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Abstract—Motion planning in high dimensional state spaces, problems. Experience Graphs (E-Graphs) are formed from a
such as for mobile manipulation, is a challenging problem. Con- collection of paths. These could be previous paths that the
strained manipulation, e.g. opening articulated objects like doors planner generated or, as we show in this work, come from

d L} L)

or drawers, is also hard since sampling states on the constraine d trati Pl . E-Graphs is d With an A%
manifold is expensive. Further, planning for such tasks requires user aemonstrations. Flanning on £-rapns Is done

a combination of planning in free space for reaching a desired based algorithm and therefore, the state space is repeelsasit
grasp or contact location followed by planning for the constrained a discretized graph. When planning with E-Graphs the search
manipulation motion, often necessitating a slow two step process js focused toward reusing parts of paths that look like thedp h

in traditional approaches. In this work, we show that combined nd a solution quickly. The planner guarantees completenes

planning for such tasks can be dramatically accelerated by . . - .
providing user demonstrations of the constrained manipulation and a bound on the sub-optimality of the solution cost with

motions. In particular, we show how such demonstrations can espect to the graph representing the problem.

be incorporated into a recently developed framework of plan- We show that by using demonstrations with Experience
ning with experience graphs which encode and reuse previous Graphs, motion planning can be signi cantly sped up. This
experiences. We focus on tasks |nv_0IV|ng articulation constraints, approach is exible as we are still running a complete planne
e.g. door opening or drawer opening, where the motion of the hich is f d h ful. but i tf d
object itself involves only a single degree of freedom. We provide which 1S Tocused on reuse W en usetul, but 1S no Qr(_:e or
experimental results with the PR2 robot opening a variety of hard-coded to make a previous path work where it is not

such articulated objects using our approach, using full-body helpful.
manipulation (after receiving kinesthetic demonstrations). We
also provide simulated results highlighting the bene ts of our Il. RELATED WORK

approach for constrained manipulation tasks. There has been a large amount of work within the eld

of “learning from demonstration” which incorporates teach
examples to generate policies for the rohot/[9, 8,111, 1, 15].
In order to perform useful tasks robots must not only be abf®ur work also uses demonstrations but differs from these
to move safely through their environments but must also b@proaches. In learning from demonstration literature, th
able to manipulate objects in them. Motion planners can peovided examples show the desired behavior and therefere a
used to solve manipulation problems though planning timgsal (or reward) directed. This means that the demonstratio
suffer for more complex tasks. An example of such taskse provided with the goal or reward of the task already
is constrained manipulation, e.g. opening doors or drawefls mind. In our problem, demonstrations are given before
The motion required for such tasks occurs on a constrainegowing the goal or task. Some or all of the demonstrated
manifold, e.g. the motion of the gripper is constrained &y st movements may be irrelevant for a given query and the planner
on the handle of the door with a rm grip, which cannot baletermines this during the search. The demonstrations are
directly sampled in joint space. purely used to help search the state space more ef ciently.
Tasks such as opening doors or drawers are often addressdd our approach the demonstrations are used to guide the
using two stages of planning: a rst stage where a motigslanner to a solution more quickly and avoid unnecessary
planner is used to plan the initial path to a contact or gragploration. There has been quite a bit of research on ieorp
location followed by a second stage where a constrained plating prior information from prior searches into the plann
is computed. This two stage approach can be slow since ffvecess. Bruce et. al.|[4] extended RRTs to reuse cached plan
goal state of one stage needs to be fed as the start stateafwt bias the search towards waypoints from old paths. A
the next. In particular, traditional approaches that planmf feature-based approach involves selecting a trajectamy fa
scratch every time are unable to exploit previous expeegnaatabase from a similar scenario based on the positions of
which is a huge disadvantage for tasks like door or drawinfe start, goal, and obstacles relative to the robot [6]. The
opening which are essentially repetitive. selected path is then tuned to t the current scenario using a
In this work we augment an existing Experience Graplocal optimizer. In|[7] a bi-directional RRT is used to drauwet
planner [12] with user generated demonstations in order $earch toward a path from a database which is most similar
obtain fast planning times in such challenging constraingd the new motion planning problem (based on distances to

