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Abstract—Stereo visual odometry has received little investiga- matching and scene point triangulation is seriously afféct
tion in high altitude applications due to the generally poorper-  To counteract this, applications have been typically retsid
formance of rigid stereo rigs at extremely small baselined-depth to short baseline pairs and/or low-impact environmentsiléVh

ratios. Without additional sensing, metric scale is considred lost . ina h le to plav in this situai d defd
and odometry is seen as effective only for monocular persptees. engineering has a role to play in this siuation, and deraona

This paper presents a novel modi cation to stereo based vial ~€an be typically ignored on many indoor robots and ground ve-
odometry that allows accurate, metric pose estimation from hicles, it must be considered in environments where strattu
high altitudes, even in the presence of poor calibration and changes from internal sources of the environment can cause
without additional sensor inputs. By relaxing the (typicaly xed)  misajignment. In airborne applications calibrations arestn

stereo transform during bundle adjustment and reducing the . " ffected by vibrati hil h
dependence on the xed geometry for triangulation, metricdly signi cantly afiecte y vibrauon, while pressure chasge

scaled visual odometry can be obtained in situations where Underwater can cause similar effects. In order to succeed
high altitude and structural deformation from vibration wo uld in applications outside the realm of indoor and short-term

cause traditional algorithms to fail. This is achieved thraigh ~demonstration, reducing this strict dependence is esdenti
the use of a novel constrained bundle adjustment routine and

accurately scaled pose initializer. We present visual odoetry

results demonstrating the technique on a short-baseline steo AA
pair inside a xed-wing UAV ying at signi cant height ( 30- . )
100m).
T
|. INTRODUCTION I: = @ 50-200m
Stereo-based Visual Odometry (VO) has received signi cant .
attention in recent years as a robotic pose estimatar [1].2, 3 ‘ , ’ , , ’
Having been demonstrated over trajectories exceeding 50km

with and without loop closure, stereo VO is a well studieg. _ . .-

. ig. 1. The typical con guration of a stereo pair in groundséd VO (left),
probllem.. HO.VVever’ adequate performan_ce_ in a number airborne VO (right), showing the dramatically reducésesvability in
applications is prevented by two speci c limitations: the airborne case.

A need for a relatively large baseline-to-depth ratio to ] ) )
achieve accurate triangulation As a result of both deformation and poor triangulation

A strict dependence on accurate calibration for epipol&SUes, metric visual odometry for longer range stereo iresna
and recti ed image feature matching an open problem in robotics. _
With increasing distance of the scene from a stereo pair,We_ proposeasoluu_on that relaxes the (_jepender_u_:e on trian-

accuracy in triangulation decreases, and the geometry é;éﬂatlon from geom?t”c‘?‘”y xed_ ster_eo pairs in f_;ldd|t!anan
be considered to approach a monocular approximation as frgurate st.ereo calibration, Wh'le still maintaining riuztly .
baseline-to-depth ratio becomes smaller (Elg. 1). Thistivas accurate visual odometry. This paper presents three major

effects: fast error build up due to poorly triangulated stinve, changes: _ o _ _
and a weakly observable scale that is typically constrabned A metrically scaled pose initializer for high altitude (30-
the stereo baseline. In addition, pose initialization imast 100m) stereo

impossible, as the triangulation of scene from a single pair A constrained bundle adjustment implementation for on-
is inadequate and highly error prone. For these reasond, mos line calibration to counteract deformation

stereo-based visual odometry solutions restrict theresely A modi ed visual odometry algorithm for distant sensing
ground vehicles and very low altitude multi-rotor applioat while maintaining metricity
[4, 15]. Together, these three methods provide the ability to perfor

Moreover, structural deformations between cameras caretrically scaled, accurate visual odometry at high algtu
cause serious issues for eld robotics applications [6] angithout the need for additional sensors. We demonstrate the
must be accounted for. Knocks, pressure changes and wvibratnethodology in both a simulated experiment and on stereo
can cause a stereo calibration to degenerate such that@apipasual data from a xed-wing airborne vehicle ying at signi



icant altitude, where vibration signi cantly deforms thiereo error metric and observation (e.g. compass bearing, @lerti
calibration and scale is weakly observable due to the exdhemreadings etc. in addition to projective observations), eedn
small baseline-to-depth ratio. We note here that a stand&ramework can be made that nds the optimum of two or
VO algorithm with xed stereo geometry will fail rapidly more separate minimization objectives. This is in conttast
given both scale observability and structural deformatioa Iter based solution that often discards the informatiarix
meaning a quanti able comparison to the presented algorithfeature projections and assumes visual odometry as a black
is impossible. box, similar to an inertial sensor, integrating the outpithw

