
Robotics: Science and Systems 2012
Sydney, NSW, Australia, July 09-13, 2012

1

A Distributable and Computation-flexible Assignment Algorithm:
From Local Task Swapping to Global Optimality

Lantao Liu
Dept. of Computer Science and Engineering

Texas A&M University
College Station, USA

Email: lantao@cse.tamu.edu

Dylan A. Shell
Dept. of Computer Science and Engineering

Texas A&M University
College Station, USA

Email: dshell@cse.tamu.edu

Abstract— The assignment problem arises in multi-robot task-
allocation scenarios. This paper introduces an algorithm for
solving the assignment problem with several appealing features
for online, distributed robotics applications. The method can start
with any initial matching and incrementally improve the solution
to reach the global optimum, producing valid assignments at
any intermediate point. It is an any-time algorithm with an
attractive performance profile (quality improves linearly) that,
additionally, is comparatively straightforward to implement and
is efficient both theoretically (O(n3 lgn) complexity is better than
widely used solvers) and practically (comparable to the fastest
implementation, for up to hundreds of robots/tasks). We present
a centralized version and two decentralized variants that trade
between computational and communication complexity.

Inspired by techniques that employ task exchanges between
robots, our algorithm guarantees global optimality while using
generalized “swap” primitives. The centralized version turns
out to be a computational improvement and reinterpretation of
the little-known method of Balinski-Gomory, proposed half a
century ago. Deeper understanding of the relationship between
approximate swap-based techniques —developed by roboticists—
and combinatorial optimization techniques, e.g., the Hungarian
and Auction algorithms —developed by operations researchers
but used extensively by roboticists— is uncovered.

I. INTRODUCTION

A common class of multi-robot task-allocation mechanisms
involve estimating the expected cost for each robot’s perfor-
mance of each available task, and matching robots to tasks in
order to minimize overall cost. By allocating robots to tasks
repeatedly, a team can adapt as circumstances change and
demonstrate fluid coordination. A natural tension exists be-
tween two factors: running-time is important as it determines
how dynamic the team can be, while quality of the allocation
reflects the resultant total cost and hence the performance of
the team. While the importance of solutions that trade the
quality of results against the cost of computation has been
established for some time (e.g., review in [1]), the assignment
problem underlying efficient task-allocation has received little
attention in this regard.

This paper introduces an algorithm that yields a feasible
allocation at any point in its execution and an optimal as-
signment when it runs to completion. The results give an
easily characterizable relationship between running time and
allocation quality, allowing one factor to be traded for the
other, and even for the marginal value of computation to
be estimated. Additionally, the algorithm may start from any

initial matching so it can be easily used to refine sub-optimal
assignments computed by other methods.

But the flexibility afforded by an any-time algorithm will
be counterproductive if it comes at too high a cost. The
method we describe has strongly polynomial running time
and we show that it can be competitive with the fastest
existing implementation even for hundreds of robots and tasks.
Additionally, the cost can be borne by multiple robots because
variants of the algorithm can be executed in a decentralized
way. We are unaware of another solution to the assignment
problem with these features.

II. RELATED WORK
Task allocation is one of the fundamental problems in

distributed multi-robot coordination [2]. Instantaneously as-
signing individual robots to individual tasks involves solution
of the linear-sum assignment problem. This paper draws a
connection between methods for (A.) improving local perfor-
mance, e.g., via incremental clique preferences improvement,
and (B.) allocation methods which seek to solve (or approxi-
mate) the global optimum of the assignment.

A. Local Task Exchanges in Task-Allocation
Several researchers have proposed opportunistic methods

in which pairs of robots within communication range adjust
their workload by redistributing or exchanging tasks between
themselves [3, 4, 5], also called O-contracts [6]. These intu-
itively appealing methods allow for a form of localized, light-
weight coordination of the flavor advocated by [7]. Zheng and
Koenig [8] recently explored a generalization of the idea in
which an exchange mechanism involving K robots (called K-
swaps) improves solution quality. They theoretically analyzed
and illustrated properties of the method empirically. This paper
gives new insight into how generalized swap-like mechanisms
can ensure optimality, in our case through something analo-
gous to automatic computation of the necessary value of K.
Also, we have characterized the running-time of our method.

B. Optimal Assignment in Task-Allocation
The first and best-known optimal assignment method is

Kuhn’s O(n3) Hungarian algorithm [9]. It is a dual-based
(or generally primal-dual) algorithm because the variables
in the dual program are maintained as feasible during each
iteration in which a primal solution is sought. Many other



assignment algorithms have been developed subsequently (see
review [10]) however most are dual-based methods includ-
ing: augmenting path [11], the auction [12], pseudo-flow [13]
algorithms, etc. These (and approximations to them) underlie
many examples of robot task-allocation, e.g., see [14, 15, 16].
Special mention must be made of market-based methods (e.g.,
[17, 18]) as they have proliferated presumably on the basis of
inspiration from real markets and their naturally distributed
operation, and Bertsekas’s economic interpretation of dual
variables as prices [12]. Fully distributing such methods sacri-
fices optimality: [19] gives bounds for some auction strategies.

