
virtual environment is a pure mass with motion data filtering.

This work builds upon significant prior work related to
the stability of haptic displays, e.g. [1, 6, 7, 10]. Virtual
mass rendering has been previously explored for specific
medical robotics scenarios, including dynamic compensation
for a surgical teleoperator [14], and inertia compensation for
a lower-leg exoskeleton [3]. Gil et al. [11] explore inertia
compensation by force feedforward for an impedance haptic
device using additional sensors for acceleration estimation.
Adams and Hannaford [2] present a general virtual coupling
approach that could be used to render mass that is guaranteed
to be passive, but do not consider mass explicitly. Hannaford
and Ryu [12] extend the passivity domain, at the necessary
expense of reducing the quality of haptic rendering. Brown
and Colgate [4] establish conditions for passive positive mass
simulations.

While recognizing that many scenarios require treatment
of nonlinear models, in this paper we consider linear models
– which are relevant to the problem of dysmetria (under- or
overshooting targets) in single-jointed movements, and enable
the use of classic linear control theory.

II. SYSTEM MODELS

In this section we introduce system models for a human
interacting with a haptic device, where the goal is to ren-
der a pure mass. There are many different haptic system
architectures that can be used to render inertia, but in this
paper we are interested in an impedance-type device with
position sensing only. Three system models are introduced.
One is a hybrid model, containing both continuous and discrete
elements. This model is the closest to reality, in that it captures
the control of a physical haptic device through a computer
containing A/D (analog to digital) and D/A (digital to analog)
components. Entirely continuous and discrete models are also
introduced. The continuous model is used for the identification
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Fig. 2. (a) Schematic of a human interacting with a haptic device imple-
menting virtual mass. (b) Block diagram for this system, considering human
parameters, device dynamics, sampling, and ZOH.

of important parameters with respect to stability, and for use
in a quality of rendering analysis. We show that the discrete
model results in stability bounds that are identical to the hybrid
model stability bounds.

We consider a haptic device described by a mass, m, and
viscous damper, b, acted upon by two external forces: the
force applied by the operator, Fh(s), and the force applied
by the actuator implementing the virtual environment, Fa(s)
(Figure 2). The system is equipped with only one sensor
measuring the position of the mass, X(s). An estimate of
the acceleration of the device is formed by performing a
double back difference on the sampled position signal and
then low-pass filtering. The actuator force is the product of
the acceleration estimate and the desired virtual mass.

A. Hybrid Model

The system equation of motion is:

Fh(s)− Fa(s) = X(s)(ms2 + bs). (1)

The force of the operator is determined by the motion of the
operator Xh(s) via the hand impedance,

Fh(s) = bh(sXh(s)− sX(s)) + kh(Xh(s)−X(s)), (2)

where bh and kh are positive constants corresponding to
the hand damping and stiffness, respectively. The continuous



position signal X(s) is sampled with a constant sampling
period of T to get a sampled position X(k). The sampled
position measurements go through a discrete double back
differencing operator,

D(z) =
(z − 1)2

(Tz)2
, (3)

and then a discrete low-pass filter,

H(z) =
(1− e−ω0T )z

z − e−ω0T
, (4)

to form an estimate of the acceleration signal. The discrete
low-pass filter has cut-off frequency ω0 (rad/s). The low-pass
filter exists for practical considerations because the double
differentiation of the sampled position signal is expected to
be noisy. Other filters could be used; we chose one of the
simplest possible filters to provide information about baseline
performance. In a Z-width analysis, larger virtual damping en-
ables the stable display of larger virtual environment stiffness.
Here, a greater degree of filtering enables the stable display
of a larger span of virtual masses. We will see, however, that
filtering can result in inaccurate mass rendering.