The ability to perform metrically scaled visual odometry abther sensors to inform a probabilistically accurate poéieh
high altitude has a number of niche, but signi cant applicancreasing compute power and ef cient sparsi cation of the
tions. Importantly, on a high altitude aircraft it serves as bundle adjustment problem, online operation of a solution
redundant sensing mode when others may fail: ying throughat incorporates feature projections with additionalsses
urban and natural canyons can mean GPS failure and a faihd reduces dependence on a full-featured sensor fusion is
back to dead reckoning that is typically handled by inertiddecoming feasible.
sensing. Stereo VO provides a viable alternative that is notln contrast to an objective based bundle adjustment, atemp
subject to the bias drifts inherent in inertial sensors, eanl have been made to apply constraints generated from other
be considered in a number of applications to complemesgnsors|[27, 28]. Thesmnstraintsare subtly different to the
or potentially replace existing sensors. Further, higituale aforementionedbjectives and are extensively used in other
stereo is a viable sensing mode where access to accuratd gloptimization applications [29]. Put simply; an objectivasied
positioning is limited and costly, e.g. for lighter-thaim-eraft solution weights re-projection objectives with other seBs
on planets such as Mars. in a uni ed framework, a constraint based solution will appl
bounds on the space in which estimated parameters can move.
Lhuillier [27] has attempted to incorporate these constgai

As processing power has increased and camera cost redugggh VO by using a standard projection-only bundle adjust-
visual odometry has seen applications on ground vehicles fBent step then adding GPS based pose constraints and re-
1,18,19], airborne vehiclesi[5, 1D,111.112] and underwaltelr [18ptimizing the solution.

14]. Many implementations have been described, with somewe use a different formulation to the above methods: instead
dependent on an Extended Kalman or Information Filter (EK$f using an additional sensor such as GPS to constrain scale
or EIF) backend, a single camera integrated with an IMU @nd pose, use is made of an additional camera forming a stereo
INS to maintain metricityl[15], and the pure stereo casel[7, air to constrain scale. Results are presented over a larger
Of note, most applications covering distances greater thanrajectory and compared to ground truth, unlikel [27], where
few tens of metres are ground based, applied over periodsnof ground truth is presented. To differentiate the algarith
hours and rarely exceed a minimum scene depth of 40m. from other stereo based visual odometry the stereo tramsfor

In the air, visual odometry has received some attention i allowed freedom to move but is restricted by applying a
recent years, both in monocular [16,) 17] and stereo formajsft log-barrier constraint_[29] within prede ned bounds t
[18, [19]. While monocular methods have been demonstratediuce dependence on accurate calibration. By reducing any
at altitudes above 80m_[20] and distances exceeding 1.6kiiependence on rigid-stereo triangulation we additioraltyid
stereo methods have been restricted to altitudes below 4@sues of weak triangulation given by small baselines.

[21], and have typically not exceeded distances of more than

230m. Some monocular methods such as PTAM [22] and I1l. METHODOLOGY

derivatives have been c_’;\pplied to hovering vehicles botpdns}l We describe the methodology in three major sections:

and outdoors|[23] with success, but have often included
inertial sensing to constrain scale and assist motion astim
Weiss et al. have noted the de ciencies of stereo at small
baseline-to-depth ratios, where the utility of stereo can b
considered to reduce to an effectively monocular scenarid,
hence includes an Inertial Measurement Unit to assist itesca
and pose recovery. Clearly, a metrically scaled purelyalisu
odometry algorithm has not been demonstrated over a Iagge
trajectory in situations of large scene depth, common inyman”
UAV applications. 1) Stereo Bundle AdjustmenGivenm (j 2 f1;:::;mqg)

In its generic form, bundle adjustment [24] 25] optimize§cene points observed atunique time points/locations @
over feature projections only to reduce error build-up arfd; :::;ng) by a single camera, the traditional model used for
optimize both camera pose and scene structure. Some atterfit Projection of poinf in space X; 2 P°) into its location
however, has been made in recent years to integrate additidR imagei (xi; 2 P?) is straightforwardl[30]:
objectivessuch as sensor readings or scale term$s [26] into
the optimization. By determining appropriate weights facle Xij " KI[Rijti]X (1)