Little work reports using primal approaches for task-
allocation; researchers who solve the (relaxed) Linear Program
directly likely use the popular (and generally non-polynomial
time) simplex method [20]. The primal assignment algo-
rithm proposed by Balinski and Gomory [21] is an obscure
method that appears entirely unknown within robotics. The
relationship is not obvious from their presentation, but their
chaining sequence of alternating primal variables is akin to the
swap loop transformation we have identified. Our centralized
algorithm improves on their run-time performance (they re-
quire O(n4) time). Also, the data structures we employ differ
as they were selected to reduce communication cost in the
decentralized versions, which is not something they consider.

III. PROBLEM DESCRIPTION & PRELIMINARIES

We consider the multi-robot task assignment problem in
which the solution is an association of each robot to exactly
one task , denoted SR-ST-IA by [14]. An assignment A =
〈R, T 〉 consists a set of robots R and a set of tasks T . Given
matrix C = (cij)n×n, where cij : R × T → R+ represents
the cost of having robot i perform task j. In our work,
n = |R| = |T |, the number of robots is identical to the number
of tasks (otherwise dummy rows/columns can be inserted).

A. Formulations
This problem can be formulated with an equivalent pair of

linear programs. The primal is a minimization formulation:

minimize f =
∑
i,j

cijxij ,

subject to
∑
j

xij = 1, ∀i,∑
i

xij = 1, ∀j,

xij ≥ 0, ∀(i, j).

(1)

where an optimal solution eventually is an extreme point of
its feasible set (xij equals to 0 or 1). Let binary matrix X =
{xij}, ∀(i, j) contain the primal variables. The constraints∑
j xij = 1 and

∑
i xij = 1 enforce a mutual exclusion

property. There are corresponding dual vectors u = {ui} and
v = {vj}, with dual linear program:

maximize g =
∑
i

ui +
∑
j

vj ,

subject to ui + vj ≤ cij , ∀(i, j).
(2)

(a) (b)
Fig. 1. Primal transformations are task swaps. (a) A cost matrix with two
independent swap loops, where the shaded and bold-edged squares represent
the old and new assigned entries, respectively; (b) Task swapping from an
independent swap loop (e.g., blue loop in (a)) among four robots and tasks.

B. Complementary Slackness, Reduced Cost, and Feasibility
The duality theorems show that a pair of feasible primal

and dual solutions are optimal iff the following is satisfied:

xij(cij − ui − vj) = 0, ∀(i, j). (3)

This complementary slackness equation reveals the orthogonal
property between the primal and dual variables. The values

c̄ij = cij − ui − vj , ∀(i, j), (4)

are called the reduced costs. For a maximization dual as shown
in Program (2), its constraint shows that an assignment pair
(i, j) is feasible when and only when c̄ij ≥ 0.

C. Transformations and Admissibilities
Primal and dual transformations and, in particular, their

admissibilities are used later in the paper.

• Admissible Primal Transformation: Map Zp : X 7→ X′

is an admissible primal transformation if the primal solution
quality is better after the transformation, i.e. X′ = Zp(X) is
admissible iff f(X′) < f(X) for a minimization problem.
• Admissible Dual Transformation: Zd : (u,v) 7→ (u′,v′)
is an admissible dual transformation if the size for the set of
feasible reduced costs increases, i.e., (u′,v′) = Zd(u,v) is
admissible iff |{(i, j) | c̄′ij ≥ 0}| > |{(i, j) | c̄ij ≥ 0}|.

IV. TASK SWAPPING AND OPTIMALITY
Any primal transformation X′ = Zp(X) is easily visualized

by superimposing both X and X
′

on an assignment matrix.
Shown as shaded and bold-edged entries in Fig. 1(a), the
transformations can be interpreted as row-wise and column-
wise aligned arcs. Connecting the beginning to the end closes
the path to form what we call a swap loop, which is easily
imagined as a subset of robots handing over tasks in a chain,
as illustrated in Fig. 1(b).

If a swap loop shares no path segment with any other, it is
termed independent.

Theorem 4.1: A primal transformation X′ = Zp(X) where
(X 6= X′) forms a (non-empty) set of independent swap loops.

Proof: The mutual exclusion property proves both parts.
Independence: if a path is not independent, there must be at
least one segment that is shared by multiple paths. Any such
segment contradicts the mutual exclusion constraints since
either

∑
i xij > 1, or

∑
j x
′
ij > 1, or both.

Closeness: a non-closed path has end entries that are exposed;
but this leads to

∑
j x
′
ij = 0 or

∑
i x
′
ij = 0.

Assume Sswp = {swpλ} (λ ∈ [1,m]) is a set of swap
loops where swpλ denotes the λth swap loop. Let primal



Fig. 2. Amalgamation allows synthesis of complex swap loops from multiple
dependent swap loops. Overlapped path segments cancel each other out.

transformation X→ X
′

with specific set of swap loops Sswp
also be denoted as X

′
= Zp

Sswp(X).
Theorem 4.2: A primal transformation involving mutually

independent swap loops Sswp = {swp1, swp2, · · · , swpm}
can be separated and chained in any random order. i.e.,
X

′
= Z

{swp1}
p (Z

{swp2}
p · · ·Z{swpm}p (X)).

