
Learning to Plan for Constrained Manipulation from
Demonstrations

Mike Phillips
mlphilli@andrew.cmu.edu

Carnegie Mellon University

Victor Hwang
vchwang@andrew.cmu.edu
Carnegie Mellon University

Sachin Chitta
sachinc@willowgarage.com

Willow Garage

Maxim Likhachev
maxim@cs.cmu.edu

Carnegie Mellon University

Abstract—Motion planning in high dimensional state spaces,
such as for mobile manipulation, is a challenging problem. Con-
strained manipulation, e.g. opening articulated objects like doors
or drawers, is also hard since sampling states on the constrained
manifold is expensive. Further, planning for such tasks requires
a combination of planning in free space for reaching a desired
grasp or contact location followed by planning for the constrained
manipulation motion, often necessitating a slow two step process
in traditional approaches. In this work, we show that combined
planning for such tasks can be dramatically accelerated by
providing user demonstrations of the constrained manipulation
motions. In particular, we show how such demonstrations can
be incorporated into a recently developed framework of plan-
ning with experience graphs which encode and reuse previous
experiences. We focus on tasks involving articulation constraints,
e.g. door opening or drawer opening, where the motion of the
object itself involves only a single degree of freedom. We provide
experimental results with the PR2 robot opening a variety of
such articulated objects using our approach, using full-body
manipulation (after receiving kinesthetic demonstrations). We
also provide simulated results highlighting the bene�ts of our
approach for constrained manipulation tasks.

I. I NTRODUCTION

In order to perform useful tasks robots must not only be able
to move safely through their environments but must also be
able to manipulate objects in them. Motion planners can be
used to solve manipulation problems though planning times
suffer for more complex tasks. An example of such tasks
is constrained manipulation, e.g. opening doors or drawers.
The motion required for such tasks occurs on a constrained
manifold, e.g. the motion of the gripper is constrained to stay
on the handle of the door with a �rm grip, which cannot be
directly sampled in joint space.

Tasks such as opening doors or drawers are often addressed
using two stages of planning: a �rst stage where a motion
planner is used to plan the initial path to a contact or grasp
location followed by a second stage where a constrained plan
is computed. This two stage approach can be slow since the
goal state of one stage needs to be fed as the start state for
the next. In particular, traditional approaches that plan from
scratch every time are unable to exploit previous experiences
which is a huge disadvantage for tasks like door or drawing
opening which are essentially repetitive.

In this work we augment an existing Experience Graph
planner [12] with user generated demonstations in order to
obtain fast planning times in such challenging constrained

problems. Experience Graphs (E-Graphs) are formed from a
collection of paths. These could be previous paths that the
planner generated or, as we show in this work, come from
user demonstrations. Planning on E-Graphs is done with an A*
based algorithm and therefore, the state space is represented as
a discretized graph. When planning with E-Graphs the search
is focused toward reusing parts of paths that look like they help
�nd a solution quickly. The planner guarantees completeness
and a bound on the sub-optimality of the solution cost with
respect to the graph representing the problem.

We show that by using demonstrations with Experience
Graphs, motion planning can be signi�cantly sped up. This
approach is �exible as we are still running a complete planner
which is focused on reuse when useful, but is not forced or
hard-coded to make a previous path work where it is not
helpful.

II. RELATED WORK

There has been a large amount of work within the �eld
of “learning from demonstration” which incorporates teacher
examples to generate policies for the robot [9, 8, 11, 1, 15].
Our work also uses demonstrations but differs from these
approaches. In learning from demonstration literature, the
provided examples show the desired behavior and therefore are
goal (or reward) directed. This means that the demonstrations
are provided with the goal or reward of the task already
in mind. In our problem, demonstrations are given before
knowing the goal or task. Some or all of the demonstrated
movements may be irrelevant for a given query and the planner
determines this during the search. The demonstrations are
purely used to help search the state space more ef�ciently.

