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Abstract—In this paper we use a sequence-based visual 
localization algorithm to reveal surprising answers to the 
question, how much visual information is actually needed to 
conduct effective navigation? The algorithm actively searches for 
the best local image matches within a sliding window of short 
route segments or ‘sub-routes’, and matches sub-routes by 
searching for coherent sequences of local image matches. In 
contrast to many existing techniques, the technique requires no 
pre-training or camera parameter calibration. We compare the 
algorithm’s performance to the state-of-the-art FAB-MAP 2.0 
algorithm on a 70 km benchmark dataset. Performance matches 
or exceeds the state of the art feature-based localization 
technique using images as small as 4 pixels, fields of view reduced 
by a factor of 250, and pixel bit depths reduced to 2 bits. We 
present further results demonstrating the system localizing in an 
office environment with near 100% precision using two 7 bit 
Lego light sensors, as well as using 16 and 32 pixel images from a 
motorbike race and a mountain rally car stage. By demonstrating 
how little image information is required to achieve localization 
along a route, we hope to stimulate future ‘low fidelity’ 
approaches to visual navigation that complement probabilistic 
feature-based techniques.  

Keywords-localization, route recognition, visual navigation, 
featureless 

I.  INTRODUCTION 

Current state of the art visual navigation systems are 
dominated by probabilistic feature-based techniques such as 
FAB-MAP [1], FrameSLAM [2], and MonoSLAM [3]. These 
techniques have displayed impressive performance in a range 
of experiments, the largest of which have occurred over 
distances of 1000 km [1]. These feature-based approaches have 
desirable properties such as easy integration with metric pose 
estimation and semantic mapping techniques, and the ability to 
localize off a single image. However, such approaches also 
have shortcomings. Many require training on a suitable dataset 
to develop a visual ‘codebook’ before they can be applied in an 
environment, and using an inappropriate codebook can result in 
poor system performance. Feature-based techniques also rely 
on being able to reliably detect features, a requirement that is 
difficult in changing environmental conditions caused by 
weather, day-night cycles and seasons. The quest to map 
increasingly impressive datasets has been accompanied by a 
trend towards increasingly sophisticated algorithms, 
burgeoning sensor megapixel counts and large camera field of 
views. In this quest, one very important question has been 

largely neglected – what visual information is actually needed 
to conduct effective vision-based navigation?  

In this paper we present evidence to suggest that, at least for 
localizing along a route, a simple sequence-based localization 
algorithm is able to match or surpass the performance of a state 
of the art algorithm while using images with resolutions up to 
one millionth the size and less than two hundredth the field of 
view. Specifically, we make the following contributions: 

 a route recognition algorithm incorporating whole of 
appearance image comparison with Dynamic Time 
Warping [4] sequence recognition which requires no 
training and is not reliant on feature recognition, 

 extensive experimental results showing the effect of 
image resolution, camera field of view, pixel bit depth 
and sequence length, with comparison to a state of the 
art method on a publicly available, modern benchmark 
dataset, and 

 further experimental results from rally car, motorbike 
and office datasets, including localization using two 7 
bit Lego light intensity sensors. 

II. BACKGROUND 

The most relevant use of image sequences to localize was 
in work by [5], in which loop closure was performed by 
comparing sequences of images based on the similarity of 
128D vectors of SIFT descriptors. Due to its reliance on visual 
features, the method required the development of additional 
algorithms to address visual ambiguity caused by repetitive 
foliage or architecture features. The use of image sequence 
information has also been used to geo-locate a person based on 
a sequence of photos they have taken, even when none of the 
individual images contain recognizable features [6]. In contrast, 
the technique presented here forgoes the use of features and 
uses a novel image difference normalization scheme to partially 
address visual ambiguity.  

