
Recognition, Prediction, and Planning for Assisted
Teleoperation of Freeform Tasks

Kris Hauser
School of Informatics and Computing, Indiana University at Bloomington

hauserk@indiana.edu

Abstract—This paper presents a system for improving the
intuitiveness and responsiveness of assisted robot teleoperation
interfaces by combining intent prediction and motion planning.
Two technical contributions are described. First, an intent pre-
dictor estimates the user’s desired task, and accepts freeform
tasks that include both discrete types and continuous parameters
(e.g., desired target positions). Second, a cooperative motion
planner uses the task estimates to generate continuously updated
robot trajectories by solving optimal control problems with time-
varying objective functions. The planner is designed to respond
interactively to changes in the indicated task, avoid collisions in
cluttered environments, and achieve high-quality motions using
a hybrid of numerical and sample-based techniques. The system
is applied to the problem of controlling a 6D robot manipulator
using 2D mouse input in the context of two tasks: static target
reaching and dynamic trajectory tracking. Simulations suggest
that it enables the robot to reach static targets faster and to track
trajectories more closely than comparable techniques.

I. INTRODUCTION

This paper aims to develop novice-friendly interfaces for
teleoperating complex robots using commodity input devices
(e.g., computer mice). Safe, intuitive, inexpensive interfaces
could bring robotics in touch with a broad user base and lead
to new applications in teleoperated household tasks, remote
medicine, and space exploration. But a major challenge is
the extreme asymmetry between input devices and robots: the
robot has many more degres of freedom than a user can control
at once. Modal interfaces provide users control over subsets
of degrees of freedom at once (e.g., [7]), but mode switching
makes seemingly simple tasks quite tedious. Moreover, human
input is noisy and error-prone, and hence a robot should filter
out unsafe commands. Hence, novice-friendly teleoperation
systems will need to embed a great deal of intelligence in
order to act fluidly, capably, and safely.

One promising approach is to understand the user’s intent
so that the teleoperation system can provide task-appropriate
forms of assistance [1, 11, 16, 17, 19]. In this approach,
the robot estimates the operator’s intent using the raw input
signals and then chooses its action in order to best achieve the
desired task. This strategy is appealing because it decouples
the overall problem into two subproblems — intent estimation
and planning — and can also improve performance in the
presence of time delays because the robot can anticipate the
desired task in the midst of a partially-issued command [5]. In
this paper we apply this approach to freeform tasks, such as
reaching, pointing, or tracking a trajectory, in which the intent
ranges over a continuous infinity of possibilities. Freeform

Raw
input

Cooperative
motion planner

(Sec. IV)

Task
distribution

Current trajectory

Freeform task
inference engine

(Sec. III)

Robot

GUI

User

Fig. 1. The system integrates new contributions for prediction of intended
tasks and real-time optimal control.

tasks broaden the capabilities of intelligent teleoperated robots
because they provide an operator with greater flexibility in
unstructured scenarios. But they are more challenging because
the robot must not only estimate the task but also several
continuous parameters. Moreover it is no longer practical to
precompute task-specific motion strategies for the robot, and
instead the robot must optimize motions on-the-fly.

This paper presents new techniques for understanding
freeform tasks as well as planning high quality motions to
achieve them (Figure 1). We introduce a Bayesian intent
inference engine based on a Gaussian Mixture Autoregression
framework that deduces a task type and parameters using
statistical features of the input time series. Using this method
we learn models for estimating static targets and dynamic
trajectories in a unified framework, and we predict intended
static and dynamic targets with 43% and 13% lower error,
respectively, than using the cursor position alone.

Our system is also enables the extrapolation of intended
future time-varying goals. Our second contribution exploits
this capability to improve trajectory tracking by anticipating
future movements. We present a novel cooperative motion
planner that optimizes the robot’s trajectory to match the fore-
casted one, while also handling highly cluttered environments.
A combination of sample-based planning [14] and numerical
trajectory optimization techniques [4] are used to achieve
responsive operation, and to produce high-quality, collision-
free paths. The integrated system achieves fluid and real-time
operation by interleaving inference, planning, and execution
while streaming in user input. Experiments on a simulated
6DOF robot suggest that it improves tracking performance by
up to 67% compared to systems that either do not perform

inference, or that use simpler planners.

II. RELATED WORK

Intent and activity recognition for robot teleoperation has
been studied in the context of telemanipulation and surgical
assist systems [1, 11, 16, 17, 19]. Past work has largely
made use of the well-established machinery of Hidden Markov
Models, and as a result is limited to a finite number of discrete
tasks, such as navigating to a handful of target locations or
picking and placing objects in a constrained manner. By con-
trast, our system learns and estimates models with continuous
parameters which makes it applicable to freeform tasks.