The force of the actuator is the product of the accelera-
tion estimate and a desired virtual mass, M , which can be
positive (mass rendering), or negative (mass compensation).
The actuator force is held constant for the duration of the
sampling period with a zero-order hold (ZOH), resulting in a
continuous-time staircase actuator force. At sample time k the
actuator force is

Fa(k) =MH(z)D(z)X(k). (5)

B. Continuous Model

It is possible to convert the general hybrid system shown
in Figure 2 into an entirely continuous one. The continuous
model is desirable because of its tractability for finding im-
portant parameters with respect to stability using conventional
linear control systems analysis. The two systems are similar,
but not identical. To represent the system continuously, the
discrete elements are converted to continuous ones. The con-
tinuous representation of D(z), D(s), is found using bilinear
(Tustin) mapping:

D(z)→ D(s) =
4s2

(sT + 2)2
. (6)

The continuous representation of H(z), H(s), is a first-order
low-pass filter with cut-off frequency ω0 (rad/s) with unity
gain at DC.

H(z)→ H(s) =
ω0

s+ ω0
. (7)

The zero-order hold is modeled as a time delay equal to half
the sample period.

ZOH→ e−
sT
2 . (8)

Fig. 3. Steps for converting the hybrid system into an entirely discrete
system. A: From the hybrid model shown in Figure 2, we find a continuous
transfer function G(s). B: Then, the continuous elements are converted into
an equivalent element G(z), resulting in an entirely discrete system.

C. Discrete Model

It is also possible to represent the system with an entirely
discrete model. The discrete model is useful for stability
analysis in which the discrete elements can be considered
explicitly. Figure 3 illustrates the process.

First, a transfer function from Fa(s) to X(s), G(s), is
formed combining only the continuous elements into a single
transfer function:

Fa(s)

X(s)
= G(s) =

1

ms2 + s(b+ bh) + kh
. (9)

Then, the ZOH, G(s), and the sample elements are converted
into a discrete element, G(z) using a zero order hold equivalent
[9]

G(z) =
z − 1

z
Z
{
G(s)

s

}
. (10)

The input-output characteristics of the continuous and discrete
elements are the same. For this reason, the stability of the
hybrid and discrete models are identical.

III. SYSTEM STABILITY

We now analyze the stability of the system shown in
Figure 2, considering the all-continuous and discrete repre-
sentations of the hybrid system from which BIBO (bounded
input, bounded output) stability can be determined. First, we
identify important parameters with respect to stability using
the continuous model. This is useful as a haptic system
design tool because it identifies what key parameters determine
mass rendering stability. Then, we form quantitative stability
boundaries using the discrete model equivalent to those of the
hybrid model. This establishes the limits of a haptic system
rendering mass using this architecture. Finally, we discuss how
the continuous and discrete models differ.

A. Effects of Parameters on Stability

To find important parameters with respect to stability we
analyze the characteristic polynomial of the continuous sys-
tem. We can determine system stability using a Bode plot.
By examining how the form of the Bode plot changes with



system parameters we observe the effect of the parameters on
stability. The characteristic polynomial of the system is

1 + L(s), (11)

where

L(s) =
M

m

[
s2

s2 + 2ζωns+ w2
n

] [
4s2

(sT + 2)2

] [
ω0

s+ ω0

]
e−

sT
2

(12)

ωn =

√
kh
m

(13)

ζ =
(b+ bh)

2
√
khm

. (14)

We see that L(s) can be formed by the product of the ratio of
M to m, two poles from a second order system described by
ωn and ζ, four zeros at the origin, two poles on the real axis
at −2/T , a first-order low-pass filter with cut-off frequency
ω0 (rad/s), and a linear phase delay depending on T . It is
convenient to define ω∗ as the frequency at which the phase
of L(s) is −180◦. The stability of the system is determined by
the value of the gain margin of L(s). The gain margin, GM ,
is defined to be

GM =
1

|L(ω∗)|
(15)

A gain margin greater than one corresponds to a stable system,
and a gain margin of less than one corresponds to an unstable
system. The Bode plot for positive and negative M have the
same magnitude, and the phase for negative M is 180◦ lower
than for positive M , at every frequency. The effects of these
system parameters on the gain margin of L(s) is summarized
in Table I.