Proof: A primal transformation is isomorphic to a set of
row and column permutations. Assume the row and column
permutation matrices (each is a square orthogonal binary
doubly stochastic matrix) corresponding to set Sswp are P
and Q, so that PXQ permutes the rows and columns of
X appropriately. If row i is unaffected the ith column of P,
pi = ei (the ith column of the identity matrix) and then P =∏m
λ=1 Pλ, where Pλ represents the separated permutation

matrix for the λth swap loop, will have a non-interfering
form so that the order of product does not matter. Thus we
have X′ = PXQ = P1P2 · · ·PmXQmQm−1 · · ·Q1 (order
of Pλs do not matter, nor do Qλs analogously), which is
equivalent to X′ = Z

{swp1}
p (Z

{swp2}
p · · ·Z{swpm}p (X)).

However, many times independent swap loops can not be
directly obtained. Instead, an independent swap loop may
be composed of multiple dependent swap loops that share
rows/columns on some path segments.

Theorem 4.3: Two dependent swap loops with overlapping,
reversed segments can be amalgamated into a new swap loop,
and vise versa.

Proof: A directed path segment can be conveniently
represented as vector ~π. Path segments ~π1 and ~π2 sharing the
same rows or columns, but with different directions, cancel via
~π

′
= ~π1+ ~π2, which has interpretation as a task (robot) handed

from one robot (task) to another, but then passed back again.
Such cancellation must form a loop because each merger
collapses one pair of such segments, consistently connecting
two partial loops. The opposite operation (decomposition)
involves analogous reasoning.

While ordering of independent swap loops is unimportant,
the number, size and, order of dependant loops matter.

Theorem 4.4: When K < n, K-swaps are susceptible to
local minima.

Proof: A K-swap loop involves at most K robots and K
assigned tasks. Quiescence results by reaching equilibrium af-
ter sufficient K-swaps so that no more swaps can be executed.
Robots and their assigned tasks involved in the K-swap can
form a smaller sub-assignment of size K. Thus, we have

(n
K

)
possible such sub-assignments, and all of them are optimal at
equilibrium. Assume the set of these sub-assignments is SA =
{Aγ}, where γ ∈ [1,

(n
K

)
]. Aγ = {Rγ , Tγ} represents the sub-

assignment with robot (task) index set |Rγ | = K (|Tγ | = K).
Therefore, the dual program for each sub-assignment is:

max g(Aγ) =
∑
i∈Rγ

ui +
∑
j∈Tγ

vj , (5)

subject to ui + vj ≤ cij , ∀i ∈ Rγ , j ∈ Tγ . (6)

If we put all the sub-assignments together, the whole
assignment problem can be written in the form(

n− 1

K − 1

)−1 ∑
γ∈[1,|SA|]

max g(Aγ) (7)

subject to ui + vj ≤ cij ∀i, j, (8)

where the first term in the product accounts for the re-
peated summation of each dual variable. By the fact that∑
i∈I,zi∈Z(max zi) ≥ max

∑
i∈I,zi∈Z zi, we have(

n− 1

K − 1

)−1 ∑
γ∈[1,|SA|]

max g(Aγ) ≥ max g(A) (9)

where A is the original n × n assignment. With the duality
theorems, this is equivalent to(

n− 1

K − 1

)−1 ∑
γ∈[1,|SA|]

min f(Aγ) ≥ min f(A). (10)

So even completing every possible K−swap, and doing so
until equilibrium is reached, may still end sub-optimally.

V. AN OPTIMAL SWAP-BASED PRIMAL METHOD

The preceding results suggest that to obtain the optimal
primal transformation, one seeks a set of independent swap
loops, but that these can be equivalently sought as a series of
dependent swap loops. The primal assignment method we de-
scribe achieves it iteratively and avoids local minima because
later swaps may correct earlier ones based on “enlarged” views
that examine increasing numbers of rows and columns. The
essence of the primal assignment method is that, at any time,
the primal solution’s feasibility is maintained (i.e., the mutual
exclusion property is satisfied), while infeasible dual variables
are manipulated under the complementary slackness condition.
At each iteration either an admissible primal transformation is
found, or a new improved set of dual variables are obtained.
Once all reduced costs are feasible, the primal and dual
solutions simultaneously reach their (equal valued) optimum.

The method is described in Algorithms V.1–V.4 in some
detail to ensure that the pseudo-code is appropriate for straight-
forward implementation.

Algorithm V.1 PRE-PROCESS (C̄, u, v)
1: initiate n min-heaps h[n] := {null}
2: for i := 1 to n do
3: for j := 1 to n do
4: if C̄[i][j] ≥ 0 AND j 6= a(i) then
5: make pair p := 〈label = j, value = C̄[i][j]〉
6: insert p into h[i]

7: return min-heaps h

Note: Variable ui and u[i] are equivalent, vector v ≡ v[n], matrix C̄ ≡ C̄[n][n].

A. Algorithm V.1: Pre-processing
At each stage, the reduced cost matrix C̄ is pre-processed

before searching for a swap loop: a separate min-heap is used
to maintain the feasible reduced costs in each row, such that
smallest values (root elements) can be extracted or removed
efficiently.



(a) (b)
Fig. 3. (a) Path segments are bridged with one another while searching for
swap loops. Shaded entries are currently assigned, and bold edged entries have
reduced costs equal to zero. Waved lines represent the paths found after dual
adjustments; (b) The associated tree data structure that aids efficient searching.