Several methods have been proposed for predictive mod-
eling of cursor targets to help select icons in graphical user
interfaces, including linear regression from peak velocity [2],
directional characteristics [12], kinematic motion models [13],
and inverse optimal control techniques [18]. Unlike [12, 18]
our work is applicable to a fully continuous set of targets.
It also achieves better prediction accuracy compared to linear
models [2, 13] because the Gaussian Mixture Autoregression
technique used here is capable of modeling nonlinear charac-
teristics that are observed in user behavior.

Sample-based motion planners such as Probabilistic
Roadmaps (PRMs) and Rapidly-Exploring Random Trees
(RRTs) are successful at planning collision-free motion for
high-dimensional robot systems [14], and have also been
successfully applied to hard real-time planing for 2D he-
licopters [6] and ground vehicles [15]. Recently they have
been applied to teleoperation interfaces for robot manipulator
arms [8]. But these works have traditionally focused on finding
feasible paths rather than optimal ones. Sample-based ap-
proaches have been recently developed for the optimal motion
planning problem [10], but they have not yet been applied to
time-varying cost functions and moreover converge too slowly
for real-time use. An alternative approach is numerical opti-
mization over a trajectory parameterization [4]. Optimization
approaches can achieve optimality with a fast convergence
rate, albeit only locally. Our hybrid planner combines the
strength of sample-based and numerical approaches and is
designed specifically to produce high-quality paths quickly for
a broad class of cost functions.

III. PROBLEM OVERVIEW

Our system implements an intelligent robot interface for
controlling robots with simple and/or noisy input devices. We
consider the setting of a user operating a mouse or other
2D input device to control a 6DOF industrial robot arm in a
cluttered, known 3D environment. The user issues commands
through a GUI that displays the robot and its environment, and
can translate, rotate, and zoom the camera freely.

The operator uses a basic “click-and-drag” operation in
which he/she clicks on a point to move and then drags it
in the manner in which he/she wishes for it to move. This
“manner” is stated intentionally vaguely so that the robot’s
motion is underspecified. For example, a user may wish to
reach a target as quickly as possible (e.g., to grasp and move

an object), or to perform a gesture, such as a wave hello or
to indicate direction for a coworker. Another possibility might
use the underspecification to achieve depth control, or actions
upon specific objects in the environment. While executing a
task, a robot may exploit underspecification to avoid obstacles
or to optimize other criteria, such as energy consumption.

We use the notion of task to act an intermediary between
user input and robot motion. We define a task as a sufficient
representation of the optimality criterion for a robot to com-
plete an action primitive, such as reaching a target, picking
up an object, or pressing a button. In this paper we focus
on freeform tasks, which include both a discrete task type
it ∈ 1, . . . ,M and continuous task parameters zt ∈ RN . (Note
that N depends on the type.) Here we consider M = 2 task
types:

1) Reach tasks. Four task parameters include the position
of the goal relative to the cursor (gx, gy), size gr,
and “urgency” u which is approximated as the average
mouse velocity before reaching the goal.

2) Trajectory following. Six task parameters include the
goal position relative to the cursor (gx, gy), its velocity
(ġx, ġy), and its acceleration (g̈x, g̈y).

The system (Figure 1) is composed of two major compo-
nents: the Freeform Task Inference Engine (FTIE) (Sec. IV)
and the Cooperative Motion Planner (CMP) (Sec. V). The
TIE attempts to recover the intended task from the manner
in which the mouse is dragged, and infers a probabilistic
distribution over tasks. The CMP uses the estimated task
and forecasted evolution of the task in the future to improve
trajectory tracking. The following sections cover new technical
contributions in each subsystem that improve performance
relative to prior approaches.

IV. FREEFORM TASK INFERENCE ENGINE

The FTIE estimates a time series of unobserved task pa-
rameters (it, zt) from a streaming series of observations ot,
t = 1, 2, . . ., obtained from the raw cursor movement. It
uses a hybrid discrete/continuous Dynamic Bayesian Network
(DBN) to infer a distribution over freeform task variables. We
implement the DBN using a Gaussian mixture autoregression
(GMA) technique, which uses Gaussian mixture models to
learn and represent complex, multi-modal transition models.
It is similar in spirit to the interacting multiple model (IMM)
algorithm that extends the Kalman filter to handle multiple
switching linear processes [3], but in our case the process
models are more complex. Experiments indicate that GMA
has superior performance to simpler models, such as linear
regressions and Kalman filters.

A. Overview

Given observations ot of cursor velocities ot =
(∆cx,t,∆cy,t), we wish to infer the distribution over the task
parameters it and zt. We model the evolution of the parameters
as a DBN, which is autoregressive because we include the
observation history ht = (ot−1, . . . , ot−k) for the prior k
time steps as part of the state variable xt = (it, zt, ht).