I. INTRODUCTION



the start, goal and obstacles). Some more recent work [8] als 0T
attempts to repair paths from a database of past paths using Neoe
sampling-based planners. Planning on Experience Graphs is 3 ; ‘ ‘
an A* based method for reusing paths in new queries by
guiding the search toward parts of old paths if they appear
as though they will help the planner nd the goal fasier [12].
This method provides guarantees on completeness andosoluti
quality which the other methods we refered to lack. E-Graphs
are able to do this regardless of the quality of the paths put
into the Experience Graph. We use this method in our work.
This work is focused on planning to manipulate objects in
the environment. In particular, we deal with objects in the
environment that inherently have constraints enforcechemt

(a) GE

‘ goal

For instance, a cabinet door is constrained to swing absut it (®) "% =1

hinge. Planning with constraints has been addressed in the

recent past. Past approaches include local methods thatiero v

fast smooth trajectory generation while maintaining wpdce S
constraints|[17]. However, this lacks global exploratidrtte st:r-tg }

state space and therefore is not guaranteed to nd a valid sol 0 5 goal
tion even if one exists. Sampling-based planners on canstra A\

manifolds allow for probabilistic completeness, [[2, 10thér
approaches include of ine computation of constraint maleié

1€] and constructing an atlas for the constraint manifdid &9- 1. _ Effect of"€. The light gray circles and lines show the original
[ ] 9 aph. The darkened states and edges in (a) show the E-Gnafl).and (c)

runtime [13]. Reusing demonStranonS Ca.n help in 'mprOV'_r%e dark gray circles show states explored by the plannerderdo nd a
the performance of planning for constraint tasks, somgthimolution. The light dashed line shows the heuristic patimftae start state.

that no existing approach exploits. We aim to show that ollptice that wherl'= is large, this path travels along the E-Graph and avoids
9 app P most obstacles (there are few explored states). On the otmet when"E

approach can signi _Camly improve it? performance by ragsi is small, the heuristic (in this case euclidean distancejedrthe search into
demonstrations while at the same time dealing robustly withveral obstacles and causes many more expansions. It steounlokdd that

changes in the environment, and gracefully planning front 1is used in these examples.
scratch when necessary.

(c)"E 11

running A* search to nd a path. More generally, planning
I1l. EXPERIENCEGRAPHS with Experience Graphs using weighted A* search in ates the

. . . . _— entireh® heuristic by". Consequently, the cost of the solution
This section provides a brief description of how E-Graphs bounded by’ "E times the optimal solution cost.

. . T
k. F detail th k where E 2 o0 Y .
Work. For more detars See the prior work where Expenenc Equation[1 is computed by nding the shortest path from

Graphs were introduced [12] Sp to the goal in a simpli ed version of the planning problem

An Experience GraphGE is a collection of previously .
planned paths (experiences). Planning with Experiencqahisrawhere there are two kinds Of. e_dges._ The rst_ s_et are edges that
represent the same connectivityl#s in the original planning

uses weighted A* to search the original gra@h (which : L W E
: . roblem but their cost is in ated by=. The second set of
represents the planning problem) but tries to reuse pae(?ges are fronGE with their costscE (1 if the edge is

in GE in order to minimize the exploration of the original ot in GE). As "E increases, the heuristic computation goes
raphG. This is don modifying the heuristic com i T ’
graphG s is done by modifying the heuristic computatio arther out of its way to use helpful E-Graph edges.