B. Algorithm V.2: Searching for Swap Loops
Any swap loop yields an admissible primal transformation.

Loops are sought by bridging path segments in the reduced
costs matrix. A horizontal path segment is built from a
currently assigned entry to a new entry with reduced cost of
zero in the same row. Vertical path segments are implicitly
identified as from unassigned entries equal to zeros to the
unique assigned entries in the respective column. Fig. 3(a)
shows the process. The search uses a tree, expanded in a
breadth first fashion, to find the shortest loop; a dead-end (i.e.,
empty queue) triggers the dual adjustment step.

Algorithm V.2 SWAP LOOP (C̄, h, δ, x, y)
1: starting row rs := x, column ts := y, SR := ST := ∅
2: initiate r := a−1(y), t := y, V path(t : rs → r)
3: push r into queue Q, color(SR ∪ {r};ST ∪ {ts})
4: while Q not empty AND Q.front 6= rs do
5: r := Q.front, Q.pop once
6: initiate set Sδ := {r}
7: for each r ∈ Sδ do
8: t := h[r].extract.label
9: while p(r, t)† = 0 do

10: if t /∈ ST then
11: Hpath(r : a(r)→ t), V path(t : r → a−1(t))
12: push a−1(t) into Q, color(SR∪{a−1(t)};ST ∪{t})
13: h[r].remove root element and update root
14: update t := h[r].extract.label
15: if Q empty then
16: DUAL ADJ (C̄, Q, h, δ, Sδ , rs, ts)
17: if updated Sδ not empty then
18: go to STEP 7
19: return
20: Hpath(rs : t→ ts), form a loop

†: p(·) is a projection of reduced cost, defined in (12) on page 5.

In Algorithm V.2, function t = a(r) denotes the assignent
for r is t and thus is used to extract the column index with
a given row index; the inverse does the reverse. Horizontal
(vertical) segments are constructed via Hpath(cur row : col1→
col2) (V path(cur col : row1 → row2)), where the three domains
represent the current row (column) containing the path, the
starting column (row) and the ending column (row) for the
segment, respectively. The coloring on visited rows/columns
is merely the set union operation.

C. Algorithm V.3: Dual Adjustments
Dual adjustment introduces entries with reduced costs equal

to zero so that the tree can be expanded. This is done by
changing the values of dual variables, which indirectly changes
the reduced costs of corresponding entries. Doing so can only
increase the size of the set of feasible reduced costs, thus the

dual adjustment will never deteriorate the current result. The
method subtracts the smallest feasible reduced cost from all
visited (colored) rows and adds it to every visited columns,
producing at least one new 0-valued reduce cost(s). Red arrows
in Fig. 3 illustrate such procedure.

Algorithm V.3 DUAL ADJ (C̄, Q, h, δ, Sδ , rs, ts)
1: array top d[n] := {∞}, col d[n] := {0}
2: for i := 1 to n do
3: if row i ∈ SR then
4: top d[i] := p(i, h[i].extract.label)
5: min δ := min{top d[i]}
6: if min δ > 0 then
7: update Sδ := {i | top d[i] = min δ}
8: else
9: min δ := −p(rs, ts)

10: for i := 1 to n do
11: if row i ∈ SR then
12: update δ[a(i)] := δ[a(i)] +min δ
13: col d[i] := p(i, ts)
14: if min{col d[i]} ≥ 0 then
15: terminate current stage
16: update starting row rs := argmini{col d[i]}
17: if rs ∈ SR then
18: Hpath(rs : a(rs)→ ts), form a loop
19: terminate current swap loop searching

The whole algorithm is organized in Algorithm V.4.

Algorithm V.4 PRIMAL (C)
1: init arrays u[n] := {0}, v[n] := diag(C), C̄[n][n] := {0}
2: for i := 1 to n do
3: update matrix C̄ with c̄i′ j′ = ci′ j′ − ui′ − vj′ , ∀i

′
, j

′

4: if min{C̄[:][i]} < 0 then
5: array δ[n] := {0}
6: heap h[n] := PRE-PROCESS(C̄, u, v)
7: check the ith column of C̄, get smallest-valued entry (x, y)
8: SWAP LOOP(C̄, δ, h, x, y)
9: for j := 1 to n do

10: u[j] := u[j] + δ(a(j)), v[j] := v[j]− δ[j]
11: v[y] := v[y]− |C[x][y]− ux − vy| so that C̄[x][y] = 0
12: if a swap loop found, swap tasks to augment solution

Next, we return to the relation of this method to the
Balinski-Gomory’s primal technique [21]. Theoretical com-
plexity and empirical results below show the superiority of the
swap-based approach. Nevertheless, it is worthwhile to address
the conceptual differences in detail as a common underlying
idea is involved: they employ an iterative labelling and up-
dating techniques to seek a chaining sequence of alternating
primal variables, which are used to adjust and augment the
primal solutions. Three aspects worth highlighting are:
1) The swap loop search incorporates the dual adjustment
procedure. Balinski-Gomory’s method may require n rounds
of traversals and cost O(n) times more than the traversal
based on building and maintaining our tree. This modifica-
tion is most significant for the decentralized context as each
traversal involves communication overhead.