In our approach the demonstrations are used to guide the
planner to a solution more quickly and avoid unnecessary
exploration. There has been quite a bit of research on incorpo-
rating prior information from prior searches into the planning
process. Bruce et. al. [4] extended RRTs to reuse cached plans
and bias the search towards waypoints from old paths. A
feature-based approach involves selecting a trajectory from a
database from a similar scenario based on the positions of
the start, goal, and obstacles relative to the robot [6]. The
selected path is then tuned to �t the current scenario using a
local optimizer. In [7] a bi-directional RRT is used to draw the
search toward a path from a database which is most similar
to the new motion planning problem (based on distances to

the start, goal and obstacles). Some more recent work [3] also
attempts to repair paths from a database of past paths using
sampling-based planners. Planning on Experience Graphs is
an A* based method for reusing paths in new queries by
guiding the search toward parts of old paths if they appear
as though they will help the planner �nd the goal faster [12].
This method provides guarantees on completeness and solution
quality which the other methods we refered to lack. E-Graphs
are able to do this regardless of the quality of the paths put
into the Experience Graph. We use this method in our work.

This work is focused on planning to manipulate objects in
the environment. In particular, we deal with objects in the
environment that inherently have constraints enforced on them.
For instance, a cabinet door is constrained to swing about its
hinge. Planning with constraints has been addressed in the
recent past. Past approaches include local methods that provide
fast smooth trajectory generation while maintaining workspace
constraints [17]. However, this lacks global exploration of the
state space and therefore is not guaranteed to �nd a valid solu-
tion even if one exists. Sampling-based planners on constraint
manifolds allow for probabilistic completeness, [2, 10]. Other
approaches include of�ine computation of constraint manifolds
[16] and constructing an atlas for the constraint manifold at
runtime [13]. Reusing demonstrations can help in improving
the performance of planning for constraint tasks, something
that no existing approach exploits. We aim to show that our
approach can signi�cantly improve its performance by reusing
demonstrations while at the same time dealing robustly with
changes in the environment, and gracefully planning from
scratch when necessary.

III. E XPERIENCEGRAPHS

This section provides a brief description of how E-Graphs
work. For more details see the prior work where Experience
Graphs were introduced [12].

An Experience GraphGE is a collection of previously
planned paths (experiences). Planning with Experience Graphs
uses weighted A* to search the original graphG (which
represents the planning problem) but tries to reuse paths
in GE in order to minimize the exploration of the original
graphG. This is done by modifying the heuristic computation
of weighted A* to drive the search toward paths inGE ,
that appear to lead towards the goal. Essentially, this comes
down to computing a new heuristic distance from the state in
question to the goal where traveling off ofGE is penalized
but traveling on edges ofGE is not. The new heuristichE is
de�ned in terms of the original heuristichG and edges inGE

for all statess0 in the original graph.

hE (s0) = min
�

N � 1X

i =0

min f "E hG (si ; si +1); cE (si ; si +1)g (1)

where� is a pathhs0 : : : sN � 1i andsN � 1 = sgoal and"E is
a scalar� 1. As shown in [12], the heuristic is"E -consistent
and therefore guarantees that the solution cost will be no
worse than"E times the cost of the optimal solution when

(a) GE

(b) " E = 1

(c) " E ! 1

Fig. 1. Effect of " E . The light gray circles and lines show the original
graph. The darkened states and edges in (a) show the E-Graph.In (b) and (c)
the dark gray circles show states explored by the planner in order to �nd a
solution. The light dashed line shows the heuristic path from the start state.
Notice that when" E is large, this path travels along the E-Graph and avoids
most obstacles (there are few explored states). On the other hand when" E

is small, the heuristic (in this case euclidean distance) drives the search into
several obstacles and causes many more expansions. It should be noted that
" > 1 is used in these examples.

running A* search to �nd a path. More generally, planning
with Experience Graphs using weighted A* search in�ates the
entirehE heuristic by" . Consequently, the cost of the solution
is bounded by" � "E times the optimal solution cost.

Equation 1 is computed by �nding the shortest path from
s0 to the goal in a simpli�ed version of the planning problem
where there are two kinds of edges. The �rst set are edges that
represent the same connectivity ashG in the original planning
problem but their cost is in�ated by"E . The second set of
edges are fromGE with their costscE (1 if the edge is
not in GE). As "E increases, the heuristic computation goes
farther out of its way to use helpful E-Graph edges.