While there are a large number of vision-based mapping 
systems [1-3, 7, 8], few current implementations use low 
resolution images. Earlier research did use relatively low 
resolution visual images to perform navigation (for reasons of 
computation as much as anything else), including numerous 
early systems such as ALVINN [9] and insect-inspired 
algorithms [10]. More recently, low resolution approaches have 
been deployed on Sony AIBO robot dogs [11] and Pioneer 
robots [12], including the biologically inspired RatSLAM 



system [13]. In research fields outside of localization such as 
face recognition [14] and object recognition, matching using 
low resolution images has been found to be highly effective 
[15]. In this work we use image snapshots with up to two 
orders of magnitude less information than in these previous 
studies. The research presented here also builds on related work 
by the authors on localization using ‘whole of image’ 
appearance-based methods under extreme environmental 
change [16], in which it was shown that routes could be 
recognized over day to night, sunny to stormy and summer to 
winter transitions, albeit with image sizes of approximately 
1000 pixels. Therefore we do not specifically address extreme 
environmental change in this paper, but rather focus on pushing 
the boundaries even further on the minimum resolution, pixel 
bit depth, and field of view required to recognize a route under 
more modest change. 

III. APPROACH 

The algorithm consists of two primary modules, the image 
comparison algorithm and the sequence recognition algorithm.  

A. Image Similarity 

For panoramic images, mean absolute image differences D 
between the current image i and all stored images j are 
calculated using the mean absolute intensity differences, 
performed over a range of horizontal offsets: 
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where s is the area in pixels of the image. Setting   ,0  
enables recognition when traversing a route in reverse. For 
perspective cameras, σ can be set to span a range of offset 
angles to provide some invariance (assuming mostly distal 
features) to camera yaw. However, for the perspective camera 
datasets in this paper only a no offset case was used (  0 ). 

B. Sequence Matching 

Comparisons between the current image and all stored 
images yield a vector of image differences, as in [5]. The 
matrix M of image differences for the n most recent frames 
forms the space within which the search for matching sub-
routes is performed. The key processing step is to normalize 
the image difference values within their (spatially) local image 
neighborhoods, similar to the creation of standard scores in 
statistics (Figure 1a). The updated image difference vectors 
(Figure 1b) are given by: 
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where lD  is the local mean, σl is the local standard deviation, 
over a distance of Rw images acquired before and after the 
current image i, and σmin is a minimum standard deviation 

constant used to avoid undefined output, set to 1/256 of the 
intensity range in this paper. Rw was set to 10 frames for all 
experiments in this paper. Normalizing the difference values in 
local image neighborhoods is a process that would be 
counterproductive when localizing off single frames. However, 
in the context of recognizing sequences of images, this process 
ensures there are clear locally best matching images in every 
sub-route along the entire stored set of routes, to some extent 
negating the effect of global biases such as lighting changes 
and image commonalities. 

To find likely route matches, we perform a continuous 
version of the Dynamic Time Warping (DTW) method 
proposed by Sakoe and Chiba  [4]. We impose continuity and 
slope constraint conditions to constrain the search space. The 
boundary condition and monotonically increasing constraints 
are not applicable due to uncertainty in velocity and the need to 
match both forward and reverse traverses of a route. The search 
is continuous in that searches are started at every element in the 
left column of the image difference matrix (shown by the small 
solid circles in Figure 1). 

 
Figure 1. The image difference matrix M (a) before and (b) after 

normalization, with small circles showing the elements where each search 
originates. Only the bottom section of the difference matrix is shown. 

The output of the DTW search produces a vector of sub-
route matching scores for each search origin and each slope 
condition. The best matching sub-route is determined as: 
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where m is the number of stored images and s(i) is the 
normalized sub-route difference score for sub-route i over all 
slope constraints: 
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The vector di contains the difference scores for sub-route i over 
all slope possibilities k: 
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where n is the sub-route length and u(i, j, k) provides the 
element row index in the image difference matrix: 

    kvjikjiu tan,,   

where vk is a specific slope constraint. The slope constraint is 
set to span a range of values that encompass possible frame rate 
variations. For constant frame rate scenarios, such as the 



Eynsham dataset or datasets with odometry, it is possible to use 
a small range or even single value of vk. 

By considering the sum of sub-route difference scores s(i) 
as a sum of normally distributed random variables, each with 
the same mean and variance, the sum of normalized differences 
over a sub-route of length n frames has mean zero and variance 
n, assuming that frames are captured far enough apart to be 
considered independent. Dividing by the number of frames 
produces a normalized route difference score with mean zero, 
variance 1/n. Percentile rank scores can then be used to 
determine an appropriate sub-route matching threshold. For 
example, for the primary sub-route length n = 50 used in this 
paper, a sub-route threshold of -1 yields a 7.7×10-13 chance of 
the match occurring by chance. 