2) Instead of directly updating u,v, the δ array accumulates
the dual variable adjustments during each stage. All updates



are transferred to u and v after the whole stage is terminated:

u′i =

{
ui +

∑
ω δ

(ω)

a(i), ∀i ∈ SR
ui otherwise

v′j =

{
vj −

∑
ω δ

(ω)
j , ∀j ∈ ST

vj otherwise
(11)

where SR and ST are index sets of colored rows and
columns, respectively, and ω is the index of iterations. The
benefit lies in that reduced costs in the whole matrix need not
updated on each dual variables adjustment. Instead, query
of reduced cost c̄′ij for individual entry (i, j) during an
intermediate stage can be obtained via a projection p(i, j):

c̄′ij = p(i, j) = c̄ij + δj − δa(i). (12)

3) Swap loops are found more efficiently: for example, the
heaps, coloring sets and tree with alternating tree nodes —
assigned entries with n-ary branches, and unassigned entries
with unary branches — quickly track the formation of loops
even when the root is modified (Step 16 of Algorithm V.3).

D. Correctness
Assume the starting infeasible entry of matrix is (k, l) with

reduced cost c̄kl = ckl − uk − vl < 0.
Theorem 5.1: Once a task swap loop starting from entry

(k, l) is obtained, the task swaps must lead to an admissible
primal transformation.

Proof: Term cijxij contributes to f(X) =
∑
i,j cijxij ,

only when binary variable xij = 1. Also cij = ui+vj via (3).
From (11):

f(X′)− f(X) =
∑
i,j

(u′i + v′j)−
∑
i,j

(ui + vj)

=
∑
i

(
u′i − ui + v′a(i) −va(i)

)
=
∑
i

(∑
ω

δ
(ω)

a(i) −
∑
ω

δ
(ω)

a(i)

)
+ ξ = ξ,

(13)

where ξ = v′l − vl = −|ckl − uk − vl| < 0 (see Step 11
in Algorithm V.4). So after a swap, the value of the primal
objective must decrease.

Theorem 5.2: If no task swap loop starting from entry (k, l)
is found, an admissible dual transformation must be produced.

Proof: First, feasible reduced costs remain feasible:
c̄
′
ij = cij − u

′
i − v

′
j

= cij − ui −
∑
ω

δ
(ω)

a(i) − vj +
∑
ω

δ
(ω)
j

=

{
c̄ij ≥ 0, ∀i ∈ SR, j ∈ ST
c̄ij −

∑
ω δ

(ω)

a(i) ≥ 0, ∀i ∈ SR, j /∈ ST .

(14)

Second, at least c̄kl will become feasible which leads to
the termination before formation of a swap loop, even in the
sophisticated strategy allowing dynamic updating of starting
entry (See step 16 of Algorithm V.3). This proves that the set
of feasible reduced costs must increase.

Theorems 5.1 and 5.2 also imply that an admissible primal
transformation must be an admissible dual transformation, but
not vice versa. So a set of feasible reduced costs must increase
over stages that start from infeasible entries, proving that the
algorithm must terminate. Algorithm V.4 requires at most n
stages because in each stage the smallest infeasible reduced

(a) (b) (c) (d)
Fig. 4. Swap loop searching in a multi-robot system using Euclidean distance
as cost metric. Circles represent robots and triangles denote the tasks. The
graphs can also be interpreted as Hypergraphs.

cost in each column is selected (Step 7 of Algorithm V.4),
all other infeasible entries in the same column will thus, also
become feasible.

E. Time Complexity
The pre-processing using min-heaps for any stage re-

quires O(n2 lg n). During each stage, there are at most n
DUAL ADJs for the worst case and each needs O(n) time
to obtain min δ via the heaps. Visited columns are colored in
a sorted set and are never considered for future path bridging
in any given stage. There are at most n2 entries to color
and check, each costs O(lg n), yielding O(n2 lg n) per stage.
Therefore, the total time complexity for the whole algorithm
is O(n3 lg n) and the light-weight operations lead to a small
constant factor.

By way of comparison, Balinski-Gomory’s primal
method [21] uses O(n2) searching steps with O(n2) time
complexity for each step. Some researchers [22, 23] have
suggested that it may possible to further improve the time
complexity to O(n3) using techniques such as the blossom
method [11]. To the best of our knowledge, no such variant
has been forthcoming.

In addition, although min-heaps in Algorithm V.1 are cre-
ated in a separate step for the algorithmic description reason,
in practice they can be constructed on the fly only when they
are required, through which a better practical running time
can be obtained although the time complexity is unchanged.
Experimental results also show that using a fast approximation
algorithm for initialization produces running times close to
the fastest existing assignment algorithms with O(n3) time
complexity.

VI. DISTRIBUTED VARIANTS
Distributed variants of our primal method are easily ob-

tained. Swap loops are searched via message passing: mes-
sages carrying dual variables (u,v) and dual updates δ are
passed down the tree while searching progresses. The idea is
illustrated in Fig. 4 for a single swap loop searching stage with
four robots. The green lines show the initial pairwise robot-
task assignment; the red arrows show bridging edges found by
searching for a swap loop starting from a selected pair. If the
path ending pair connects to the starting pair, then a swap loop
has been found (Fig 4(c)) and tasks may be exchanged among
robots in the loop. The new assignment is finally shown in
Fig. 4(d).

Unlike centralized algorithms, the cost matrix may be not
globally visible. Instead, each robot maintains and manipulates
its own cost vector associated with all tasks. A noteworthy
feature is that a robot need not know the cost information
of other robots, since the two arrays of dual variables are



shared. We do assume that the initial assignment solution and
the corresponding costs for the assigned robot-task pairs are
known by all robots, so the initial reduced costs for each robot
may be calculated locally.