Figure 1 shows the effect of varying the parameter"E . As
it gets large, the heuristic is more focused toward E-Graph
edges. It draws the search directly to the E-Graph, connects
prior path segments, and only searches off of the E-Graph
when there aren't any useful experiences (such as around the
last obstacle). There are very few expansions and much of
the exploration of the space is avoided. As"E approaches 1
(optimality) it ignoresGE and expands far more states.

IV. D EMONSTRATION-BASED EXPERIENCES

The main contribution of our paper is in showing how
demonstrations can be integrated into planning with Expe-
rience Graphs. The use of demonstrations in conjunction
with Experience Graphs is not as simple as just adding the

Fig. 2. A two link planar arm and a drawer that can be manipulated.

demonstrations into the graph as additional experiences for
several reasons. First, demonstrations may not lie on the
original graph. Second, since the demonstrations show how to
manipulate an object (e.g. how to open a door), they require
adding a new dimension to the state-space, the dimension
along which the object is being manipulated. Consequently,
the underlying graph as well as Experience Graph must be
updated, to include this dimension. Finally, the heuristicused
in the graph search will need to be improved to guide the
search towards the object that needs to be manipulated as well
guide it in how to manipulate the object. We describe how to
address these challenges in this section. We will use a running
example of a 2 link planar manipulator opening a drawer to
make the explanation clearer (Figure 2).

A. Notations and Overall Framework

First we'll go through some de�nitions and notations and
brie�y describe the overall framework.

The original graph representing the planning problem is
G = hV; Ei . Each vertexv 2 V represents a robot state:
coord(v) 2 Rn . We also assume a database of demonstrations
D = hT1 : : : Tm i . EachTi is a set of discretized trajectories
corresponding to thei th object in the environment that can
be manipulated.Tb = fhab

11 : : : ab
1k1

i : : : hab
` 1 : : : ab

`k `
ig where

ab
ij 2 Tb is the j th point in the i th trajectory for objectb.

ab
ij 2 Rn +1 . The extra dimension corresponds to the state of

the manipulated object, which we will termz. In Figure 2
this would be how far the drawer is pulled open. We will use
zcoord(ab

ij) to represent the value of the state of the object
b at ab

ij . For every objectb, we also useZb to represent
the set of all values ofz that are present inTb. Formally,
Zb = f zj9aij 2 Tb s:t: z = zcoord(aij)g.

Finally, we assume that the objects we are manipulating lie
on one-dimensional manifolds in a higher dimensional space.
For instance, when opening a cabinet, the door is constrained
to move on a one dimensional manifold. The planner infers
how to operate the manipulated objects automatically from one
or more demonstrations. There is no prior model of any of the
objects the robot interacts with. Instead we assume there isa
stationary point of contact on the object that the robot's end-
effector comes into contact with during manipulation. During
demonstration, we observe the movement of this contact point
along a curve, whichz parameterizes. The domain speci�c
function y = ' (coord(v)) computes the coordinates of the

contact point on the robot. This function is many-to-one. In
Figure 2 this corresponds to the pose of the end-effector and
would be computed fromcoord(v) using forward kinematics.
Note that in our simple example there are two statesx that
could produce the samey (corresponding to an elbow up or
down con�guration). The drawer handle's constraint manifold
is the small line segment which would be traced by the handle
while opening the drawer.

planToManipulate(G; D; sstart ; zgoal ; obj)

1: T = Tobj 2 D
2: Gmanip = buildGraph (G; T)
3: GE = createEGraph (T)
4: � = f indP ath (Gmanip ; GE ; T ; sstart ; zgoal)

5: return �

The planT oManipulate algorithm shows the high-level
framework. First it selects the demonstrations fromD that
correspond to objectobj. Then it constructs a new graph
Gmanip to represent the planning problem. This graph rep-
resents the robot's own motion (as before), contact with the
object, and manipulation of the object by the robot. The
createEGraph function uses the demonstration to create the
Experience GraphGE as well as to augment the graph with a
new dimension. Finally, a planner is run on the two graphs
as described in [12]. The following sections describe the
construction of the graphGmanip = hVmanip ; Emanip i and
a new heuristic to guide search for motions that manipulate
the objects.