To determine whether the current sub-route matches to any 
stored sub-routes, the minimum matching score is compared to 
a matching threshold sm. If the minimum score is below the 
threshold, the sub-route is deemed to be a match, otherwise the 
sub-route is assigned as a new sub-route. An example of the 
minimum matching scores over every frame of a dataset (the 
Eynsham dataset described in this paper) is shown in Figure 2. 
In the second half of the dataset the route is repeated, leading to 
lower minimum matching scores. 

 
Figure 2. Normalized sub-route difference scores for the Eynsham dataset 

with the matching threshold sm that yields 100% precision performance.  

IV. EXPERIMENTAL SETUP 

In this section we describe the four datasets used in this 
work and the image pre-processing for each study. 

A. Datasets 

A total of four datasets were processed, each of which 
consisted of two traverses of the same route. The datasets were: 
a 70 km road journey in Eynsham, the United Kingdom, 2 km 
of motorbike circuit racing in Rowrah, the United Kingdom, 40 
km of off-road racing up Pikes Peak in the Rocky Mountains, 
the United States, and 100 meters in an Office building (italics 
indicate dataset names). The Eynsham route was the primary 
dataset on which extensive quantitative analysis was 
performed. The other datasets were added to provide additional 
evidence for the general applicability of the algorithm. Key 
dataset parameters are provided in Table I, including the 
storage space required to represent the entire dataset using low 
resolution images. 

Figure 3 shows aerial maps and imagery of the Eynsham, 
Rowrah and Pikes Peak datasets, with lines showing the route 
that was traversed twice. The Eynsham dataset consisted of 

high resolution image captures from a Ladybug2 camera 
(circular array of five cameras) at 9575 locations spaced along 
the route. The Rowrah dataset was obtained from an onboard 
camera mounted on a racing bike. The Pikes Peak dataset was 
obtained from cameras mounted on two different racing cars 
racing up the mountain, with the car dashboard and structure 
cropped from the images. This cropping process could most 
likely be automated by applying some form of image matching 
process to small training samples from each of the camera 
types. The route consisted of heavily forested terrain and 
switchbacks up the side of a mountain, ending in rocky open 
terrain partially covered in snow. 

TABLE I.  DATASETS 

Dataset 
Name 

Distance 
Number of 

frames 
Distance between 

frames 
Image 

Storage 
Eynsham 70 km 9575 6.7 m (median) 306 kB 

Rowrah 
2km 440 4.5 m (mean) 7 kB 

http://www.youtube.com/watch?v=_UfLrcVvJ5o 

Pikes 
Peak 

40 km 4971 8 m (mean) 159 kB 
http://www.youtube.com/watch?v=4UIOq8vaSCc 
http://www.youtube.com/watch?v=7VAJaZAV-gQ 

Office 
53 m 832 0.13 m (mean) 1.6 kB 
http://df.arcs.org.au/quickshare/790eb180b9e87d53/data3.mat 

 
Figure 3. The (a) 35 km Eynsham, (b) 1 km Rowrah and (c) 20 km Pikes 
Peak routes, each of which were repeated twice. Copyright 2011 Google. 

 
Figure 4. (a) The Lego Mindstorms dataset acquisition rig with 2 sideways 
facing light sensors and GoPro camera for evaluation of matched routes. (b) 

The 53 meter long route which was repeated twice to create the dataset. 

B. Image Pre-Processing 

1) Eynsham Resolution Reduced Panoramic Images 
For the Eynsham dataset, image processing consisted of 

image concatenation and resolution reduction (Figure 5). The 
raw camera images were crudely cropped to remove overlap 
between images. No additional processing such as camera 
undistortion, blending or illumination adjustment was 
performed. The subsequent panorama was then resolution 
reduced (re-sampling using pixel area relation in OpenCV 
2.1.0) to the resolutions shown in Table II. 