The algorithm has two roles: an organizer robot that holds
the starting infeasible entry, and the remainder being member
robots (but with unique IDs). The organizer initiates a swap
loop search iteration at stage m, by communicating a message
containing the dual information um−1,vm−1 obtained from
stage m−1, as well as a newly created dual increment vector
δm. A successor robot is located from either the assignment
information or the newly found feasible and orthogonal entries
satisfying the complementary slackness, as presented in the
centralized version. When a path can no longer be expanded,
member robots at the respective “dead-ends” request a dual
adjustment from the organizer. Once the organizer has col-
lected requests equal to the number of branches, it computes
and transmits δm. The process continues until a swap loop is
found and tasks are exchanged. At this point, the organizer
either re-elects itself as next stage’s organizer, or hands over
the role to other robots, based on different strategies discussed
below. The roles are described in Algorithms VI.1 and VI.2.

Algorithm VI.1 Organizer (um−1, vm−1, δm)
1: initiate: . only once
2: decide starting entry xm, ym for current stage m
3: send msg(um−1,vm−1) to member with ID a−1(y)
4: listening:
5: if all involved IDs request dual adjustments then
6: compute δm, send it it to corresponding ID(s)
7: endif
8: if swap loop formed then
9: with δm, update um−1,vm−1 to um,vm for next stage

10: decide next organizer j and send msg(um,vm) to ID j

Algorithm VI.2 Member[i] (organizer ID, um−1, vm−1, δm)
1: update c̄ij ∀j with received um−1,vm−1 ,δm
2: if {j | c̄ij = 0} 6= ∅ then
3: for each j of {j | c̄ij = 0, j 6= a(i)} do
4: send (um−1,vm−1, δm) to ID a−1(j)
5: send newly involved IDs and No. of new branches to organizer
6: else
7: send min{c̄ij|c̄ij > 0,∀j} to organizer, request dual adjustment

Once a reduced cost becomes feasible it never becomes
infeasible again (see Theorem 5.2) so the algorithm needs to
iteratively transform each infeasible reduced cost to approach
global optimality. Two different approaches for locating and
transforming the infeasible values lead to two versions of the
algorithm: task-oriented and robot-oriented variants.
A. Task Oriented Variant

The task oriented approach attempts to cover all infeasible
reduced costs of one task before moving to the costs of
other tasks; it is, thus, operates column-wise in the cost
matrix. The task oriented approach mimics the procedure
of the centralized version: for any given task (column), the
robot holding the smallest projected infeasible reduced cost is
elected as organizer. During the swap loop searching stages,
it is possible that after some DUAL ADJs one members can

(a) (b)
Fig. 5. Illustrations of task oriented (a) and robot oriented (b) strategies. Here
shaded entries have infeasible reduced costs. Solid and void stars represent
current starting entry and (possibly) next starting entry, respectively.

hold a “worse” projected infeasible reduced cost. Therefore,
after each update of δ, the organizer must check all involved
members within the current tree, and hands over the organizer
role if necessary.

B. Robot Oriented Variant

The robot oriented method aims to covering all infeasible
reduced costs of one robot before transferring to another robot;
it works in a row-wise fashion. The organizer is randomly
selected from all members that hold infeasible reduced costs,
and keeps the role for the whole stage. Monitoring of “worse”
projected costs is not required, but the each stage only
guarantees that the starting entry will become feasible, not
others. This means the organizer may need to iteratively fix
all its associated infeasible reduced costs at each stage before
transferring the role to a successor organizer. /

To compare, (A.) the advantage of the task-oriented scheme
lies in that at most n stages are needed to reach global
optimality, since each stage turns all infeasible reduced costs
to feasible associated with a task. Its disadvantage is the extra
communication because at the beginning of each stage, the
member holding the smallest reduced cost for the chosen task
has to be determined; additional communications are involved
in the monitoring aspect too. (B.) the robot oriented strategy
has greater decentralization and eliminates extra monitoring
communication (disadvantage mentioned in the task oriented
scheme). At any stage only a subset of robots need be involved
and no global communication is required. The disadvantage of
this variant is that a total of O(n2) stages (note, each stage
is equivalent to O(n) steps of Balinski-Gomory’s method) is
needed.

VII. EXPERIMENTS

Three forms of experiment were conducted: run-time per-
formance of the centralized algorithm, access pattern analysis,
and comparison of the decentralized variants.

(a) (b)
Fig. 6. Comparison of running times: (a) Time from an optimized Hungarian
method, the Balinski-Gomory’s method, and the swap-based algorithm. Primal
methods start with random initial solutions; (b) Running time is improved
when the algorithm is combined with a fast approximation method.



(a) (b)
Fig. 7. (a) Linear solution quality and running time from different initial
solutions (matrix size: 100×100); (b) Entries traversed during stages.

A. Algorithmic Performance Analysis

We implemented both our swap-based algorithm and
Balinski-Gomory’s method in C++ (with STL data struc-
tures), and used an optimized implementation of Hungarian
algorithm (O(n3) complexity) available in the dlib library
(http://dlib.net) for comparsion. The experiments were
run on a standard dual-core desktop with 2.7GHz CPU with
3GB of memory. Fig. 6(a) shows the performance results.
We can see that the swap-based algorithm has a significantly
improved practical running time over the Balinski-Gomory’s
method. The flexibility of the algorithm allowed for further
improvement: fast approximation algorithms can give a rea-
sonable initial assignment. Fig. 6(b) shows the improvement
using an extremely cheap greedy assignment that assigns the
robot-task pairs with lowest costs first, in a greedy manner.
This reduces the practical running time to be very close to the
Hungarian algorithm, especially for matrices with n < 300.