𝑧𝑡 𝑧𝑡+1

ℎ𝑡 ℎ𝑡+1

𝑜𝑡

Time t Time t+1

Transition
model

History
update

Observation
model

𝑖𝑡 𝑖𝑡+1
Task drift

𝑧𝑡 𝑧𝑡+1

ℎ𝑡+1

𝑐′𝑡 𝐴′𝑡, 𝑏′𝑡, 𝜖′𝑡

𝑖𝑡

𝑧𝑡+1 = 𝐴′𝑡

𝑧𝑡

ℎ𝑡+1
+ 𝑏′𝑡 + 𝜖′𝑡

MUX
Component

ID

𝑧𝑡 ℎ𝑡

𝑜𝑡

𝑐𝑡 𝑖𝑡

𝑜𝑡 = 𝐴𝑡

𝑧𝑡

ℎ𝑡
+ 𝑏𝑡 + 𝜖𝑡

𝐴𝑡, 𝑏𝑡, 𝜖𝑡

Component ID

MUX

Fig. 2. Top left: the dynamic Bayesian network (DBN) denoting the temporal
relationships between hidden task type it, hidden task parameters zt, history
ht, and observation ot. Top right: the transition model represented as a hybrid
graphical model with an unknown component c′t that indexes into a set of
linear process models. Bottom: the observation model. Dashed circles indicate
discrete variables while solid circles indicate continuous ones.

The observation is assumed to be generated according to
the probabilistic observation model P (ot|xt), while the state
evolves according to the transition model P (xt+1|xt, ot). Note
that in traditional HMMs the transition model is typically not
dependent on ot; this only requires a minor adjustment to the
inference procedure. Our model is shown in Figure 2.

As usual in Bayesian filtering, the belief over xt+1 is
derived from the prior belief over xt and the observation
ot+1 in a recursive manner. Specifically, we maintain a belief
bt(xt) = P (xt|o1, . . . , ot) and update it using the recursive
filtering equation:

bt+1(xt+1) = P (xt+1|o1, . . . , ot+1)

=

∫
xt

P (xt+1|xt, ot+1)P (xt|o1, . . . , ot)dxt

=

∫
xt

P (xt+1|xt, ot+1)bt(xt)dxt.

(1)

This procedure is performed in in two steps:

1) The predict step, which computes the unconditioned
belief over b′t+1(xt+1) independently of the new obser-
vation:

b′t+1(xt+1) =

∫
xt

P (xt+1|xt, ot)bt(xt)dxt. (2)

2) The update step, which conditions b′t+1(xt+1) on the
observation

bt+1(xt+1) ∝ P (ot+1|xt+1)b′t+1(xt+1). (3)

The following sections will describe the GMA implementation
of the filter.

-5

-3

-1

1

3

5

-4 -2 0 2 4

-5

-3

-1

1

3

5

-4 -2 0 2 4

-5

-3

-1

1

3

5

-4 -2 0 2 4

-5

-3

-1

1

3

5

-4 -2 0 2 4

m=1 m=3

m=5 m=10

Fig. 3. Gaussian mixture regressions can model complex nonlinear condi-
tional distributions. This data comes from the reach task training set, with
the horizontal target position on the x axis and the horizontal cursor velocity
on the y axis (both normalized to unit variance). Curves indicate the mean
and standard deviation of the relationship y(x) estimated by GMRs with a
varying number m of components.

B. Gaussian Mixture Regression
First we will provide some preliminaries on Gaussian mix-

ture regression. A Gaussian mixture model (GMM) with m
components describes a weighted combination of m Gaussian
distributions. If X is distributed with respect to a GMM, the
probability that X = x is given by

P (x) = GMM(x;w1, . . . , wm, µ1, . . . , µm,Σ1, . . . ,Σm)

=

m∑
c=1

wcN (x;µc,Σc).

(4)

where N (x;µ,Σ) denotes the probability that a normally
distributed variable X ∼ N (µ,Σ) takes on the value x. The
values w1, . . . , wm are component weights that sum to one.

GMMs can be interpreted as introducing an auxiliary hidden
class variable C taking values in {1, . . . ,m} that identifies
the component of the GMM from which x is generated. The
distribution over x conditional on C = c is N (x;µc,Σc),
while the prior distribution over C is given by the weights
P (c) = wc.

GMMs can be applied to nonlinear regression tasks under an
operation known as a Gaussian mixture regression, or GMR.
It is based on the application of Gaussian conditioning (see
Appendix) to each component in the GMM, and reweighting
components according to the probability of observing the
independent variable. Suppose X and Y are jointly distributed
according to a GMM with m components. Given the value of
x, P (y|x) is a GMM with weights

wc|x =
1

Z
wcP (x|c) (5)

where Z is a normalization factor and

P (x|c) = N (x;µc,x,Σc,x) (6)

is the marginal probability that x is drawn from the c’th
component. Each component in P (y|x) has a mean µc de-
termined by a linear fit µc = Acx + bc with a constant
covariance Σc. The parameters Ac, bc, and Σc are determined
in a straightforward manner from the joint GMM using the
Gaussian conditioning equation (22). The resulting regression
model is:

GMR(y|x) =
1

Z

m∑
c=1

wcN (x;µc,x,Σc,x)N (y;Acx+ b,Σc).