of weighted A* to drive the search toward paths GF, . .
that appear to lead towards the goal. Essentially, this some Figure[l shows the effect of varying the paramefer As

down to computing a new heuristic distance from the state ||I%|gets Iﬁ"ge’ thihheurlstlchlsd.motrle Ioc:;}sedE tgwarg E-Graprtl
question to the goal where traveling off GF is penalized edges. raws the search directly 1o the E-&raph, connects

but traveling on edges dBF is not. The new heuristib® is prior path segm'ents, and only searches off of the E-Graph
de ned in terms of the original heuristic® and edges ifGE when there aren't any useful experiences (;uch as around the
for all statess, in the original graph. last obstaclg). There are very few_expalnsmns and much of
the exploration of the space is avoided. Xs approaches 1
K 1 (optimality) it ignoresGE and expands far more states.
hE (sg) = min min f"EhC(s;;si+1);cE(si;Si+1)g (1)

i=0 IV. DEMONSTRATION-BASED EXPERIENCES
where is a pathhsg:::sy 1i andsy 1 = Sqoa @and"E is The main contribution of our paper is in showing how
a scalar 1. As shown in|[12], the heuristic i%F -consistent demonstrations can be integrated into planning with Expe-
and therefore guarantees that the solution cost will be nence Graphs. The use of demonstrations in conjunction
worse than"E times the cost of the optimal solution wherwith Experience Graphs is not as simple as just adding the



contact point on the robot. This function is many-to-one. In
Figure[2 this corresponds to the pose of the end-effector and
would be computed fronsoord(v) using forward kinematics.
<> Note that in our simple example there are two statethat
could produce the same (corresponding to an elbow up or
down con guration). The drawer handle's constraint malufo

is the small line segment which would be traced by the handle
/777 while opening the drawer.

Fig. 2. A two link planar arm and a drawer that can be manipdlate planToMampulata(;; D; Sstart 1 Zgoal » Obj)
1. T = Tobj 2D

o . . 2: Gmanp = buildGraph (G; T
demonstrations into the graph as additional experiences fd;. GEachreateuéGr;Sﬁ (4) )

several reasons. First, demonstrations may not lie on the = findPath (Gmanip ;GF;T;Sstart ;Zgoal )

original graph. Second, since the demonstrations show bow t: return

manipulate an object (e.g. how to open a door), they require

adding a new dimension to the state-space, the dimensiomhe planToManipulate algorithm shows the high-level
along which the object is being manipulated. Consequentfyamework. First it selects the demonstrations frémthat
the underlying graph as well as Experience Graph must Bgrrespond to objecbbj. Then it constructs a new graph
Updated, to include this dimension. Finally, the heurigsed Gmanip to represent the p|anning prob|em_ This graph rep-
in the graph search will need to be improved to guide thesents the robot's own motion (as before), contact with the
search towards the object that needs to be manipulated &s WB|ect, and manipulation of the object by the robot. The
guide it in how to manipulate the object. We describe how {@eateEGraph function uses the demonstration to create the
address these Challenges in this section. We will use amgnnExperience Grapﬁ;E as well as to augment the graph with a
example of a 2 link planar manipulator opening a drawer f§ew dimension. Finally, a planner is run on the two graphs

make the explanation clearer (Figlie 2). as described in[ [12]. The following sections describe the
A. Notations and Overall Framework construction of the grapBmanp = MVmanip ; Emanip | and
_ . ) new heuristic to guide search for motions that manipulate
First we'll go through some de nitions and notations an he objects.
brie y describe the overall framework.
The original graph representing the planning problem is 7-0
G = hV;Ei. Each vertexv 2 V represents a robot state: ﬁ
coord(v) 2 R". We also assume a database of demonstrations . @ Q,
D = hT;:::Tyi. EachT; is a set of discretized trajectories ) :
corresponding to thé™ object in the environment that can K .: Z=0.1
be manipulatedTy, = fha?, :::a, i:::haP :::a% ig where oo '
al 2 Ty is thej™ point in thei™ trajectory for objecth. L
a 2 R"1. The extra dimension corresponds to the state of | Q, 7=0.2
the manipulated object, which we will term In Figure[2 i |
this would be how far the drawer is pulled open. We will use C%J
zcoordai?) to represent the value of the state of the object ’  ® 0
b at aﬁ-’. For every objecth, we also useZy to represent s
the set of all values of that are present ifM,. Formally, °
Zy = fzj9a; 2 Tys:t:z = zcoorda; )g. :