 
Figure 5. Image pre-processing for the full panoramic images consisted of a 
crude image stitching stage followed by a reduction in image resolution. The 

current image was compared with 0° and 180° offsets to all stored images on a 
pixel by pixel basis to form the image difference matrix described in Section 

III.B. 

2) Reduced Field of View 
For the reduced field of view experiments, a small area 

representing 0.4% of the total panoramic image was extracted 
from the centre of the forward facing image (Figure 6). The 
resultant 80×60 pixel image was then resolution reduced to the 
sizes shown in Table II.  

 
Figure 6. To evaluate the effect of drastically reducing the field of view, an 

area representing 0.4% of the original panoramic image was extracted and 
resolution reduced.  

 
Figure 7. To evaluate the effect of reduced pixel bit depth, the resolution 

reduced panoramic images were resampled at 1 bit, 2 bit, 4 bit and 8 bit 
grayscale pixel depths. 

3) Reduced Pixel Depth 
Reduced pixel depths were obtained by reducing the bit 

depths of each pixel in the resolution reduced images 
(Figure 7). Grayscale image intensities were evenly distributed 
over the 256 values possible in an 8 bit intensity range, such 
that a 1 bit image had intensities values 85 or 171, a 2 bit image 
had intensity values 51, 102, 154 or 205 and so on. 

C. Precision-Recall Calculation 

To generate precision-recall curves, we used the manually 
corrected GPS data provided by the authors of the original 

study [1]. Detected route segment matches were classified as 
correct if the spatial distance separating the central frames of 
each route was less than 40 meters, as in the original study. 
Matches outside this distance were classified as false positives, 
with missed matches classified as false negatives. Matches 
were assessed for both traverses of the route, rather than just 
the second traverse. To generate each precision recall curve, we 
conducted a sweep over the range of matching threshold sm 
values. The range of values was chosen such that for most 
experiments, a complete range of recall rates from 0% to 100% 
was obtained. 

TABLE II.  IMAGE SIZES 

Dataset & Image Type Reduced Resolution Width×Height 

Eynsham panoramic images 
(original image 829440 pixels, 
1620×512) 

4 pixels 2×2 
8 pixels 4×2 
32 pixels 8×4 
128 pixels 16×8 
512 pixels 32×16 

Eynsham cropped images 
(original crop 4800 pixels, 80×60) 

2 pixels 2×1 
4 pixels 2×2 
16 pixels 4×4 
64 pixels 8×8 
256 pixels 16×16 

Rowrah 16 pixels 4×4 
Pikes Peak 32 pixels 8×4 
Office NXT 2×7 bit pixels 2×1 

V. RESULTS 

We present a range of results evaluating the performance of 
the system with varying image resolution, sequence length, 
pixel bit depth, and field of view. This extensive testing is 
performed on the 70 km Eynsham dataset, for which both 
ground truth and a state of the art comparison is available. We 
also present additional results demonstrating qualitatively the 
applicability of the technique to three other varied datasets to 
demonstrate the wide applicability of the technique. 

 
Figure 8. Precision recall curves for a range of reduced resolution panoramic 

images, with performance compared to four FAB-MAP implementations. 
Note the axis ranges. 

A. Precision-Recall 

The precision-recall performance using panoramic images 
from the Eynsham dataset is shown in Figure 8. At high 
precision levels, 4 pixel images produce superior performance 
to the baseline FAB-MAP performance. Increasing the 
resolution to 8 pixels enables the system to overtake the FAB-
MAP with motion model results, while with 32 pixels 



performance is superior (50% recall at 100% precision) to 
FAB-MAP with motion model and epipolar geometry, except 
between 86% and 89% recall rates. The sequence-based 
technique is also able to attain 100% recall, at 24%, 39%, and 
46% precision levels for 4, 8 and 32 pixel images respectively. 
Figure 9 shows a zoomed in comparison of the techniques. 
Performance gains are minimal above an image size of 32 
pixels. 

 
Figure 9. Enlarged plot of the high precision and recall performance curves. 
Note the rapidly reducing performance gains for image sizes above 32 pixels. 