Il. RELATED WORK

A modi ed stereo-aware bundle adjustment that utilizes
constraints to maintain a metrically scaled stereo pair
A metrically scaled pose initialization for short-baselin
stereo

An original visual odometry algorithm for very short-
baseline stereo

Constrained Bundle Adjustment



where K encodes the internal properties of the camerahereb is the barrier value. In the above bundle adjustment
andR;;t; denote the pose of the camera at timéiere we implementation, the set includes the 6 parameters of the
extend the single camera case to multiple unique rigidkdih stereo transform, and hence yields 12 constraints, 2 per pa-

express additional cameras in terms of the base camera via
the stereo transforri § = [ R¥jtX]. This can be expressed in
a modi ed general projection equation:

XK KK RG] TEX; )

inf

In this paper we only consider the case of two cameras, where
Ty =[1j0] andT} = R1Zjt! . Intrinsicsk ¥ are considered

to be unique to each physical camera. For traditional visual
odometry with two cameras the transfofi would typically
remain xed. However, in this paper we include the paranseter
that make up this transform as additional optimizable vari- 1
ables. This allows the algorithm to counteract any defoionat 0 — ‘ _—
caused by external factors. This leads to a tot&lrof6+3 m p-q p p+q
parameters with which to optimize: 6 for each base camera,

6 for the stereo transform of the secondary camera and 3 Fir 2. The log barrier cost for varying values of, within the barriers
each scene point. We leave the details to a separate pafer [31 93"4P* &

2) Optimization Constraints:The stereo transform is the Bundle adjustment attempts to minimize the sum of squares
effective scale constraint in most visual odometry algonis. objective function by modifying camera poses, structurd an
By allowing the parameters of the stereo transfdif free- the stereo transform:
dom to move, this scale constraint is potentially lost. Alte X
natively, a prior calib_ration provides a very strong coaistr P :X :T :=argmin K !< K2 (4)
on the allowable motion range of the stereo transform. In the B R !
case of small baseline-to-depth ratios this constraindives
important due to the high error in recovering camera poses. With cost function:
make further additions to the bundle adjustment methogolog
described above by constraining the allowable motion of f()
certain parameters of the transform, ensuring scale and the i
important geometry of the calibration is maintained. . . - o

Due to the rigidity of a well-engineered stereo pair, eveffnereé ij = xj &j indicates the re-projection error between
under deformation, any movement between the camerasi§ observed feature and its current estimation for all came
physically restricted to at most a few degrees or millimgtrein @ bundle adjustment optimization. By the introduction
We encode this in the algorithm by implementingsictly pf additional terms, a Iogarllthmlc barrler_ function can t_)e
feasible regiorfor some of the parameters that represent thigtégrated as a soft constraint to constrain the optinozati
deformation. From a known calibration, we implement th@f SPeci ¢ parameters. i.e. «
feasible region based on the initial valp®f a parameter plus o
a bound g (See Fig[P). In this paper, the initial parameter PGx)=10) tlogc (x) ©6)
valuesp are chosen from an initial calibration performed on 2
the ground, and the valugsempirically evaluated. They couldwhere  is termed thebarrier parameterand is used to tune
alternatively, for example, be estimated via an analysis tfe cost as the parameter approaches the barrier (sedffig. 2)
material expansion based on temperature or elasticity @f th The log barrier cost is also integrated into the bundle adjus
material under load. It is assumed that the magnitude of theent Jacobian and used to augment the relevant parameters
feasible region dened byp q) $ (p+ q) is sufcient x. By splitting the parameters intshared parameters s,
to account for the maximum possible deformation of the rigndependenparameters; and scene pointsp, the normal
without being large enough to lose the effectiveness of thisjuations for an update step becomes:

i

S (5)

strict initial valuep as a strong prior. 2 32 . 3 2 3
In a general optimization problem, implementing a strictly S M N s es
feasible region of a parameter can be easily expressed 4M> | 054 " 5=4¢ 5 (7)
as an inequality constraint; (x) > 0, t 2 | (the set of N> O P " ep
inequality constraints)x 2 x (the set of parameters), where
the constraint equationsare of the form: Alternative “hard' constraints can be applied to the pmhlsuch as the

commonly termedyradient-projectionmethod [[29], but these methods result
a(x)=x b (3) in greater implementation complexity.