(7)
Figure 3 shows that GMRs can model nonlinearities and
nonuniform variance in data better than linear regression
(which is equivalent to a GMR with m = 1). These models
are fitted to a 2D projection of our cursor reaching dataset.

C. Transition and Observation Modeling

We use GMRs in both the observation model P (ot|it, zt, ht)
and transition model P (xt+1|xt, ot) (Figure 2). In the obser-
vation model, a GMR is estimated for each task type, each of
which has independent variables zt and ht.

The transition model is factored into three parts: 1) the task
type drift, 2) the deterministic history update, and 3) the z
transition model as follows:

P (xt+1|xt, ot) = P (it+1|it)P (ht+1|ht, ot)P (zt+1|it, zt, ht+1).
(8)

The type drift is given by a transition matrix, and in our imple-
mentation we simply use a uniform probability of switching
P (it+1 = it) = 1 − p, and P (it+1 6= it) = p/(M − 1). The
history update simply shifts ot into the first position of ht
and drops the oldest observation. Finally, P (zt+1|it, zt, ht+1)
is encoded as a GMR specific to the task type it, with the
independent variables zt and ht+1.

D. GMM Filtering and Forecasting

Given GMM belief representations and GMR transition
and observation models, the filtering equation (1) has an
exact closed form. For computational efficiency we represent
bt(xt) in factored form as a distribution over task types
P (it), the history ht (which is deterministic), and a set of
type-conditioned GMMs bzt|i, i = 1, . . . ,m each denoting
P (zt|it = i, o1, . . . , ot).

Predict. The predict step evaluates (8) in the context of
(2). The history and task type are updated directly as usual,
while the task parameters are updated via the propagation of
each bzt|i through the transition GMR. Suppose the transition
GMR is given by (7), and bzt|i has n components: bzt|i(zt) =
GMM(zt;w

′
1, . . . , w

′
n, µ
′
1, . . . , µ

′
n,Σ

′
1, . . . ,Σ

′
n). It is not hard

to show that the distribution of zt+1 is a GMM with mn
components, given by:

bzt+1|i(zt+1) =
1

Z

m∑
c=1

n∑
d=1

wcdN (zt+1;Acµ
′
d+b,Σc+AcΣ

′
dA

T
c),

(9)
with

wcd = wcw
′
dN (µ′d;µc,x,Σc,x + Σ′d) (10)

being the probability that the d’th component of bzt,i is
observed in the c’th component of the transition GMR. The
last term in this product is the probability that two variables
x1 and x2, distributed respectively according to N (µ′d,Σ

′
d)

and N (µc,x,Σc,x), are equal.
Update. The update step applies the GMR observation

model (7) to the update equation (3) via the following deriva-
tion. Let the predicted, unconditioned belief b′t+1(xt+1) be a
GMM with weights wc, means µc, and covariances Σc, with
c = 1, . . . ,m. We also have P (ot|xt) as GMR with weights
w′d, x-components N (µ′d,x,Σ

′
d,x), and linear fits Ad, bd, Σ′d,o

with d = 1, . . . , n. We perform a Kalman observation update
(23) conditional on each pair of components (c, d) from each
of the state and observation models (see Appendix) to deter-
mine P (xt+1|ot+1, c, d). Unconditional on the components,
we have the update equation:

bt+1(xt+1) =
1

Z

m∑
c=1

n∑
d=1

wcdP (xt+1|ot+1, c, d) (11)

where Z is a normalization term and the weighs wcd indicate
the probability that the observation was generated by the c’th
component of the state prior and the d’th component of the
observation GMR:

wcd = wcwdN (ot+1;Adµc + bd,Σd,o +AdΣcA
T
d). (12)

Mixture collapse. Although these equations are exact and
polynomial-time computable, their direct application would
lead to exponential growth of the number of components in
the belief state over time. Hence it is necessary to frequently
collapse the belief state representation into a more manageable
number of components. We collapse GMMs with n > k
components into a constant number k of components after
both the predict and update steps (k = 10 is used in our
experiments). The collapse operation begins by sampling k
components c1, . . . , ck without replacement proportionally to
their weights. The n original components are partitioned into
k subsets S1, . . . , Sk by assigning component d to subset i if i
is the index for which the KL divergence between N (µd,Σd)
and N (µci ,Σci) is minimized. The output GMM contains
one component for each subset Si, with weight w′i, mean µ′i,
and variance Σ′i matched to the subset using the method of
moments:

w′i =
1

Z

∑
j∈Si

wj µ′i =
1

Zw′i

∑
j∈Si

wjµj

Σ′i =
1

Zw′i

∑
j∈Si

wj [(µj − µ′i)(µj − µ′i)T + Σj].
(13)

Efficient forecasting. Forecasting of future zt is performed
via repeated application of the predict step, without an associ-
ated observation update. However our experiments determined
that repeated propagation and collapsing for distant forecasts
is too expensive for real time use. So, our method only propa-
gates a few steps into the future (5 in our implementation)
and for the remaining steps collapses the transition GMR
into a single linear Gaussian process xt+1 = Axt + b + ε

TABLE I
MEAN SQUARED TARGET PREDICTION ERRORS OF SEVERAL TECHNIQUES,
NORMALIZED TO CURSOR POSITION ERROR. BEST IN COLUMN IS BOLDED.