B. Loop Closure Locations 

Although the precision performance using 32 pixel images 
is higher for a given recall rate compared to FAB-MAP, this is 
counteracted partly by inferior spatial loop closure coverage. 
Consequently, the algorithm requires a higher recall rate to 
achieve the equivalent loop closure coverage to FAB-MAP. 
Figure 10 shows the loop closures achieved at a 99% precision 
level, showing comparable loop closure coverage to the FAB-
MAP algorithm. The sections of the route where the algorithm 
failed to match a route were mostly due to the linear search 
constraints not finding sequence matches when frame capture 
spatial frequencies varied significantly. The reverse route is 
also only thoroughly recognized at higher recall rates (and 
precision levels below 100%). Further discussion of this issue 
is provided at the end of the paper. 

C. Sample Route Matches and Speed Ratios 

Figures 11-12 show matched sub-routes for both a forward 
(11) and reverse (12) sub-route match. The section of the image 
difference matrix in which the sub-route match was found is 
shown in panel (a), with white circles indicating the matching 
locations of five representative images from the matched sub-
route. Panels (b-c) show the corresponding images. 

Figure 13 shows a histogram of the relative frame sampling 
speed calculated for all matched sub-routes at the maximum 
recall, 100% precision point. The peak around 1 shows that 
frames were spatially sampled at similar rates during the 
second traverse of the route, while the small peak at -0.8 
indicates the sub-routes matched in reverse. 

D. Sequence Length 

Increasing sequence length had a positive effect on 
performance up to a point (Figure 14). Matching 10 frame 
sequences was clearly inadequate, but 20 frames provided 

performance superior at high precision levels to both the 
baseline and motion model FAB-MAP 2.0 performance. 50 
frame sequences provided the best performance at high 
precision levels, while 100 frame sequences provided the 
highest recall at lower precision levels. The 50 frame sub-route 
length (335 meters) is consistent with the warm start 
localization times of commercial GPS navigation systems of 
28.5 seconds [17] (380 meters at 30 miles per hour).  

 
Figure 10. Loop closure map for the Eynsham dataset using 32 pixel images 

at 99% precision and 82% recall. Loop closures are shown by the thicker 
green circles, with false positive matches shown by red crosses. 

 
Figure 11. (a) Image difference matrix for a matched sub-route, with white 

circles showing the corresponding matching frame pairs. The matching 
gradient was approximately 1, indicating this route segment was traversed at 

the same speed both times. (b) Frames from the second traverse and (c) 
matching frames from the first traverse of the route. The full frames are shown 

for visibility, although the actual processed images were low resolution 
versions of the top 75% of the frame.  

 
Figure 12. (a) Image difference matrix for the reverse traversal along a section 

of route. (b) Frames from the second traverse and (c) matching frames from 
the first traverse of the route. The matching route segment had a gradient of 

approximately -0.8, indicating that the route was traversed approximately 20% 
more slowly in reverse. 

E. Pixel Bit Depth 

The pixel bit depth had little effect on system performance 
beyond 2 bits (4 possible intensities). At a pixel depth of 2 bits, 



performance was superior to the best FAB-MAP 2.0 
performance at high precision levels, but had lower recall rates 
at lower precision levels. There was negligible difference in 
performance between 4 and 8 bit depths. A sequence length of 
50 frames was used for all the pixel bit depth results. 

 
Figure 13. Relative speed ratios calculated for matching Eynsham sub-routes 

at the 100% precision, maximum recall point.  

 
Figure 14. Precision-recall performance using 32 pixel images to match sub-

routes of 10, 20, 50 and 100 frames in length. 

 
Figure 15. Precision-recall performance using 32 pixel images with 1, 2, 4 
and 8 bit grayscale pixel depths. There was no significant improvement in 

performance above 4 bit pixel depths. 

F. Limited Field of View 

When limiting the field of view to 0.4% of the original 
panoramic image, the recall rate at 100% precision improved to 
56% for 16 pixel images, 67% for 64 pixel images, and 69% 
for 256 pixel images. The effect of increasing resolution was 
broadly the same as for the full field of view images, with gains 
rapidly diminishing after reaching about 32 pixels in resolution. 

 
Figure 16. Precision recall curves with a limited field of view equivalent to 

0.4% of the original panoramic image (see Figure 6). 