Fig. 3. The graph construction. The layered planes show how the original
graph is duplicated for each value ofz 2 Z . Theaij elements are points on
a demonstrated trajectory. During the demonstration the robot's state changes
(movement within the plane) as well as the object's state (movement between
planes). Eachaij element is in a set of states
 j . In addition to this state
 j
containss s:t: withinError (' (coord(s)) ; ' (coord(aij))) ^ zcoord(s) =
zcoord(aij).

B. Task-based Rede�nition of States

The provided demonstrations change the state space in two
signi�cant ways. First, the manipulated object adds a new

dimension to the graph. Secondly, the demonstration may
contain robot states that do not fall on any state in the original
graph. In order to handle this, we construct a new vertex set
Vmanip as shown below.

Vmanip = Vorig [Vdemo ; where

Vorig = f vjhcoord(v); zcoord(v)i = hcoord(u); zi

8u 2 V; z 2 Zg

Vdemo = f vjhcoord(v); zcoord(v)i = aij 2 T g

The new vertex set is a combination of the old vertices
and the vertices from the demonstrations. The vertex setVorig

contains the vertices in the original graph but repeated for
each possible value of the new variablez. The setVdemo is
the set of vertices that exist in the demonstration trajectories.
In Figure 3 the planes show the layers of the original graph
repeated for each value ofz. Additionally, we can see the
states that come from the demonstration.

C. Task-based Rede�nition of Transitions

The demonstrations not only change the state space, but
also affect the connectivity of the graph due to the additional
dimension as well as motions in the demonstration that are
not used in the original graph.

The new edge setEmanip is de�ned below.

Emanip = Eorig [Edemo [Ebridge [Ez where

Eorig = f (u; v)j9~u; ~v 2 V s:t: coord(~u) = coord(u)^

coord(~v) = coord(v)^

(~u; ~v) 2 E^

zcoord(u) = zcoord(v)g

Edemo = f (u; v)jhcoord(u); zcoord(u)i = ai;j 2 T ^

hcoord(v); zcoord(v)i = ai;j +1 2 T

Ebridge = f (u; v)jhcoord(u); zcoord(u)i 2 T ^

9~v 2 V s:t: coord(~v) = coord(v)^

connectable(u; v)^

zcoord(u) = zcoord(v)g

Ez = f (u; v)j9(~u; ~v) 2 Edemo s:t:

withinError (' (coord(u)) ; ' (coord(~u))) ^

zcoord(u) = zcoord(~u)^

withinError (' (coord(v)) ; ' (doord(~v))) ^

zcoord(v) = zcoord(~v)g

The new edge set is a combination of edges from the
original graphEorig (replicated for each value of z), edges that
come from demonstrationsEdemo , “bridge edges”Ebridge ,
and Z edgesEz .

Bridge edges connect demonstration states to states in the
discretized original graph. The “connectable” function used to
de�ne them should typically be used if the two statesu and

v are very close (such as when the demonstration stateu falls
within the discretized “bin” of the original graph statev). The
two states must also share the same z-value (the manipulated
object must be in the same state). For example, in Figure 2
a bridge edge may be added whenever the euclidean distance
between the two joint angles of demonstration state and an
original graph state are within a small distance of each other
and the drawer is pulled open the same amount.

Z edges generalize the demonstrations in order to create
edges on the object's constraint manifold that may not have
existed in the demonstrations. This means that if the contact
point of the robot at stateu is very close to that of state~u
(' (coord(u)) � ' (coord(~u))), the object is in the same state
(zcoord(u) = zcoord(~u)), these conditions are also true for
v and ~v, and ~u is connected to~v in the demonstrations, then
we will connectu to v (provided the action is collision free,
as with any edge in the graph). These edges allow the planner
to �nd ways to manipulate the object other than exactly how
it was done in demonstrations. This is especially important
if part or all of the speci�c demonstration is invalid (due to
collision) but it may still be possible to manipulate the object.
Figure 3 shows this using the cloud-shaped
 . Any of the
states that fall in
 i can connect to states in
 i +1 or
 i � 1.

D. Task-based Heuristic

Since the goal is to manipulate an object to a particular state
(for instance, open a drawer), the search will be slow unless
the heuristic guides the planner to modify the object towardthe
goal con�guration. With that in mind we outline a heuristic
that takes into account the motion of the robot required to
reach contact with the object as well the manipulation of that
object.