Reach Tracking Tracking forecast (1s)
Cursor Only 100% 100% 100%
Linear Reg. 78% 111% 98%
Linear Reg. (forecast) — — 84%
Kalman Filter 71% 99% 109%
Velocity Extrapolation — — 203%
GMA (reach only) 57% 151% 86%
GMA (track only) 112% 87% 60%
GMA (reach+track) 83% 108% 73%

linearized around the estimated state distribution. The n’th
forecasted state is then computed easily in O(log2 n) matrix
multiplications through repeated squaring. Memoization is
another effective approach if the forecasting horizon is fixed.

E. Gathering Training Data

To acquire training data we constructed a GUI for each task
type that instructs users to execute an explicitly given task by
clicking and dragging an on-screen widget. In the reach GUI,
users are asked to drag a widget to circular targets with center
and radius chosen randomly from a uniform range. In the
trajectory-tracking GUI, users are asked to drag a widget at the
same pace as a reference widget that moved along a trajectory.
We pick from triangular, rectangular, circular, and figure-eight
patterns that were randomly stretched and compressed in the
x and y directions and rotated at an arbitrary angle. The speed
of the reference widget was also chosen at random.

These GUIs gathered mouse movements and task parame-
ters at 50Hz from five volunteers resulting in over 830 trials.
Trials were mirrored in x and y directions to reduce the
effects of asymmetric training data. We noticed that track-
pads and mice produce very different cursor movements, so
for consistency we gathered all data using a trackpad. The
GMM transition and observation models were learned using
the standard Expectation-Maximization (EM) algorithm. The
history length and number of components were chosen through
five-fold cross-validation based model selection, and learning
was completed in approximately 10 hours on a 2.8 GHz PC.

F. Experiments

We find that the resulting task models infer desired goals in
qualitatively different ways. The reach model predicts the goal
location essentially as an extrapolation of the cursor velocity,
with greater variance in the direction of travel. The trajectory
following model essentially performs smoothing, and evens
out jerkiness in the cursor motion.

Table I demonstrates that GMA dramatically reduces MSE
of reach tasks compared to simply using the cursor position.
It also performs better than simpler techniques of a linear
regression and Kalman filter, both fit to the last 5 cursor
velocities. Figure 4 plots the distance-to-target along all test
examples for the cursor and the GMA prediction. It drops
sharply as GMA extrapolates from the current mouse velocity.
There is a curious jump in prediction variance once the cursor
reaches approximately 20% of the original distance. It appears

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Fig. 4. Normalized and time-scaled distance-to-target in static target reaching
tasks for the cursor position (solid lines) and the GMA estimated target (dotted
lines). Mean and standard deviation are plotted.

Cursor trace

GMA estimate

Desired

GMA prediction

Smoothed
extrapolation

Desired

Fig. 5. Tracking two test trajectories. Top row: target estimates produced
by the trajectory tracking model are slightly more accurate than the cursor
itself. Bottom row: GMA target forecasts 1 s in the future are substantially
more accurate than using the cursor position alone (19% lower MSE on both
figures), or velocity extrapolation (42% and 14% lower MSE on the triangle
and circle, respectively).

that this may be an artifact of the input device: in some of our
training examples, users made an initial coarse motion toward
the target, paused and possibly lifted their finger off of the
trackpad, and then approached the target with a fine-grained
motion. The pause causes GMA to be significantly thrown off,
if only temporarily.

For trajectory tracking, GMA only estimates the current goal
position with 13% lower MSE than simply using the cursor
position. But its main strength is its ability to anticipate future
target positions. GMA reduces the error in forecasts at 1 s by
40%, which is a significant improvement on Kalman filtering
or velocity extrapolation. It also performs better than a linear
regression trained specifically to perform 1 s forecasts.

This data also indicates that when GMA does not know
the task type (reach+track row), its performance decreases
as compared to when it is given perfect type information
(reach only and track only rows). This suggests that better task
classification accuracy would yield significant performance
benefits. We leave this issue for future work.

V. COOPERATIVE MOTION PLANNER

The second component of our system is a cooperative
motion planner that accepts predictive task estimates and
avoids collision. As the task inference engine updates the task
estimate in real-time, the trajectory is adjusted by replanning.
Our planner incorporates several contributions to make it
appropriate for real-time user control of robot arms. It handles
time-varying probabilistic distributions over tasks as well as
hard constraints like collision avoidance and actuator limits. A
hybrid sampling-based and optimization-based scheme is used
to quickly generate high-quality motions while also avoiding
the local minima problems of optimization approaches. It also
is implemented in a hard real-time framework that tolerates
planning and communication delays [8].