• |M/m| is a gain of the system; changing it directly affects
the gain margin. There exists a maximum stable value of
|M/m|.

• ωn is the frequency at which the magnitude and phase of
the second order system transitions. For positive M , if
ωn � ω∗ then ωn has no effect on the gain margin. For
negative M , ω∗ is nearly ωn, so increasing ωn increases
the gain margin.

• ζ affects the magnitude and phase of the second order
system around ωn. The lower the value of ζ, the higher
the “spike” in magnitude around ωn, and the smaller the
span for the phase to transition. For positive M , if ω0 �
ω∗ the value of ζ does not affect the gain margin. For
negative M , increasing ζ increases the gain margin.

• ω0 affects the gain margin by introducing a pole at
frequency ω0. Lower cut-off frequencies, corresponding
to more aggressive filtering, increase the gain margin.

• T affects how quickly phase lag is added to the system.
Larger sample periods result in more phase lag added at
a given frequency. For positive M , T has a large effect
on the gain margin; a smaller T corresponds to a higher
gain margin. For negative M , T has little effect on the
gain margin.

TABLE I
EFFECT OF PARAMETERS ON GAIN MARGIN OF L(s)

Parameter Gain Margin Gain Margin
(positive M) (negative M)

|M/m| ⇓ ⇓
ωn - ⇑
ζ - ⇑
T ⇓ -
ω0 ⇓ ⇓

for ωn � ω∗

TABLE II
HUMAN AND DEVICE PARAMETERS

Human Parameters [13] Device Parameters [7]

kh 700 (N/m) m 70 (g)
bh 5 (Ns/m) b .005 (Ns/m)

Figure 4 shows how L(s) varies with the sample time, T ,
for positive desired virtual mass. (The Bode plots for negative
desired virtual mass would have −180◦ lower phase at every
frequency.) The parameter values are |M/m| = 1, ωn = 100
(rad/s), ζ = 0.5, and ω0 = 30 (rad/s). These values were chosen
to represent a human interacting with a Phantom Premium
haptic device (SensAble, Inc.) based on a human model from
Kuchenbecker et al. [13] and device model from Diolaiti et al.
[7] (Table II). Figure 4 demonstrates that the sample rate
significantly affects the gain margin for positive virtual mass
because the value of ω∗ is mainly determined by the sample
rate. However, for negative virtual mass, ω∗ is nearly ωn, so
the sample rate has little effect on the gain margin.

Figure 5 shows how L(s) varies with ωn for positive virtual
mass. For positive virtual mass, ωn and ζ do not affect the gain
margin of L(s), as long as the phase transition of the second
order system reaches its asymptote before ω∗. However, for
negative virtual mass they do affect the gain margin. Thus,
the haptic device and operator parameters have more effect on
stability for inertia compensation than inertia rendering.

The virtual inertia to device inertia ratio, M/m, is a gain
of the system and directly affects the gain margin of L(s). If
other system parameter values are set, we can determine the
range of M/m for which the system is stable. This analysis
shows how much inertia rendering is possible. For example,
the Bode plot of Figure 4 at a sample rate 1000 Hz is about
−45 dB at ω∗, so for positive M , values of M/m up to 45
dB are stable. For negative M , the magnitude of the system
is about −15 dB at ω∗, so values of |M/m| up to 15 dB are
stable. This establishes a range of stable commanded virtual
mass values, but we will see in Section IV that the rendered
mass of the system may not actually match the commanded
value. This analysis is based on the continuous model whose
stability boundaries are similar, but not identical, to the hybrid
and discrete model stability boundaries.
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Fig. 4. Bode plots of L(s) with positive virtual mass M for various sample
rates. Here M/m = 1, ωn = 100 (rad/s), ζ = 0.5, and ω0 = 30 (rad/s).
The Bode plots for negative virtual mass have 180◦ lower phase at every
frequency. The sample rate affects the gain margin greatly for positive virtual
mass, but not for negative virtual mass.
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Fig. 5. Bode plots of L(s) with positive virtual mass M for various values
of ωn. Here M/m = 1, ζ = 0.5, ω0 = 30 (rad/s), and the sample rate is 1000
Hz. The Bode plots for negative virtual mass M have 180◦ lower phase at
every frequency. For positive virtual mass ωn and ζ do not affect the gain
margin of L(s) as long as the phase transition of the second order system
reaches its asymptote before ω∗, but for negative virtual mass they do affect
the gain margin.