We introduce a two part heuristichG
env built on top of

the original heuristic for the environmenthG . The E-Graph
heuristichE described in section III will now usehG

env instead
of hG . For any states = hx; zi we are trying to provide an
admissible (underestimating) guess for the remaining costto
get to the goal (havez = zgoal). The general idea is that
hG

env (s) estimates the cost of getting the robot in contact with
the object plus the cost it takes to manipulate the object so
that the variablez moves through all the required values to
becomezgoal . More formally,

hG
env (s) = min

vz :::v z goal

hG (s; vz) +
zgoal � 1X

k= z

hG (vk ; vk+1)

vk 2f v 2 Vmanip j9aij 2 T ; s:t:

withinError (' (coord(aij)) ; ' (coord(v)))

^ zcoord(aij) = kg

We can see that we are having the contact point pass through
all the poses shown in the demonstration (between thez of
states and the goalz). There may be many robot con�gura-
tions to choose from for each of these contact poses in order
to get a minimum sequence. In our experiments, we chose a

heuristic hG (a; b) that computes the linear distance that the
contact point travels between the two robot con�gurations
[5]. An advantage of this heuristic is that we don't need to
consider the set of all robot con�gurations. Since all the robot
con�gurations in a set (e.g. all possible states to choose for
some vk) have the same contact point, they are equivalent
inputs to this heuristic function (so any state with that contact
point will do). Therefore, the sequence ofvz : : : vzgoal can just
be that segment of a demonstration. This makeshG

env easy to
compute.

E. Theoretical Properties

As we showed earlier, it's possible for edges (motions) in
the demonstration to not exist in the original graph. These
extra edges can help the planner �nd cheaper solutions than
what it would have been able to achieve without them. It also
may be able to solve queries for which there was no solution
in the original graphG alone.

An important thing to note is that while the quality of the
demonstration can dramatically affect the planning times and
the solution cost, the planner always has a theoretical upper
bound on the solution cost with respect to the optimal cost in
graphGmanip .

Theorem 1: For a �nite graphG and �nite Experience
GraphGE , our planner terminates and �nds a path inGmanip

that connectssstart to a states with zcoord(s) = zgoal if one
exists.

Theorem 2: For a �nite graphG and �nite Experience
Graph GE , our planner terminates and the solution it returns
is guaranteed to be no worse than" � "E times the optimal
solution cost inGmanip .

The proofs follow by applying the theorems in [12] to the
graph Gmanip . Also, since we are running a full planner in
the original state space, for a low enough solution bound, the
planner can �nd ways to manipulate the environment objects
more ef�ciently (cheaper) than the user demonstrations.

V. EXPERIMENTAL RESULTS

We tested our approach by performing a series of mobile
manipulation tasks with the PR2 robot including opening
drawers and doors. All the tasks involve manipulation with
a single arm, coupled with motion of the base. The end-
effector of the right arm of the PR2 is restricted to be level
i.e. its roll and pitch are restricted to a �xed value (zero).This
results in the motion of the arm happening in a 5 dimensional
space parameterized by the position of the right end-effector
(x,y,z), the yaw of the end-effector and an additional degree of
freedom corresponding to the shoulder roll of the right arm.
We consider the overall motion of the robot to be happening
in a nine dimensional state space: the 5 degrees of freedom
mentioned above for the arm, the three degrees of freedom
for the base and the an additional degree of freedom for the
vertical motion of the torso (spine).

When performing a task, an additional degree of freedom
is added to the state space corresponding to the articulated
object, bringing the dimensionality of the state space to a

total of ten. An illustrative goal for the planner would be to
change an articulated object to a speci�ed value e.g., moving
a cabinet door from the closed to open position. This requires
the creation of plans for the combined task of grasping the
handle of the cabinet door by coordinated motion of the base,
spine and right arm of the robot, followed by moving the
gripper appropriately (again using coordinated motions ofthe
base, spine and right arm) along the circular arc required to
open the cabinet door.

Kinesthetic demonstration, where the users manually moves
the robot along a desired path to execute the task, was used
to record the desired paths for different tasks. The values of
the state space variables were recorded along the desired paths.
Once the demonstrations have been recorded, the robot replays
the demonstrated trajectories to execute the given task. Asit
executes the demonstrations, it uses its 3D sensors to record
information about the changing environment. This 3D sensors
trace (represented as a temporal series of occupancy grids in
3D) represent the motion of the target object (e.g. the cabinet
door) throughout the demonstration.