To analyze solution quality as a function of running-time,
we computed scenarios with 100 robots and 100 tasks with
randomly generated cij ∈ [0, 104] ∀i, j. The solution qualities
and consumed time for individual stages is illustrated in
Fig. 7(a). The solution quality is measured by parameter η
calculated as a ratio of current solution αi at current stage i
to the final optimum αn, i.e., η = αi/αn ≥ 1. In each figure,
the three series represent initial assignments with different
“distances” to the optimal solution. A 60% processed initial
solution means the initial solution is α60 (the solution output
at 60th stage from a random initialization). The matrix is
column-wise shuffled before the input of a processed solution
such that a new re-computation from scratch can be executed
(otherwise it is equivalent to the continuing computation). We
can see that the solution qualities for all three scenarios change
approximately linearly with the number of stages, which
indicates the “step length” for the increment is a constant.
From this observation, computational resources and solution
accuracy are fungible as each is controllable in terms of the
other. Given a current solution αm at the mth stage (m ≥ 1) as
well as an initial solution α0, the optimum can be estimated:

α̂n = α0 +
n

m
(αm − α0) = α0 + n∆s, (15)

where ∆s ≥ 0 is the step length of solution increment. To
bound the accuracy within 1 + ε, where ε ≥ 0, assume we
need to stop at θth stage, then

α0 − θ∆s

α̂n
≤ 1 + ε =⇒ θ ≥ α0 − (1 + ε)(α0 − n∆s)

∆s
. (16)

(a) (b)
Fig. 8. Quantities of involved rows (robots) and lengths of swap loops over
stages (matrix size is 100×100). (a) Results from random initial solutions;
(b) Results from greedy initial solutions.

B. Access Patterns Imply Suitability for Distribution
Intuitively, entries in the spanning tree during each stage

reflect the cost of communication.∗ Thus, we compared the
access pattern of our swap-based algorithm with Balinski-
Gomory’s method on 100× 100 matrices with random initial
assignment as used. Fig. 7(b) shows that swap-loop traversal
results in a large reduction in accesses: the average is ∼ 100
for each stage, in contrast with Balinski-Gomory’s method
requiring ∼ 700 with larger standard deviations (actually,
reaching more than 8, 000 traversals when many dual ad-
justments occur). The results quantify claims made about the
swap-based method fitting a decentralized paradigm.

We also investigated the total number of rows (and, cor-
respondingly, columns) involved during each stage, which
reflects the number of involved robots in decentralized ap-
plications, as well as the size of swap loop formed at the end
of the stages (defined as the number of colored rows). Fig. 8
show results from random (left plot) and greedily (right plot)
initiated solutions. We see that the number of involved rows
can be significantly reduced given better initial solutions, and
loops are comparatively small for either cases.

More detailed statistics are given in the table below. We
conclude that improving initial assignment solutions, not only
improves running time, but also the degree of locality in
communication and computation. The averaged longest swap
lengths show that the admissible primal transformations are
a series of small swaps (one can regard the longest length
equivalent to K of K-swaps), but which still attains optimality.

STATISTICS OF SWAP LOOPS AMONG STAGES (MATRIX SIZE 100)

Initial solution No. loops Avg. length Avg. longest Avg. involved
random initiation 97.12 10.16 21.06 46.72
30% processed 71.90 7.34 19.97 34.29
60% processed 47.20 4.46 14.56 23.92

greedy initiation 24.86 2.30 11.80 16.14
Note: The last three columns denote the averaged lengths, the averaged longest lengths
of swap loops, and the averaged number of colored rows in single stages, respectively.

C. Results from Decentralized Variants
We also implemented both variants of the decentralized

algorithms and distributed them over five networked computers
for testing. The implementations can be directly applied to
distributed multi-robot task-assignment, e.g., as the test routing
problems in [24]. The hosts were given unique IDs from
1 to 5, and communication performed via UDP, each host

∗Every traversed entry on the path segments, no matter it is assigned or
unassigned, must connect to a new entry in other rows, requiring a message
be passed. The number is approximately half of all the traversed entries since
each entry is counted twice for the analysis of communication complexity.



(a) (b) (c)
Fig. 9. Performance of the task oriented (T-O) and robot oriented (R-O)
decentralized implementation. Measurements of 5 hosts to 5 tasks.

running a UDP server to listen to the messages sent by its
peers. Information such as the IDs of machines, values of
dual variables, requests of dual adjustments, etc., were encoded
via simple protocols over the message passing. To initiate the
system, we inject 5 tasks with IDs from 1 to 5 and each
machine randomly generates an array of cost values associated
with these 5 tasks. The initial allocation assigns every machine
with ID to the task with the identical ID; the corresponding
costs for these assigned pairs are communicated. An initial
organizer is randomly selected.

Both distributed variants of the algorithm were tested.
Fig. 9(a) shows the number stages used for the two schemes
(average and variance for 10 separate instances). Fig. 9(b) and
Fig. 9(c) show the communication cost (number of messages)
and robots involved (ever having received/processed messages)
per stage, respectively. These empirical results also validate the
claims made above: (i) the task oriented scheme requires fewer
stages, but has greater communication per stage; (ii) although
the robot oriented method uses more stages, less the commu-
nication and fewer the robots are involved, indicating more
local computation and communication.