B. Stability Boundaries (M-width)

In this section, analytical stability boundaries are formed
using the continuous and discrete models. Stability boundaries
are also formed using numerical simulation. Figure 6 displays
stability boundaries for a family of systems. The maximum
minus the minimum stable value of the (desired) virtual to
device mass ratio, M/m, scaled by the device mass, give the
M-width of the system: the dynamic range of virtual masses
renderable in a stable manner. The maximum stable value
for rendering positive mass is predominately determined by
the sample time. For rendering negative inertia, the maximum
stable value is mainly determined by ωn and ζ. Reducing the
cut-off frequency of the filter increases the M-width.

C. Continuous and Discrete Model Comparison

How do the continuous and discrete models compare? We
now examine whether the stability intuition that we get from
the continuous model is applicable to the discrete model,
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Fig. 6. Examining M-width: Stability boundaries from analysis and numerical
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Fig. 7. Bode plots of the loop polynomials for the continuous and discrete
systems. The plots are similar, but the discrete system has more phase lag at
higher frequencies.

which shares the same stability boundaries as the hybrid
one. Figure 7 displays the Bode plots of L(s) and L(z) for
the continuous and discrete models, respectively. The system
parameter values are the same as in Figure 4 with a sample
time of 1000 Hz. The Bode plots are very similar, but the
discrete model has more slightly more phase lag at higher
frequencies. Thus, the continuous model will appear stable for
parameters at which the discrete model is unstable. However,
the general effects of parameters for the models are similar, so
the intuitive parameter guidelines apparent in the continuous
model are still useful.



IV. ACCURACY OF HAPTIC RENDERING

We are interested not only in stability, but also in the
accuracy of the haptic rendering. We investigated this using
two different approaches. The first approach is to analyze
the input-output relationship from the position of the human
Xh(s) to the force of the human Fh(s). The second approach
is to perform a system identification on the simulated system
assuming a model of pure mass. This results in an estimate
for the mass of the system, and this estimate can be compared
to the ideal case.

A. Accuracy Analysis by Transfer Function Comparisons
We now analyze the accuracy of the haptic rendering by

comparing the admittance of three systems using the contin-
uous model. The first system is the ideal case in which the
operator feels only a mass. The value of this mass is the sum
of the device mass and virtual mass:

Gideal(s) =
Fh(s)

Xh(s)
= (m+M)s2. (16)

The second system is the transfer function of the device alone:

Gdevice(s) =
Fh(s)

Xh(s)
=
bhs(s+ b/m)(s+ kh/bh)

s2 + 2ζωns+ ω2
n

. (17)

The third is the transfer function of the device with the haptic
loop implementing a virtual mass:

Gsys(s) =
Fh(s)

Xh(s)
=

(bhs+ kh)(ms
2 + bs+D(s)H(s)M)

ms2 + (b+ bh)s+ kh +D(s)H(s)M
.

(18)
A reasonable metric for the accuracy of the rendering is how
the Bode plot of the full system (the third case) compares to
the other two. For high-quality haptic rendering, the system
plot should be more similar to the first case (ideal). To aid
this analysis, we introduce effective mass ratio and effective
damping ratio.

effective mass ratio =
1

m

−Re{G(s)}
w2

(19)

effective damping ratio =
1

(b+ bh)

Im{G(s)}
w

(20)

These quantities can be plotted against frequency to identify
components of the system response corresponding to mass and
damping. The plots contain the same information as the Bode
plots, but allow for a more easy comparison.