Finally, we assume that the objects we are manipulating lie
on one-dimensional manifolds in a higher dimensional space
For instance, when opening a cabinet, the door is consttairféd- 3 The graph construction. The layered planes show haotiginal
¢ di ; | ifold. Th | inf gé?ph is duplicated for each value o2 Z . Theajj elements are points on
0 move on a one |m_en3|0na m_an' old. € Panner INTeEyemonstrated trajectory. During the demonstration thetsobmte changes
how to operate the manipulated objects automatically fragm o(movement within the plane) as well as the object's state (moneivetween
or more demonstratlons There |s no p”or model of any of tfﬁ)@nes). Eaciaij element is in a set of Stateﬁ . In addition to this Statel‘

. . . .containss s:t: withinError (' (coord(s));"' (coord(aj ))) * zcoord(s) =
objects the robot interacts with. Instead we assume these i3coorq(a; ).
stationary point of contact on the object that the robotd-en
effector comes into contact with during manipulation. Dgri -
demonstration, we observe the movement of this contact pofh Task-based Rede nition of States
along a curve, whictz parameterizes. The domain speci ¢ The provided demonstrations change the state space in two

functiony = ' (coord(v)) computes the coordinates of thesigni cant ways. First, the manipulated object adds a new



dimension to the graph. Secondly, the demonstration mayare very close (such as when the demonstration stéads
contain robot states that do not fall on any state in the waigi within the discretized “bin” of the original graph statg The
graph. In order to handle this, we construct a new vertex gato states must also share the same z-value (the manipulated
Vmanip @S shown below. object must be in the same state). For example, in Figlre 2
a bridge edge may be added whenever the euclidean distance
between the two joint angles of demonstration state and an

Vmanip = Vorig [ Vemo ; where original graph state are within a small distance of eachrothe

Vorig = fvjhcoord(v); zcoord(v)i = hcoord(u); zi and the drawer is pulled open the same amount.
8u2V;z2Zg Z edges generalize the demonstrations in order to create
Viemo = fvjhcoord(v); zcoordv)i = a; 2T g edges on the object's constraint manifold that may not have

existed in the demonstrations. This means that if the contac
point of the robot at state is very close to that of state

The new vertex set is a combination of the old vertices (coord(u)) ' (coord(w))), the object is in the same state
and the vertices from the demonstrations. The vertex/sgt  (zcoordu) = zcoordt)), these conditions are also true for
contains the vertices in the original graph but repeated férandv, andtt is connected tor in the demonstrations, then
each possible value of the new varialeThe setVgemo is W€ will connectu to v (provided the action is collision free,
the set of vertices that exist in the demonstration trajeeso as With any edge in the graph). These edges allow the planner
In Figure[3 the planes show the layers of the original grag@ nd ways to manipulate the object other than exactly how
repeated for each value af Additionally, we can see the it was done in demonstrations. This is especially important

states that come from the demonstration. if part or all of the speci ¢ demonstration is invalid (due to
N N collision) but it may still be possible to manipulate the exij
C. Task-based Rede nition of Transitions Figure[3 shows this using the cloud-shapedAny of the

The demonstrations not only change the state space, btates that fall in ; can connect to states inj+; or ; 1.
also affect the connectivity of the graph due to the addition .
D. Task-based Heuristic

dimension as well as motions in the demonstration that are . . _ _
not used in the original graph. Since the goal is to manipulate an object to a particulaestat

The new edge Se manpp is de ned below. (for instance, open a drawer), the search will be slow unless
the heuristic guides the planner to modify the object towhed
goal con guration. With that in mind we outline a heuristic