where the matriceS, | andP included in this expression are Ei1) sith
block diagonal de ned according to the concatenation of the
sub-matrices,

P K. +k K. +k
Kk — k>  1ak OF RSt G\ Rt
S _P i AE) xkAkij ) T E,) s> AaA
I i = Pjrk B i XF B ij (8)
P, = Ck> llck
] ik ij xh? ij tk
—
and 5 Direction of travel
k Kk 1k k — K 1~k
M _Pinj> ngu Nf= A} i Cij
Oy = kB!‘> ek equ= . Al 1k 9)

i oxk i i Xk
P ij P )
— k> 1 k — Ck> 1 k
€ = Bij Xk €p = ik L Xk ,

) o K @k K Fig. 3. The geometry of the initialization. A rigidly xed jraof cameras
The partial derivatives are de ned akj; = —-, Bj at two time-steps. The transfortf is already known from an approximate
@~ @k ) - s ~ calculation
— andC}J‘ = —L respectively. Addition of the logarithmic

barrier Jacobian components results in the augmenteddshafbe relative poses are then scaled by the recovered terms to

parameter matrixs: approximate metricity and then bundle adjusted with rembve
) X ) . structure to optimize the initialization.
S¢ = Aij> 5 Aj (10)

t
i 121 logci (x)

C. Short Baseline Visual Odometry
where the rst term incorporates the Jacobian with respect t Following a pose initialization to set up the iterative pose

the shared stereo parameters, and the second term ind@Pokgstimation, visual odometry then follows 5 main repeating
the additional Jacobian generated from the barrier funchs  steps:

X approacheb the cost termogc; (x) grows in a logarithmic
fashion and the projective in uence on the parameter resluce
A step that takes beyondb will also yield an in nite cost
and hence not be updated in a bundle adjustment step.

1) Image capture

2) Feature matching

3) Pose update

4) Structure triangulation

B. Pose Initialization 5) Constrained bundle adjustment

In order to set-up the iterative VO algorithm, an initia®" ahnde\l/)v ShEtb of |magre]s from ad s:]ereo pair, fbeatures are
estimate of pose and 3D scene is required. In more traditiofA2tcned both between the pair and the previous base camera.
scenarios scene is initially triangulated from the caliéda From already triangulated structure and featurg matches to
stereo pair, hence there is no need for a special initizdizat the previous image, the new base camera fRgés found

step. At large depths triangulation from the rigid sterew sa using calibrated 3-point pose estimation, performed isid

inaccurate and structural deformation may render triatgur rohbust MLEdSAC estlmat(_)r .to. _er|1.sur('je a rﬁhagle pose update.d
impossible. Hence, a scaled solution is needed for camesea pb''€ S€condary camera is initialized at the base camera an

without initially computing structure from a geometric pai theq r_n_0\|/ed I}ga t_he initial S,tjerbe_o tr.anshfor'ﬁ%,.d(.envgd .from
more akin to monocular pose initialization. Initially, teesen- the initial call rat.lon to avold bias in t N optimised s
tial matrix E; between the base camera at two adjacent time-NéW structure is then triangulated using only the base cam-

steps is recovered, and relative pose (up to scale) extracgs® Pairs to avoid dependence on xed-stereo geometry, and
from this transform :t1) (Fig. [@). To avoid degeneraciesthen the constrained bundle adjustment algorithm is agjitie

caused by near-planar structure, essential matrices pass2&!1ding window fashion to the last 12 frame-pairs and their
additional “scene-spread’ test as inl[20]. This boot-gimp 2@SSociated structure. A Levenberg-Marquadt robust opéimi
procedure ensures that accurate triangulation is achiesed tion routine is followed to ensure the estimation converges

a wide-baseline pair and is not dependent on the geomeftic @ll times, the & parameters of the stereo transform are
stereo transform. optimized subject to the afore-mentioned constraints.

To recover metric scale, an essential matix is also
computed between the second camera at the initial time-
step and the base camera at the second t|me—step.to give ¢, investigate the applicability of the algorithm, we presse
second scaled transforns(z). Through vector addition @y, separate experiments. First: a simulation that allows
linear solution to the scale terms is calculated: comparison of the recovered pose and stereo transformsigain

t RK> 1, SLo_ ik (11) a ground trgth, and second: evaluation on eld data gathered
s> by a xed-wing platform.