VIII. CONCLUSION
Strategies of task swaps are a natural paradigm for de-

centralized optimization and have been used for years (and
identified independently by several groups). It is now, using the
algorithm we present, that optimality can be guaranteed with
these same primitive operations. Additionally, we have sought
to emphasize the useful any-time aspect of primal techniques.

In summary, we highlight features of the introduced method:
Natural primitives and optimality: the method is based on task

swap loops, a generalization of O-contracts, task-exchanges,
and K-swaps; these are techniques which have intuitive inter-
pretations in distributed systems and natural implementations.
However, unlike other swap-based methods, global optimality
can be guaranteed.

Computational flexibility and modularity: the algorithm can
start with any feasible solution and can stop at any non-
decreasing feasible solution. It can be used as a portable
module to improve non-optimal assignment methods, e.g.,
some variants of market-based, auction-like methods.

Any-time and efficiency: Unlike primal techniques for gen-
eral LPs, optimality is reached within strongly polynomial
time. Initialization with fast approximation methods makes
it competitive practically, and it can potentially be further
accelerated. Additionally, the linear increase in the solution
quality makes balancing between the computation time and
assignment accuracy possible.

Ease of implementation: the algorithm uses simple data
structures with a straightforward implementation that is much
simpler than comparably efficient techniques.
Ranked solutions: assignments are found with increasing
quality, allowing fast transitions to good choices without re-
computation if commitment to the optimal assignment fails.

Decentralized Variants, Local Computation & Communica-
tion: a small subset of robots are found to be typically
involved. The decentralized variants of the algorithm require
no single privileged global controller. They allow one to
choose to trade between decentralization (communication)
and running time (number of stages).

REFERENCES

[1] S. Zilberstein, “Using Anytime Algorithms in Intelligent Systems,” AI
Magazine 17(3), 1996.

[2] L. E. Parker, “Multiple Mobile Robot Systems,” in Handbook of
Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2008, ch. 40.

[3] M. Golfarelli, D. Maio, and S. Rizzi, “Multi-agent path planning based
on task-swap negotiation,” in Proc. UK Planning and Scheduling Special
Interest Group Workshop, 1997, pp. 69–82.

[4] M. B. Dias, , and A. Stentz, “Opportunistic optimization for market-
based multirobot control,” in Proc. IROS, 2002, pp. 2714–2720.

[5] L. Thomas, A. Rachid, and L. Simon, “A distributed tasks allocation
scheme in multi-UAV context,” in Proc. ICRA, 2004, pp. 3622–3627.

[6] T. Sandholm, “Contract types for satisficing task allocation: I Theoretical
results,” in AAAI Spring Symp: Satisficing Models, 1998, pp. 68–75.

[7] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein, “Ad Hoc
Autonomous Agent Teams: Collaboration without Pre-Coordination,” in
Proc. AAAI, 2010.

[8] X. Zheng and S. Koenig, “K-swaps: cooperative negotiation for solving
task-allocation problems,” in Proc. IJCAI, 2009, pp. 373–378.

[9] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval Research Logistic Quarterly 2:83–97, 1955.

[10] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems.
New York, NY: Society for Industrial and Applied Mathematics, 2009.

[11] J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems,” J. ACM 19(2):248–264, 1972.

[12] D. P. Bertsekas, “The auction algorithm for assignment and other
network flow problems: A tutorial,” Interfaces 20(4):133–149, 1990.

[13] A. V. Goldberg and R. Kennedy, “An Efficient Cost Scaling Algorithm
for the Assignment Problem,” Math. Program. 71(2):153–177, 1995.

[14] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” IJRR 23(9):939–954, 2004.

[15] M. Nanjanath and M. Gini, “Dynamic task allocation for robots via
auctions,” in Proc. ICRA, 2006, pp. 2781–2786.

[16] S. Giordani, M. Lujak, and F. Martinelli, “A Distributed Algorithm for
the Multi-Robot Task Allocation Problem,” LNCS: Trends in Applied
Intelligent Systems, vol. 6096, pp. 721–730, 2010.

[17] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-Based Multirobot
Coordination: A Survey and Analysis,” Proc. of the IEEE, 2006.

[18] S. Koenig, P. Keskinocak, and C. A. Tovey, “Progress on Agent
Coordination with Cooperative Auctions,” in Proc. AAAI, 2010.

[19] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” in Robotics: Science and Systems, 2005.

[20] G. Dantzig, Linear Programming and Extensions. Princeton University
Press, Aug. 1963.

[21] M. L. Balinski and R. E. Gomory, “A primal method for the assignment
and transportation problems,” Management Sci. 10(3):578–593, 1964.

[22] W. Cunningham and I. A.B. Marsh, “A Primal Algorithm for Optimum
Matching,” Mathematical Programming Study, pp. 50–72, 1978.

[23] M. Akgül, “The linear assignment problem,” Combinatorial Optimiza-
tion, pp. 85–122, 1992.

[24] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby,
P. Griffin, and A. J. Kleywegt, “Robot Exploration with Combinatorial
Auctions,” in Proc. IROS, 2003, pp. 1957–1962.