Emanip =Eorig [ Edemo [ Ebriage [ Ez Where that takes into account the motion of the robot required to
Eorig =f(U;V)j9t; v 2 V s:t: coord(et) = coord(u)” reach contact with the object as well the manipulation of tha
coord(v) = coord(v)” Object._ o _
) A We introduce a two part heuristibS,, built on top of
(hv) 2 E the original heuristic for the environmeh. The E-Graph
zcoord(u) = zcoordv)g heuristich® described in section 11l will now uskS,, instead
Edemo =f (U; v)jhcoord(u); zcoordu)i = a;; 2 T A of h®. For any states = hx;zi we are trying to provide an
hcoord(v); zcoord(v)i = aij +1 2 T admissible (underestimating) guess for the remaining tost

i ) . get to the goal (have = Zzga). The general idea is that
Eoriage =T (u; v)jhcoord(u); zcoordu)i 2 T hS |, (s) estimates the cost of getting the robot in contact with
9v 2 Vs:t:coord¥) = coord(v)" the object plus the cost it takes to manipulate the object so
connectabldu; v)? that the variablez moves through all the required values to
zcoordu) = zcoordv)g becomezyo, . More formally,
E, =f(u;v)j9(t; %) 2 Egemo Sit:
withinError (' (coord(u));"' (coord(t))) " he. (s) =
env
zcoord(u) = zcoordt)” Ve
withinError (' (coord(v));" (doord(w)))”
zcoordv) = zcoordv)g

Zg% 1
min  h®(s;v,) + hC (Vi Vics1 )

IV 2o .

Vi 2f V 2 Vinanip 9@ 2T ;sit:

withinError (" (coord(a; ));" (coord(v)))
The new edge set is a combination of edges from the A zcoorda; ) = kg
original graphE iy (replicated for each value of z), edges that !
come from demonstrationEgemo, “bridge edges”Epridge » We can see that we are having the contact point pass through
and Z edges;. all the poses shown in the demonstration (betweenztloé

Bridge edges connect demonstration states to states in sketes and the goak). There may be many robot con gura-

discretized original graph. The “connectable” functiomdiso tions to choose from for each of these contact poses in order

de ne them should typically be used if the two statesand to get a minimum sequence. In our experiments, we chose a



heuristich®(a; b) that computes the linear distance that thtotal of ten. An illustrative goal for the planner would be to
contact point travels between the two robot con gurationshange an articulated object to a speci ed value e.g., ngpvin
[5]. An advantage of this heuristic is that we don't need ta cabinet door from the closed to open position. This reguire
consider the set of all robot con gurations. Since all theab the creation of plans for the combined task of grasping the
con gurations in a set (e.g. all possible states to choose foandle of the cabinet door by coordinated motion of the base,
someVvg) have the same contact point, they are equivalespine and right arm of the robot, followed by moving the
inputs to this heuristic function (so any state with thattesh gripper appropriately (again using coordinated motionghef
point will do). Therefore, the sequencewf:::v, , canjust base, spine and right arm) along the circular arc required to
be that segment of a demonstration. This makgs easy to open the cabinet door.
compute. Kinesthetic demonstration, where the users manually moves
. . the robot along a desired path to execute the task, was used
E. Theoretical Properties to record the desired paths for different tasks. The valdes o
As we showed earlier, it's possible for edges (motions) ithe state space variables were recorded along the desttesi pa
the demonstration to not exist in the original graph. Theggnce the demonstrations have been recorded, the roboysepla
extra edges can help the planner nd cheaper solutions thge demonstrated trajectories to execute the given tasht As
what it would have been able to achieve without them. It alsfxecutes the demonstrations, it uses its 3D sensors todrecor
may be able to solve queries for which there was no solutigiformation about the changing environment. This 3D sexisor
in the original graphG alone. trace (represented as a temporal series of occupancy grids i
An important thing to note is that while the quality of the3D) represent the motion of the target object (e.g. the @tbin
demonstration can dramatically affect the planning times adoor) throughout the demonstration.
the solution cost, the planner always has a theoreticalruppeThe stored temporal sensor information provides informa-
bound on the solution cost with respect to the optimal cost fjbn about the evolution of the changing environment, par-
graphGmanip - ticularly for use in collision checking. Forward kinematits
Theorem 1: For a nite graphG and nite Experience ysed to determine the demonstrated workspace trajectory fo
GraphGF, our planner terminates and nds a path ®manp  the contact point of the gripper and the articulated objBeis
that connectSsiart to a states with zcoord(s) = zgeal if ON€  information, along with the recorded state data, represgata