The stored temporal sensor information provides informa-
tion about the evolution of the changing environment, par-
ticularly for use in collision checking. Forward kinematics is
used to determine the demonstrated workspace trajectory for
the contact point of the gripper and the articulated object.This
information, along with the recorded state data, represents data
that can be fed back into the E-Graph for later use.

A. Robot Results

Our planner was implemented in four different scenarios
with the PR2 robot: opening a cabinet, opening a drawer
with an external handle attached, opening an overhead kitchen
cabinet, and opening a freezer. The overall goal for each task
is for the robot to start from an arbitrary position, move to the
desired task location, grasp the handle and open the cabinet
or drawer.

For each scenario, a full 3D map of the environment was
�rst built using the stereo sensors on the robot. The opening
part of the task was then demonstrated with the robot by a
user. The robot then replayed the demonstrated motion on its
own, recording the additional visual sensor data needed in the
process to complete the demonstration. This data is available
to the planner for incorporation into the E-Graph.

The planner was then tested using different start states.
This required the planner to generate motions that would
move the robot to a location where it could grasp the
handle on the drawer/cabinet/freezer. Note that this part of
the motion had not been demonstrated to the planner. The
planner also had to generate the motion required to open the
drawer/cabinet/freezer. Again, note that the robot could be in a
different start state at the beginning of its motion for opening
the drawer/cabinet/freezer as compared to the start state for
the demonstrated motion. Further, there may be additional
obstacles in the environment that the planner needs to deal
with. Figure 4 shows still images of these trials.

Fig. 4. PR2 opening an Ikea cabinet, metal drawer, overhead kitchen cabinet, and freezer door, respectively.

Table I shows the planning times for these demonstrations.
While the weighted A* planner solution time is shown, only
the E-Graph planner result was executed on the robot. In one
case, the weighted A* was unable to produce a plan in the
allotted 60 seconds. Weighted A* was run with" = 20, while
our planner ran with" = 2 and "E = 10 for an equivalent
bound of 20.

TABLE I
PLANNING TIMES IN SECONDS FOR OPENING A FILE DRAWER, IKEA

CABINET, OVERHEAD KITCHEN CABINET, AND FREEZER.

E-Graph Weighted A*
Drawer 2.06 2.96
Cabinet 1.83 12.87
Kitchen Cabinet 2.87 (unable to plan)
Freezer 1.52 7.81

B. Simulation Results

A separate set of simulated tests was conducted to measure
the performance of the planner and compare it to weighted
A* (without re-expansions) and a sampling-based approach.
Weighted A* was run with" = 20, while our planner ran
with " = 2 and "E = 10 for an equivalent bound of 20.
The environments were generated by rigidly transforming two
target objects (cabinet and drawer) to various locations ina

room (the robot start pose was constant). Figure 5 shows a
snapshot of the simulation environment.

Table II shows planning statistics of weighted A* versus
planning with E-Graphs. These results show that using the
Experience Graph allows us to �nd solutions with fewer
expansions and therefore, in less time.

Fig. 5. The simulation environment. The red boxes represent example
locations of the target object to be manipulated. The green boxes represent
the contact point that the robot gripper should attempt to grasp.

We also compared against Constrained Bi-directional
Rapidly-Exploring Random Tree (CBiRRT), wich is designed
to help the RRT algorithm deal with planning on constraints
which may be small compared to the state space and therefore
dif�cult to sample [2]. Like most RRT algorithms this method

TABLE II
A COMPARISON BETWEENE-GRAPHS AND WEIGHEDA* OVER 35

SIMULATIONS

E-Graph Weighted A*
Mean Std dev Mean Std dev

Drawer 2.75 1.73 7.25 16.62
Cabinet 1.74 0.70 54.69 43.49

repeatedly chooses a random sample, and tries to extend the
nearest neighbor in the search tree toward it (since this is bi-
directional, it grows both). The primary difference is thatthe
extension is done by taking small unconstrained steps (like
a linear step in c-space) followed by a projection step back
on to the constaints. We use a state variable to represent
how far the object has moved (like in our approach). If
the object is “closed” then the projection does nothing (the
robot doesn't have to be holding the contact point). If the
object is in any other state then it has been moved, and
we project con�gurations so the robot is holding the contact
point. The constraint manifold learned in our approach is used
for the projection step. For the goal state (the root of the
backward tree) we provided the �nal con�guration from the
demonstration.