A. Overview

The robot’s motion is subject to joint, velocity, and accel-
eration limits:

qmin ≤ q ≤ qmax

|q̇| ≤ q̇max

|q̈| ≤ q̈max

(14)

where all inequalities are taken element-wise. A trajectory
q(t) : [t1, t2] is said to be dynamically feasible if each of these
constraints is met for all t. Collision constraints furthermore
limit the set of valid configurations to the collision-free subset
of the configuration space q ∈ F ⊆ C.

When the user clicks and drags a point on the robot, the
motion defines a time-varying potential field P (x(q), t) where
x(q) is the image-space position of the clicked point at the
robot’s configuration q and P (x, t) is a screen-coordinate
target distribution from the inferred task bt(zt). In this section
we take t = 0 to be the current time, and estimate the
distribution P (x, t) using the FTIE for all t from 0 to some
maximum forecasting horizon.

At each time step the planner searches for a dynamically
feasible, collision-free trajectory q(t) : [0, T] → F that
optimizes a cost functional of the form

J =

∫ T

0

L(q(t), t)dt+ Φ(q(T), T) (15)

where L is an incremental cost and Φ is a terminal cost. Rather
than optimizing to convergence, the planner stops it finds a
trajectory with lower cost than the robot’s current trajectory.
If planning is successful then the new trajectory is sent to
the robot. To guarantee safety, the trajectory is ensured to be
completely collision free and to terminate in velocity zero. If
planning fails, the planner simply begins anew on the next
step. Before turning to the specification of the cost function
in the teleoperation setting we will first describe the planner,
which is more general purpose.

B. Hybrid Sample-Based/Numerical Planning

Our hybrid planner grows a tree of states from the start
state forward in time in the configuration/velocity/time space
C × Ċ × R+. Like the RRT planner, the tree is grown by

sampling a configuration qd at random and picking an existing
node to extend a new edge toward qd. Here, each edge is
a relatively short collision-free trajectory, and we utilize a
steering function to ensure that each extension is dynamically
feasible and terminates at qd with zero velocity (a similar
strategy was used in [6]). In our case, the steering function
constructs a time-optimal acceleration-bounded curve using
the method of [9].

Interleaved with random RRT-like expansion, our method
also performs numerical optimization to construct trajectory
extensions that locally optimize (15). The integral in (15)
is evaluated using Gaussian quadrature, and the optimization
parameters are the target configuration of the steering function
qd ∈ C as well as a time scale α ≥ 1 that extends
the time at which qd is reached. This parameter helps the
planner follow slowly time-varying objectives more closely.
A boundary constrained quasi-Newton optimization is run for
a handful of iterations (10 in our implementation).

Several performance enhancements are used in our planner.

1) We initially seed the tree with the trajectory computed
on the prior iteration and attempt to make improve-
ments through local optimization. This approach helps
the robot cope better with suboptimal paths caused by
terminating queries early because subsequent iterations
are likely to improve the path further.

2) Following [6] we produce more fluid paths by bisecting
each edge in the tree to produce intermediate states with
nonzero velocity.

3) To expand the tree toward the the random state qd,
we choose the closest state under the pseudometric that
measures the optimal time to reach qd in the absence of
obstacles. The combination of this metric and the prior
bisection technique makes the planner less likely to find
inefficient paths that repeatedly start and stop.

4) We prune branches of the tree that have greater incre-
mental cost than the current best path found so far.

5) Lazy collision checking is used to delay expensive edge
feasibility checks until the planner finds a path that
improves the cost.

6) We devote 50% of each time step to trajectory smoothing
using a shortcutting heuristic described in [9], with some
minor modifications to ensure that each shortcut makes
an improvement in the time-varying cost function.

To obey the hard real-time constraint, the planner should not
be initialized at the current state of the robot because once
planning is completed, the robot will have already moved.
Instead, following [6, 15] the planner is initialized to the
predicted state along the current trajectory, propagated forward
in time by the planner’s time limit ∆t. As in [8] we adapt the
time step ∆t to the difficulty of problems by increasing it
if the planner failed on the prior time step (indicating a hard
plan), or reducing it if the planner succeeded on the prior time
step (indicating an easy plan). To improve responsiveness we
also reduce ∆t when the user changes goals by introducing
a scaling factor e−cD where D is the distance between the

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
Non-predictive Predictive

Fig. 6. Top: Uncluttered and cluttered test scenarios in which the end-
effector is instructed to move along a circular trajectory. The trajectory is a
priori unknown to the robot. Bottom: Traces of the end effector in the cluttered
environment without (left) and with (right) predictive tracking. Because it is
planning and executing in real-time, once the non-predictive planner finishes
planning the target has already moved a great distance. Predictive tracking
anticipates the target’s movements and leads to substantially lower error.

cursor position on the prior planning iteration and the current
iteration. Here c is a sensitivity parameter chosen via a small
amount of tuning.