G. Rowrah Track Bike Dataset 

For the Rowrah, Pikes Peak and Office NXT datasets we 
did not have metric ground truth. Instead, we present the sub-
route recognition graphs at a performance level that was 
qualitatively assessed to be near 100% precision, by comparing 
the image sequences associated with the matched sub-routes. 
For the Rowrah dataset, all sub-routes were matched within a 
few frames of the correct location (each frame separated by an 
average of 8 meters), as shown in Figure 17a. The vertical axis 
shows the central frame number of the matching sub-route 
from the first traverse of the route. Figure 17b shows five 
frames obtained by evenly sampling a sub-route from the 
second traverse of the circuit, with Figure 17c showing the 
corresponding frames from the matching sub-route during the 
first circuit traverse. 

 
Figure 17. (a) Sub-route localization for the Rowrah dataset. (b) Frames from 

second route traverse and (c) matching frames from the first traverse. 

H. Pikes Peak Dataset 

The recall level at near 100% precision was around 50% for 
the Pikes Peak dataset (Figure 18). The lower recall rate was 
most likely due to significant changes in the racing-line taken 
by the car, larger variations in vehicle speed and the relatively 
bland nature of the environment, especially in the later 
mountainous stages.  

I. Office NXT Dataset 

The route matching performance for the NXT dataset is 
shown in Figure 19a.  Figures 19d and 19e show the NXT light 



sensor readings, with illustrative camera frames shown in 
Figures 19b-c. The first column (d) shows the pairs of light 
sensor readings obtained at that location during the second 
traverse, and the second column (e) shows the matched light 
sensor readings from the first route traverse. Manual inspection 
of the camera frames verified that every matched route segment 
was accurate to within approximately a meter. 

 
Figure 18. (a) Sub-route recognition for the Pikes Peak dataset. Recall was not 
achieved in sections of the 20 km route, most likely due to large variations in 

racing-line. (b) Frames from second traverse and (c) matching frames from the 
first traverse of the route. 

 
Figure 19. (a) Sub-route recognition for the Office NXT dataset. (b) Frames 
from second traverse and (c) matching frames from the first traverse of the 
route. (d) Light sensor readings from second traverse and (e) matching light 

sensor readings from the first traverse of the route. 

J. Computation and Storage 

In this section we describe the storage and computational 
requirements of the system and present a range of 
computational scenarios for the proposed visual GPS scenario. 

1) Storage 
At a pixel depth of 4 bits and an image size of 32 pixels, 

each stored image takes a total of 16 bytes. It is an informative 
exercise to calculate the storage required to store imagery from 
the entire global road network. According to the CIA World 
Factbook [18], the 191 countries surveyed have a total of 
approximately 70 million kilometers of paved and unpaved 
roads. Storing images every 5 meters of road would result in 
224 gigabytes of data, easily stored on a hard drive dating from 
2006 and current solid state media. Therefore it would be 
possible to store a global database of images either locally on a 

device, or easily download imagery from local areas. For 
example, a 10 megabyte download would provide 3000 km of 
road data, enough for a regional area.  

2) Computation 
All experiments performed in this paper were performed at 

real-time or better speed using unoptimized Matlab and C code. 
Computation is dominated by the search for matching sub-
routes. The primary factor affecting computation is the 
allowance for varying velocities when conducting the matching 
route segment search. Here we discuss the localization-only 
scenario where a library of images already exists, starting with 
the situation where self-motion information (such as car 
odometry) enables the search space to be constrained to a 
simple linear search.  