exists. that can be fed back into the E-Graph for later use.
Theorem 2: For a nite graphG and nite Experience

_Graph GE, our planner terminates and th_e solution it rgturn%_ Robot Results
is guaranteed to be no worse thdn "E times the optimal
solution cost iNGmanip - Our planner was implemented in four different scenarios
The proofs follow by applying the theorems in_[12] to thevith the PR2 robot: opening a cabinet, opening a drawer
graph Gmanip - Also, since we are running a full planner inwith an external handle attached, opening an overheadekitch
the original state space, for a low enough solution bourel, tabinet, and opening a freezer. The overall goal for eadh tas
planner can nd ways to manipulate the environment object§ for the robot to start from an arbitrary position, movelie t
more ef ciently (cheaper) than the user demonstrations. ~ desired task location, grasp the handle and open the cabinet
or drawer.
V. EXPERIMENTAL RESULTS For each scenario, a full 3D map of the environment was
We tested our approach by performing a series of mobikst built using the stereo sensors on the robot. The opening
manipulation tasks with the PR2 robot including openinpart of the task was then demonstrated with the robot by a
drawers and doors. All the tasks involve manipulation witbser. The robot then replayed the demonstrated motion on its
a single arm, coupled with motion of the base. The endwn, recording the additional visual sensor data needelen t
effector of the right arm of the PR2 is restricted to be levglrocess to complete the demonstration. This data is al&ilab
i.e. its roll and pitch are restricted to a xed value (zerBhis to the planner for incorporation into the E-Graph.
results in the motion of the arm happening in a 5 dimensional The planner was then tested using different start states.
space parameterized by the position of the right end-effeciThis required the planner to generate motions that would
(x,y,2), the yaw of the end-effector and an additional degre move the robot to a location where it could grasp the
freedom corresponding to the shoulder roll of the right arrhandle on the drawer/cabinet/freezer. Note that this phart o
We consider the overall motion of the robot to be happeninige motion had not been demonstrated to the planner. The
in a nine dimensional state space: the 5 degrees of freedplanner also had to generate the motion required to open the
mentioned above for the arm, the three degrees of freeddmawer/cabinet/freezer. Again, note that the robot coelihta
for the base and the an additional degree of freedom for ttéferent start state at the beginning of its motion for dpgn
vertical motion of the torso (spine). the drawer/cabinet/freezer as compared to the start state f
When performing a task, an additional degree of freedothe demonstrated motion. Further, there may be additional
is added to the state space corresponding to the articulatddtacles in the environment that the planner needs to deal
object, bringing the dimensionality of the state space toveith. Figure[4 shows still images of these trials.



Fig. 4. PR2 opening an lkea cabinet, metal drawer, overheatidd cabinet, and freezer door, respectively.

Table[l shows the planning times for these demonstratiomsom (the robot start pose was constant). Figdre 5 shows a
While the weighted A* planner solution time is shown, onlynapshot of the simulation environment.
the E-Graph planner result was executed on the robot. In onélable[dl shows planning statistics of weighted A* versus
case, the weighted A* was unable to produce a plan in tidanning with E-Graphs. These results show that using the
allotted 60 seconds. Weighted A* was run witle 20, while Experience Graph allows us to nd solutions with fewer
our planner ran witd' = 2 and"E = 10 for an equivalent expansions and therefore, in less time.
bound of 20.