C. Expected Cost Functionals and Introspective Discounting
This section converts the predictive task probability distri-

bution P (x(q), t) to a cost functional of proper deterministic
form (15). We also introduce an introspective cost functional
that monitors both the task distribution and the likelihood of
a successful replan. Let g denote a realization of the user-
defined, time-dependent objective distributed according to the
current belief. We optimize the expected cost:

J = Eg

[∫ T

0

Ld(q(t), t|g(t))dt+ Φd(q(T), T |g)

]
. (16)

By linearity of expectation, we have

J =

∫ T

0

Eg(t) [Ld(q(t), t|g(t))] dt+ Eg [Φd(q(T), T |g)] .

(17)
Now let the deterministic cost functionals Ld and Φd measure
squared distance to the goal g(t). Specifically, reach and
tracking tasks require that the robot’s end effector position
projected to the screen x(t) ≡ x(q(t)) reaches the goal g(t):

J =

∫ T

0

λ(t)Eg

[
||x(t)− g(t)||2

]
dt

+

∫ ∞
T

λ(t)Eg

[
||x(T)− g(t)||2

] (18)

TABLE II
MEAN TARGETING ERRORS FOR VARIOUS TEST TRAJECTORIES, IN PIXELS.

RESULTS AVERAGED OVER 20 RUNS.

Reach Tracking Circle Circle+Obst
IK+S, cursor only 88 87 56 141
CMP, cursor only 97 87 39 78
CMP+FTIE 72 62 15 75
CMP+FTIE+type 72 59 18 63

where λ(t) is a discount factor. Using the fact that E[||X||2] =
tr(V ar[X]) + ||E[X]||2, this expression simplifies to

J =

∫ ∞
0

tr(V ar[g(t)])dt+

∫ T

0

λ(t)||x(t)− E[g(t)]||2dt

+

∫ ∞
T

λ(t)||x(T)− E[g(t)]||2dt.

(19)

Since the first term is independent of x it can be dropped from
the optimization, resulting in an expression in the form of (15)
as desired.

The introspective discount function weighs the contribution
of each point in time to reflect its expected cost taking into
account the fact that the path will be replanned in the future:

λ(t) = Ext

[
||Xt(t)− E[g(t)]||2

||x(t)− E[g(t)]||2

]
(20)

where Xt indicates the unknown trajectory actually executed
by the robot, taking future replans into account. We estimate
this expectation by gathering planning statistics on prior
problems. We find that for a given problem, an exponentially
decreasing fit e−bt provides a good fit to the empirical data.
However, the rate parameter b is highly sensitive to the
difficulty of the problem. Fortunately the current time step
∆ provides a first order approximation of problem difficulty.
So, we adaptively discount less in harder regions of the
configuration space by scaling the t axis of λ proportionally
to ∆ and estimate a single b that provides the best fit to our
training data.

D. Experiments

Table II lists mean distance from the robot’s end effector
to the intended target for several planners and scenarios. The
Reach and Tracking columns use the natural reach and tracking
motions from our testing set as user input. The Circle column
indicates a synthetic circle tracking task, while Circle+Obst
introduces clutter into the environment (Figure 6).

For comparison we tested an inverse kinematics controller
with a safety filter (IK+S), which prevents infeasible motions
by simple rejection. We also tested a non-predictive “cursor
only” implementation that simply optimizes the end effector’s
distance to the cursor at every step. CMP improves upon IK+S
by 47% in clutter because it uses trajectory optimization to
circumvent obstacles. Furthermore, FTIE improves upon the
cursor-only approach by 27% on the natural cursor trajectories
and 23% on the circular trajectories.

We also examined whether FTIE discriminates well between
tasks, and found out that classification performance is in fact

quite poor; the most likely task estimated by GMA is correct
only 66% of the time. Surprisingly, this does not have a
major effect on overall performance! The data in the last row
of Table II suggest that even if perfect task knowledge is
introduced into the estimation, targeting error does not change
significantly.

VI. CONCLUSION

This paper presented a system for estimating, predicting,
and planning freeform tasks for assisted teleoperation of a
6DOF robot manipulator using 2D cursor input. Our contribu-
tions are twofold. First, a freeform intent inference technique
based on Gaussian mixture autoregression (GMA) was used
to predict static targets, dynamic targets, and to distinguish
between the two. Second, a cooperative motion planner was
used generate higher quality trajectories by anticipating users’
desired tasks. Results in simulation show improved task perfor-
mance, and suggest that better task discrimination may yield
even further benefits. We are interested in extending our work
to handle freeform tasks that are contextualized to the robot’s
environment, and to support object manipulation tasks. Finally,
in the near future we intend to study the subjective experience
of novice users using our system to control a real robot.