For a sub-route length of n frames, the dominant calculation 
is the nm frame comparisons that must be performed, where m 
is the number of visual templates stored in the template library. 
Each frame comparison constitutes s byte-wise comparisons, or 
2s comparisons to enable forward and reverse route matching. 
For 32 pixel panoramic images, this constitutes 64 byte-wise 
comparisons. Table III presents a number of computation 
scenarios, assuming 5 meter frame spacing and a camera speed 
of 15 meters per second (54 km/hr). With single instruction, 
multiple data (SIMD) the large city scenario is achievable on a 
current desktop machine. To achieve real-time performance 
during initial localization within an entire country or the world, 
significant optimizations would need to be implemented. One 
straightforward method is to cache frame by frame 
comparisons, comparing new images in the current sub route as 
they are seen, leading to an n times speed up, at the cost of 
needing more fast memory. However the fast memory 
requirement at the large city size is well within all current 
device capabilities including mobile phones and most other 
portable devices. Modern graphics card architectures and 
growing CPU counts even on mobile devices offer the potential 
for further significant speed ups through leveraging parallel 
processing. In addition, the implementation of optimized data 
structure methods could also remove the barrier to achieving 
country wide localization. Once localized, search spaces could 
also be massively constrained, as is done with current GPS 
systems. If a spatially regular spaced frame rate cannot be 
guaranteed, then the search space must expand to incorporate 
multiple possible velocities. This increases the compute by a 
factor dependent on the range of possible velocities. For the 
Eynsham dataset, allowing for a frame rate variation of 19% 
increased computation time by a factor of 10. 

TABLE III.  COMPUTATION SCENARIOS 

Route 
Length 

Qualitative 
Description 

Template 
Storage 

Number of 
byte-wise 

calculations 
per second 

Number of 
calculations 

with 
caching 

Cache fast 
memory 
storage 

requirement 
100 km  Local area 320 kB 192×106 3.84×106 1 MB 
10000 

km 
Large city 32 MB 19.2×109 384×106 100 MB 

1×106 
km  

Medium 
country 

3.2 GB 1.92×1012 38.4×109 10 GB 

7×107 
km 

World 
road 

network 
224 GB 134×1012 2.69×1012 700 GB 



VI. DISCUSSION 

The presented approach sacrifices single frame matching 
capability to achieve robust localization along a route, without 
the need for prior training or feature detection. While the 
method is not suitable for single snapshot mobile phone 
localization, a large range of potential applications involve 
navigation along routes, such as street navigation and indoor 
mobile robots. The experimental results show that in the 
context of navigation along routes, vision-based localization 
can be achieved with remarkably few pixels, tiny fields of view 
and reduced pixel bit depths.  

Localization was achievable through two key, 
interdependent measures. Performing localization using a 
sequence of images rather than single image removes the 
requirement that the image matching scheme be able to reliably 
calculate a single global image match. Instead, the image 
matching front end must only on average report matches better 
than at chance. How much better depends on how long a 
matching sequence is used, with longer matching sequences 
reducing the performance requirements for the image matcher 
but increasing the computation of the sequence matching 
algorithm. This trade-off is avoided in a subset of real world 
navigation applications such as domestic car travel, where 
translational speed information is available from On Board 
Diagnostic (OBD) systems. 

The use of sequences rather than individual images also 
introduces two types of lag – a delay in initial localization upon 
startup, and a delay when the route taken consists of several 
fragmented previously traversed sequences. Variable sequence 
length matching could partially address the initial localization 
lag problem, by localizing more rapidly when the environment 
is easily recognizable. To adapt the system to deal with 
fragmented sequences, we are pursuing three approaches. The 
first is to use traditional probabilistic filters, which also 
potentially removes the need for a sequence length parameter. 
The second is to expand the local best matching and search 
from one dimensional routes to two dimensional areas. The 
third is to maintain localization using odometry in situations 
where a previously localized system briefly loses localization 
while traversing several fragmented sequences (such as passing 
through a complex intersection). 

Matching using sequences rather than individual frames 
allows the image matching algorithm to be modified in ways 
that would render it useless as a global image matcher. We 
exploit this ability by normalizing the image difference scores 
within local sub-routes, forcing the algorithm to calculate a best 
image match candidate within every section of route stored in 
the image database. While this measure would produce large 
numbers of false positive loop closures were single image 
localization used, by matching over a sequence of images it 
enhances the ability of the algorithm to localize by removing 
the effect of systematic biases, in much the same way that 
applying patch normalization to an image removes some of the 
effect of illumination change [19]. This combination of 
sequence matching and local image comparison provides a 
basis for future development of sequence-based, featureless 
localization techniques with capabilities complementary to 
single frame feature-based techniques.  
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