Figure 8 shows the Bode and effective mass and damping
ratio plots of a family of systems where the human and
device parameters used are those listed in Table II, the cut-
off frequency of the low-pass filter, f0, is 10 (Hz), and
the sample rate is 1000 Hz. The system with full feedback
behaves similarly to the ideal system for frequencies less
than the cut-off frequency of the filter, and similar to the
device system for larger frequencies. This analysis shows that
the cut-off frequency of the filter plays a powerful role in
determining the accuracy of the rendering. The higher the cut-
off frequency, corresponding to less aggressive filtering, the
larger the frequency span in which the system behaves like
the ideal.

ideal device only full system
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Fig. 8. Measuring accuracy of haptic rendering using transfer functions.
(a) Bode and effective mass and damping ratio plots of three systems with
positive virtual mass M = 3m. (b) Bode and effective mass and damping ratio
plots of three systems with negative virtual mass M = -.5m. The system with
full feedback behaves similar to the ideal system for frequencies less than the
cut-off frequency of the filter, and similar to the device system for frequencies
past.

B. Accuracy Analysis by System Identification

Another way to measure the accuracy of haptic rendering is
to compare the perceived mass of the system to the ideal case.
Ideally, at every instant of time the system should follow

fh(t) = (m+M)ẍ, (21)

where ẍ is the acceleration of the device. We can form
an estimate for the perceived mass of the system, m̂, by
performing a system identification on simulated data assuming
a model of pure mass. We can compare this estimate to the
ideal case, (m + M ). Numerical simulation of the system can
yield numerous “measurements” for model fitting.

[ẍ] m̂ = [Fh] , (22)

where m̂ is a scalar and [ẍ] and [Fh] and are vectors of the
samples. The best estimate of m̂, in the least squares sense, is

m̂ =
[ẍ]

T
[Fh]

[ẍ]
T
[ẍ]

. (23)
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(b) Negative mass rendering
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Fig. 9. The error of the estimate of the mass of the system, m̂, with respect
to the ideal case, (m+M), versus the cut-off frequency of the low-pass filter,
f0 (Hz), for various mass ratios. (a) The case of positive virtual mass. (b)
The case of negative virtual mass.

We define the error as the difference between the estimate and
the ideal value scaled by the ideal value:

error =
m̂− (m+M)

(m+M)
. (24)

If the error is negative, the system would feel less massive
than desired, and if the error is positive, the system would
feel more massive than desired. This method outputs a scalar
for the error by combing errors in magnitude and phase, and
as such has no physical meaning. Despite this, it is a useful
metric to establish conditions in which the commanded and
rendered system mass are similar or different.

Figure 9 shows the error in mass rendering as a function of
cut-off frequency for various mass ratios. The motion input to
the simulated system was a chirp signal with frequencies of
0.1 to 5 Hz. For both positive and negative mass rendering, as
the cut-off frequency of the filter is increased, corresponding
to less aggressive filtering, the perceived mass approaches the
ideal. Also, generally, the larger the mass ratio, the larger
the error. For this system, the human parameters and sample
period did not significantly affect the simulation.

V. DISCUSSION

A. Design Trade-offs

Our results illustrate the classic trade-off between stability
and accuracy of haptic rendering. For the case of mass
rendering, we demonstrated that accurate rendering can be

achieved for a small ratio of virtual mass to device mass and
high cut-off frequency of the low-pass filter. However, these
requirements generate restrictive stability bounds, as shown in
Figure 6. In practice, an upper bound for the cut-off frequency
of the low-pass filter exists for noise reduction. This results
in a rendering accuracy limit based on the noise present in
acceleration measurement.

For systems in which ωn � ω∗, we established that sam-
pling rate is an important parameter for implementing positive
virtual mass, but not negative virtual mass. For positive virtual
mass, the stability of the system is largely determined by the
delay in the haptic feedback loop. For negative virtual mass,
the stability of the system is largely determined by the user
behavior, so the time delay introduced by sampling has a small
relative effect.