IV. EXPERIMENTAL RESULTS



A. Simulated Experiment 0.04

" r
Constrained Unconstrained — — — Barrier

The simulation consists of a stereo pair with 0.7m baselii =
ying at an altitude of 90m over a simulated ground environ <
ment. Scene features are prOjeCted into each camera vith == smreesn==re=s=so=am==sh=ss==s==c==x==
pixel variance . The stereo baseline is also given Gaussiz 0.04 ‘ ‘ ‘ ‘ ‘ ‘ ‘
noise on both the translational and rotational parameter
re ect vibration induced structural deformation, but thises
not change throughout the experiment. Visual odometry
performed on the imagery generated from the pair for 4(0.04
frames, or approximately 2.4km of movement. To evaluate tl 00t
effectiveness of the constrained optimization, two experits
are run:

VO with constrained stereo optimization -0.01
VO with unconstrained stereo optimization (s2e [31]) 2

1) Results: Figures[# andd5 show the simulated result:g
Figure[d shows the variation of the stereo transform for tf = ©
two separate experiments by subtracting the original patam “
value from the estimate to show the difference. As expecte

Y (m)

Eo
N

-2

the stereo transform (green) is constrained within thesgte- 2 =
bounds (red dashed lines) and hence scale is constraine@ “““““““““““““““““““
a known value. In contrast, the unconstrained optimizatic§ °F i L
shows signi cant variation and scale is observed to drifeov * I I T N R R S S S
time. 3

2

Figure[$ highlights the average re-projection error at th
conclusion of bundle adjustment on each new frame. Whi
the unconstrained bundle adjustment shows a lower aver:
re-projection error, it is clear that a smaller error does n ‘ ‘ ‘ ‘ ‘ ‘
ne_cessanly translate to a be_tter estimate of certain et 0 %0 100 B e ey 000
(FIg.[Z). In contrast, even with a higher average re-praect Fig. 4. The stereo transform values compared to the knowlratibn for the

error, the constrained optimization shows a signi cantly-i simulated experiment with constraints (green) and withmuistraints (blue),
proved estimation of the stereo transform. compared to the original calibration. The bounds of the tairgs are shown

Additionally, the constrained estimator shows a lower avepy the red dotted lines.
age number of bundle adjustment iterations (IEg. 5), as the

logarithmic barrier will force a breakout earlier when the 25 , , , , , , ,

stereo parameters can no longer be optimized beyond

bounds. 2r 1
15} 1

B. Field Data Experiment

[

In a further demonstration of the algorithm, visual imager
was gathered from a xed-wing airborne platform own with
a stereo pair of cameras. The stereo pair underwent signti c:
deformation from vibration within the fuselage (See [Eg).12 ‘ ‘ ‘ ‘ ‘ ‘

. . . : . 100 150 200 250 300 350  40C
The visual odometry algorithm is again run over the imager Frame Number
both with and without a set of stereo transform constraints.

1) Experimental Platform:The data-gathering platform is
a large xed-wing Unmanned Aerial Vehicle (UAV) with
fuselage length of 2.3m (Fifll 6), remotely piloted withiswal
range from the ground. The aircraft includes an off-thelfshe
computer system for logging both visual and inertial datal a
a pair of IEEE1394B colour cameras, rigidly xed to eact
other via an aluminium L-bar situated inside the fuselage ‘ ‘ ‘ ‘ ‘ ‘ ‘
the aircraft. The cameras are placed facing down towards ! % 50 100 150 200 250 300 350 400
terrain in the fuselage, as seen in Hijy. 6. Each camera use. .. Frame Number
6mm lens with a eld of view of approximatel#2® 32°. Fig. 5. Top: Average nal re-projection error and Bottom: Rile adjustment

The cameras are calibrated before ight using a checkerebodterations per frame for the simulated experiment with ¢amsts (green) and
without constraints (blue).
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Fig. 6.  The experimental platform showing component laydltie line  Fig. 9. Secondary view of visual odometry results for theusoh with

indicates length and orientation of stereo baseline betvoeeboard cameras. stereo constraints (green) and without constraints (bkmjpared to ground
truth (red). Observed structure shown in cyan.

pattern to achieve a standard intrinsic parameter caidsrat

and approximated stereo transform between the cameras. In comparison, the constrained optimization shows signi -

An XSens MTi-G INS/GPS system is used as the grourf@ntly improved pose estimates over the trajectory, argli¢hi
truth measurement system on the aircraft, with a manufectufe ected in the parameters of the stereo transform as shown
claimed positional accuracy of 2.5m Circular Error Proligbi in green in FigureZ0, where the values are bounded by
(CEP) Size and Weight restrictions prevent the use of mdhﬁ constraints shown in red. A qualitative evaluation & th
accurate DGPS systems, however, the MTi-G itself providégipolar geometry for an example frame (Higl 13) shows an
a reasonably accurate estimate of pose over broad scales. Hproved alignment.