TABLE III
A COMPARISON BETWEENE-GRAPHS AND CBIRRT

E-Graph time (s) CBiRRT time (s)
Mean Std dev Mean Std dev

Drawer 2.76 1.88 44.31 28.39
Cabinet 1.94 0.76 1.72 1.60

E-Graph base motion (m) CBiRRT base motion (m)
Mean Std dev Mean Std dev

Drawer 0.61 0.30 1.51 0.45
Cabinet 0.88 0.27 1.53 0.34

E-Graph arm motion (rad) CBiRRT arm motion (rad)
Mean Std dev Mean Std dev

Drawer 5.37 2.74 5.50 2.04
Cabinet 6.83 2.00 4.42 0.86

E-Graph consistency CBiRRT consistency
Drawer 0.33 10.70
Cabinet 0.37 3.93

Table III compares E-Graphs to CBiRRT. In the �rst section
of the table we can see that the planning times for the two
approaches are similar for simpler scenarios though E-Graphs
perform better on others (across 35 trials). We expect E-Graphs
to continue to perform better than sampling planners as tasks
become more complicated since there is more room for reuse
of prior experience. We also found the E-Graph solutions to be
of similar or better quality (refer to the base and arm distance
metrics in the middle of the table). At the bottom of the table,
we see results from a consistency experiment. Consistency
measures how similar output of a planner is, given similar
inputs (start and goal). In many domains, this kind of path
predictability is critical for people to be comfortable around
robots. We tested this by choosing 5 similar start poses for

the robot and 5 similar locations of the cabinet/drawer. We
then plan between all pairs to get 25 paths. We used the
dynamic time warping similarity metric [14] to compare the
methods. Having a value closer to 0 means the paths are
more similar. Since this method is for comparing pairs of
paths, we performed an all-pairs comparison and then took
the average path similarity. We can see that E-Graphs produce
more consistent paths due to the deterministic nature of the
planner.

The �nal simulation scenario demonstrates the capability of
using a partial E-Graph. An arti�cial obstacle was intentionally
placed to obstruct a portion of the provided experience. We
show that the E-Graph planner derives as much of the solution
as it can from the provided experience before doing a normal
weighted A* search to replace the portion of the experience
that is in collision.

Figure 6 shows the speci�c case. On the left we see the �nal
con�guration from the demonstration which is in signi�cant
collision with an obstacle. It is clear that simply playing back
the demonstration to open this cabinet would fail (even small
modi�cations on the joints would not be suf�cient). In the
image on the right we can see that the planner generates a
valid �nal pose (and a valid path leading up to it) by lowering
the elbow. The E-Graph planner actually uses the �rst half
of the demonstration (which is valid) and then generates new
motions for the rest. We can see from the �nal pose, that
the motion is dramatically different from the demonstration in
order to accomodate the new obstacle.

Table IV shows the time performance of this trial. The
weighted A* performs worse because it must build the solution
from scratch. The partial E-Graph solution completes in an
order of magnitude less time. Figure 7 shows that when using
none of the E-Graph (planning from scratch) a similar solution
is found but it takes much longer. For comparison, the planning
statistics for the provided demonstration without the obstacle
is shown as well. We see that the partial E-Graph only took
slightly more time than the case where the obstacle is removed
(and the complete demonstration could be used).

The end result of this simulation shows that the E-Graph
planner can take full advantage of provided experiences, even
when parts of the provided experience are invalid.

TABLE IV
PERFORMANCE STATISTICS FOR PARTIALE-GRAPH PLANNING.

Planning time Expansions
Weighted A* 51.90 16402
Partial E-Graph 2.22 59
Complete E-Graph (without obstacle) 2.08 47

VI. CONCLUSION

In this work we presented a way to use Experience Graphs
to improve the performance of planning for constrained ma-
nipulation by providing user demonstrations. The planner is
able to �nd paths with bounded sub-optimality even though
the demonstrations can be of arbitrary quality (and don't even

(a) The second half of the demon-
stration is in collision with an ob-
stacle. The last pose is shown here.