The M-width of a haptic device scales with the device mass.
This means that to display large virtual mass, large device
mass is desired. This is at odds with a primary goal of haptic
device design: to create mechanisms that result in minimal
free-space dynamics. It is possible that the inertia of a more
massive device could be canceled, but mass compensation
stability is highly dependent on user behavior. For haptic
environments that aim to render large virtual inertia, such as
the rehabilitation scenario presented in Figure 1, this presents a
design challenge, which we would like to circumvent through
the use of clever controllers and improved sensing.

With the results of this paper, we can now consider various
changes to the haptic system design, including mechanical
parameters of the device, position and/or acceleration sensors,
filters, and novel controllers, and predict their effects on
stability and accuracy of mass rendering. For applications in
which perception of inertia (as opposed to display of specific
inertia values) is the goal, we can also consider the use of
multimodal feedback to alter inertia perception. Dominjon
et al. [8] found that the ratio of the amplitude of movements
of a user’s hand to the amplitude of a virtual cursor, as well
as gravity, play a large role in inertia perception.

B. Influence of the Human on Stability

The parameters of the system affected by the human me-
chanical properties are ωn and ζ. These parameters, which also
depend on the physical properties of the haptic device, increase
with increased human impedance or co-contraction, as occurs
when an operator strongly grasps a haptic device. For positive
virtual mass, if ωn � ω∗, the human does not contribute to
stability. As ωn gets closer to ω∗, however, ωn and ζ affect
stability more strongly. This can be interpreted in the following
way: if the user is grasping weakly, then the stability of the
system does not depend on the user. However, as the user
grasps the haptic device more strongly, the values of ωn and
ζ increase, and the system becomes more stable because of
the contribution of the human. For positive virtual mass the
system has a “baseline” stability without any interaction from
the human, that can only be improved by the user. This is
not the case for negative virtual mass, where ωn and ζ affect
stability directly. This confirms the results of Gil et al. [11]:
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Fig. 10. Bode plots of L(s) with positive virtual mass M for various values
of ζ. Here M/m = 1, ωn = 100 (rad/s), ω0 = 30 (rad/s), and the sample
rate is 1000 Hz. The value of ζ does not affect the stability of the system
for positive virtual mass, but has an extreme affect on stability for negative
virtual mass.

that the mechanical properties of the operator strongly affect
stability. For example, if the user grasps the haptic device
weakly, the system can have a strong resonance peak at ωn

which could make the system go unstable for very small
amounts of mass compensation. This effect is shown in Figure
10, which displays the effect of ζ on the Bode plot of L(s).

C. Model Choice
Many models could be used to describe a haptic system for

inertia rendering; our choice of the model shown in Figure 2
was driven by relevance as a practical design tool, tractability
for finding analytical solutions, and our ideas about the most
significant factors in system stability and accuracy. In future
work, we may wish to capture additional system properties,
such as quantization of signals occurring due to A/D and D/A
conversions and encoder position measurements. Quantization
is a non-linear phenomenon, and in position measurement
it can lead to sustained oscillations and instability in the
system [1, 7]. Nonlinear Coulomb friction has also been
shown to have a substantial effect on the passivity of haptic
devices. Comparing our theoretical and simulation results to
the stability and accuracy of haptic rendering on a variety of
haptic devices will determine the broad applicability of our
approach and whether improved models are needed.

VI. CONCLUSION

The main results of our analysis are the identification of
important parameters for system stability, stability boundaries
(M-width), and analysis of the accuracy of mass rendering
using impedance-type haptic devices. We verify our analytical
results in numerical simulations, while recognizing that exper-
iments with a variety of haptic devices are needed to validate
the broad applicability of our approach. Our results could serve
as a design tool for creating virtual environments, controllers,
and device/sensor designs to improve rendering of virtual
mass. This could apply to inertia compensation for more
massive haptic interfaces, as well as rendering increased or
decreased inertia in rehabilitation and motor training scenarios.
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