MTi-G unit is rigidly attached to the onboard camera rig, \&hi
the GPS receiver is installed directly above the front camer °3 i Constrained Unconstrained ~ — — Barrier

2) Dataset: Data was collected over an approximately ! W
minute ight, at an altitude of 20-100m and a speed of 20m/

Bayer encoded colour images are logged at a resolution  fFam e\ o e e e e
1280 960 pixels at 30Hz and later converted to color fo™ o3
processing. GPS, un ltered IMU data and Itered INS posi
were recorded at 120Hz from the XSens MTi-G to give grour
truth position and orientation comparison. The area owerov
consisted of rural farmland with relatively few trees, aaim
and buildings.

3) Results:FiguredB[P and10 show the performance of tk
algorithms on 1450 stereo frames of the dataset (processe
a 3 image sub-sample from the origirgflHz data), covering o
a distance of2:75km. Figure[ID shows the variation of the
parameters in the stereo transform over the dataset. With 002
constraint, the stereo transform drifts signi cantly arttbw's
repeated errors due to the poor observability. This is reedc
in the pose comparison with ground truth (FIY. 8), whereesceg o,
drift results in a poor trajectory in comparison to grounghc
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X (m) 100 -200 -300 -400 calibration. The bounds of the constraints are shown by ¢dedotted lines.

Fig. 8. Visual odometry results for the solution with steceastraints (green)
and without constraints (blue), compared to ground trugil)(r Figure[Tl shows a comparison of convergence between the
constrained and unconstrained methods.
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ig. 7. An example image pair from the dataset, showing thallstisparity between the stereo pair. Left: Front Camergh® Rear Camera.

o
~

technique: there is an upper limit to the altitude at whicé th
algorithm can successfully work. With increased altitudales
becomes unobservable when the disparity of features tacke
between a stereo pair drops below a single pixel, and will
likely occur before this metric is reached. In this case, the
altitude limit is likely to be beyond 200m, but would need to
be experimentally evaluated as other effects are likelyffech
the solution before this limit is reached.
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Fig. 11. Average nal re-projection error for the visual gdetry solution
with stereo constraints (green) and without constraintsejb

C. Discussion

Despite an overall smaller re-projection error, the uncon-
strained pose estimator shows poorer performance in genera
ing an accurate pose because the important geometric infor-
mation is lost. With the inclusion of constraints, converge
error is increased but shows better overall performance THRig. 13. The epipolar geometry of the optimized stereo catibn in ight.
demonstrates that bundle adjustment need not rely on feselected pixel location in the front camera (left), and dtsresponding
.. . . epipolar line in the rear camera (right), showing the cdlyealigned epipolar
projection error alone as a metric of performance: the Bioll  geometry.
of constraints on the stereo transform in this case can yield
better overall results. V. CONCLUSION

Overall, these results demonstrate that stereo VO aloneThis paper has demonstrated the application of constrained
is inadequate to estimate pose with accurate scale in smgitimization to the bundle adjustment problem to estimiage t
baseline-to-depth applications. By applying constraiotthe parameters of a stereo camera transform. By introducing a
rigid geometry, scale can be retained even at the extremalyel scaled pose estimator speci ¢ to the stereo probledn an
small baseline-to-depth ratios exhibited in high altituidét.  a modi ed visual odometry algorithm, the technique has been

demonstrated on a dif cult airborne dataset where tradélo
stereo algorithms will fail due to a small baseline-to-dept
ratio and poor stereo calibration. Future work will exam-
ine the performance of the bundle adjustment algorithm by
comparing the soft log-barrier constraint to harder caists
such as gradient-projection, which exhibits better cogeace
performance. Additionally, the algorithm will be evaluctie

a number of different eld-based datasets to show superior
performance over long time periods.
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