(b) The planner reuses as much
of the demonstration as it can
and then generates the rest from
scratch. The �nal pose in the path
is shown. The elbow has been
dropped to accomodate the ob-
stace.

Fig. 6.

Fig. 7. A similar solution is found when planning from scratch.

need to be useful). Experimentally we provide results on high
dimensional mobile manipulation tasks using the PR2 robot
to open cabinets, freezers, and drawers both in simulation and
on the real robot.

In future work we would like to look into the use of demon-
strations for unconstrained manipulation and manipulation of
objects that lie on multi-dimensional manifolds.

ACKNOWLEDGMENTS

We thank Willow Garage for their support of this work. This
research was also sponsored by ARL, under the Robotics CTA
program grant W911NF-10-2-0016.

REFERENCES

[1] Brenna Argall, Sonia Chernova, Manuela M. Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57
(5):469–483, 2009.

[2] Dmitry Berenson, Siddhartha Srinivasa, David Ferguson,
and James Kuffner. Manipulation planning on constraint
manifolds. InIEEE International Conference on Robotics
and Automation (ICRA '09), May 2009.

[3] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A
robot path planning framework that learns from experi-
ence. InICRA, 2012.

[4] J. Bruce and M. Veloso. Real-time randomized path
planning for robot navigation. InIEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002.

[5] B.J. Cohen, S. Chitta, and M. Likhachev. Search-based
planning for manipulation with motion primitives. In

Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, 2010.

[6] Nikolay Jetchev and Marc Toussaint. Trajectory predic-
tion: Learning to map situations to robot trajectories. In
IEEE International Conference on Robotics and Automa-
tion, 2010.

[7] Xiaoxi Jiang and Marcelo Kallmann. Learning humanoid
reaching tasks in dynamic environments. InIEEE Inter-
national Conference on Intelligent Robots and Systems,
2007.

[8] J. Kober and J. Peters. policy search for motor primitives
in robotics. Inadvances in neural information processing
systems 22 (nips 2008), cambridge, ma: mit press, 2009.

[9] Petar Kormushev, S. Calinon, and D. G. Caldwell. Robot
motor skill coordination with EM-based reinforcement
learning. In Proc. IEEE/RSJ Intl Conf. on Intelligent
Robots and Systems (IROS), pages 3232–3237, Taipei,
Taiwan, October 2010.

[10] Giuseppe Oriolo and Christian Mongillo. Motion plan-
ning for mobile manipulators along given end-effector
paths. InProceedings of the 2005 IEEE International
Conference on Robotics and Automation, ICRA 2005,
April 18-22, 2005, Barcelona, Spain, pages 2154–2160.
IEEE, 2005.

[11] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. learning
and generalization of motor skills by learning from
demonstration. Ininternational conference on robotics
and automation (icra2009), 2009.

[12] Michael Phillips, Benjamin J. Cohen, Sachin Chitta, and
Maxim Likhachev. E-graphs: Bootstrapping planning
with experience graphs. InRobotics: Science and Sys-
tems, 2012.

[13] Josep Maria Porta Pleite, Léonard Jalliet, and Oriol
Bohigas Nadal. Randomized path planning on manifolds
based on higher-dimensional continuation. 31(2):201–
215, 2012.

[14] Hiroaki Sakoe and Seibi Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 26, 1978.

[15] M. Stolle and C. Atkeson. Policies based on trajectory
libraries. InIEEE International Conference on Robotics
and Automation, 2006.

[16] Ioan A. Sucan and Sachin Chitta. Motion planning with
constraints using con�guration space approximations.
Vilamoura, Algarve, Portugal, 2012. IEEE.

[17] Yuandong Yang and Oliver Brock. Elastic roadmaps -
motion generation for autonomous mobile manipulation.
Auton. Robots, 28(1):113–130, 2010.

	Introduction
	Related Work
	Experience Graphs
	Demonstration-based Experiences
	Notations and Overall Framework
	Task-based Redefinition of States
	Task-based Redefinition of Transitions
	Task-based Heuristic
	Theoretical Properties

	Experimental Results
	Robot Results
	Simulation Results