APPENDIX

Gaussian Conditioning. If X and Y are jointly normally
distributed as follows:[

X
Y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
, (21)

then the conditional distribution over Y given the value of X
is another Gaussian distribution N (µy|x,Σy|x) with

µy|x = µy + ΣyxΣ−1x (x− µx)

Σy|x = Σy − ΣyxΣ−1x Σxy.
(22)

This form is in fact equivalent to the ordinary least-squares fit
y = Ax+ b+ ε with A = ΣxyΣ−1x , b = µy−ΣyxΣ−1x µx, and
where ε ∼ N (0,Σy|x) is an error term.

Kalman Update. Given a linear observation model o =
Ax + b + ε with ε ∼ N (0, Q), and prior x ∼ N (µ,Σ), the
posterior P (x|o) is a Gaussian with mean and covariance

µx|o = µ− ΣATC−1(o−Aµ)

Σx|o = Σ− ΣATC−1AΣ
(23)

where C = AΣAT +Q.

REFERENCES

[1] D. Aarno and D. Kragic. Motion intention recognition
in robot assisted applications. Robotics and Autonomous
Systems, 56:692–705, 2008.

[2] T. Asano, E. Sharlin, Y. Kitamura, K. Takashima, and
F. Kishino. Predictive interaction using the delphian
desktop. In 18th ACM Symposium on User Interface
Software and Technology, page 133141, 2005.

[3] H. A. P. Blom and Y. Bar-Shalom. The interacting
multiple model algorithm for systems with markovian

switching coefficients. IEEE T. on Automatic Control,
33:780–783, 1988.

[4] J. E. Bobrow, B. Martin, G. Sohl, E. C. Wang, F. C. Park,
and Junggon Kim. Optimal robot motions for physical
criteria. J. of Robotic Systems, 18(12):785–795, 2001.

[5] R. R. Burridge and K. A. Hambuchen. Using prediction
to enhance remote robot supervision across time delay.
In Intl. Conf. Intel. Rob. Sys., pages 5628–5634, 2009.
ISBN 978-1-4244-3803-7.

[6] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time
motion planning for agile autonomous vehicles. In
American Control Conf., volume 1, pages 43 – 49, 2001.

[7] D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie.
Interactive markers: 3-d user interfaces for ros applica-
tions. Robotics and Automation Magazine, 18(4):14 –
15, 2012.

[8] K. Hauser. On responsiveness, safety, and completeness
in real-time motion planning. Autonomous Robots, 32
(1):35–48, 2012.

[9] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of ma-
nipulator trajectories using optimal bounded-acceleration
shortcuts. In Intl. Conf. Rob. Automation, 2010.

[10] S. Karaman and E. Frazzoli. Incremental sampling-based
algorithms for optimal motion planning. In Robotics:
Science and Systems (RSS), Zaragoza, Spain, 2010.

[11] D. Kragic, P. Marayong, M. Li, A. M. Okamura, and
G. D. Hager. Human-machine collaborative systems for
microsurgical applications. Int. J. of Robotics Research,
24(9):731–741, 2005.

[12] D. Lane, S. Peres, A. Sándor, and H. Napier. A process
for anticipating and executing icon selection in graphical
user interfaces. Int. J. of Human-Computer Interaction,
19(2):241252, 2005.

[13] E. Lank, Y. Cheng, and J. Ruiz. Endpoint prediction
using motion kinematics. In SIGCHI Conf. on Human
Factors in Computing Systems, pages 637–646, 2007.

[14] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, 2006.

[15] S. Petti and T. Fraichard. Safe motion planning in
dynamic environments. Intl. Conf. Intel. Rob. Sys., 2
(6):2210 – 2215, 2005.

[16] O.C. Schrempf, D. Albrecht, and U.D. Hanebeck.
Tractable probabilistic models for intention recognition
based on expert knowledge. In Intl. Conf. Intel. Rob.
Sys., pages 1429 –1434, nov. 2007.

[17] W. Yu, R. Alqasemi, R. Dubey, and N. Pernalete. Tele-
manipulation assistance based on motion intention recog-
nition. In Intl. Conf. Rob. Automation, pages 1121–1126,
2005.

[18] B. Ziebart, A. K. Dey, and J. A. Bagnell. Probabilistic
pointing target prediction via inverse optimal control. In
Int. Conf. on Intelligent User Interfaces, 2012.

[19] R. Zollner, O. Rogalla, R. Dillmann, and M. Zollner.
Understanding users intention: programming fine manip-
ulation tasks by demonstration. In Intl. Conf. Intel. Rob.
Sys., volume 2, pages 1114 – 1119, 2002.

	Introduction
	Related Work
	Problem Overview
	Freeform Task Inference Engine
	Overview
	Gaussian Mixture Regression
	Transition and Observation Modeling
	GMM Filtering and Forecasting
	Gathering Training Data
	Experiments

	Cooperative Motion Planner
	Overview
	Hybrid Sample-Based/Numerical Planning
	Expected Cost Functionals and Introspective Discounting
	Experiments

	Conclusion
	Appendix