TABLE |
PLANNING TIMES IN SECONDS FOR OPENING A FILE DRAWERIKEA
CABINET, OVERHEAD KITCHEN CABINET, AND FREEZER

E-Graph | Weighted A*
Drawer 2.06 2.96
Cabinet 1.83 12.87 2 -
Kitchen Cabinet| 2.87 (unable to plan) i Am = Contact Point
Freezer 152 7.81 =
B. Simulation Results Fig. 5. The simulation environment. The red boxes represeample

. locations of the target object to be manipulated. The gree®$oepresent
A separate set of simulated tests was conducted to measHE&ontact point that the robot gripper should attempt tsmra

the performance of the planner and compare it to weighted

A* (without re-expansions) and a sampling-based approachWe also compared against Constrained Bi-directional
Weighted A* was run with" = 20, while our planner ran Rapidly-Exploring Random Tree (CBiRRT), wich is designed
with " = 2 and"E = 10 for an equivalent bound of 20.to help the RRT algorithm deal with planning on constraints
The environments were generated by rigidly transforming twvhich may be small compared to the state space and therefore
target objects (cabinet and drawer) to various locationa indif cult to sample D]. Like most RRT algorithms this method



TABLE I

A COMPARISON BETWEENE-GRAPHS AND WEIGHEDA* OVER 35 the robot and 5 similar locations of the cabinet/drawer. We
SIMULATIONS then plan between all pairs to get 25 paths. We used the
, dynamic time warping similarity metric [14] to compare the
E-Graph Weighted A* thods. Havi | | to 0 th th
Viean T Std dev | Wean T Std dev methods. Having a value closer to 0 means the paths are
Drawer | 2.75 | 1.73 7.25 | 16.62 more similar. Since this method is for comparing pairs of
Cabinet | 1.74 | 0.70 54.69 | 43.49 paths, we performed an all-pairs comparison and then took

the average path similarity. We can see that E-Graphs peoduc
more consistent paths due to the deterministic nature of the

repeatedly chooses a random sample, and tries to extend RIRNEr.

nearest neighbor in the search tree toward it (since thig-is b The nal simulation scenario demonstrates the capability o
directional, it grows both). The primary difference is thia¢ USing a partial E-Graph. An arti cial obstacle was intentaly
extension is done by taking small unconstrained steps (liRéced to obstruct a portion of the provided experience. We
a linear step in c-space) followed by a projection step bagkow that the E-Graph planner derives as much of the solution
on to the constaints. We use a state variable to repres@ftit can from the provided experience before doing a normal
how far the object has moved (like in our approach). Meighted A* search to replace the portion of the experience
the object is “closed” then the projection does nothing (tH8at is in collision.

robot doesn't have to be holding the contact point). If the Figure 6 shows the speci ¢ case. On the left we see the nal
object is in any other state then it has been moved, af@n guration from the demonstration which is in signi cant
we project con gurations so the robot is holding the conta@ollision with an obstacle. It is clear that simply playingd
point. The constraint manifold learned in our approach edusthe demonstration to open this cabinet would fail (even mal
for the projection step. For the goal state (the root of tHgodi cations on the joints would not be sufcient). In the

backward tree) we provided the nal con guration from thdmage on the right we can see that the planner generates a
demonstration. valid nal pose (and a valid path leading up to it) by lowering

the elbow. The E-Graph planner actually uses the rst half
of the demonstration (which is valid) and then generates new
motions for the rest. We can see from the nal pose, that

TABLE Il
A COMPARISON BETWEENE-GRAPHS AND CBIRRT

E-Graph time (s) CBIRRT time () the motion is dramatically different from the demonstratin
5 2"?2” ftgsdev Z"fg’l‘ S;%gev order to accomodate the new obstacle.
rawer . . . . . . .
Cabnet | 1.94 1076 175 1160 Table IV shows the time performgnce of th|s trial. The
weighted A* performs worse because it must build the sotutio
E-Graph base motion (m) CBIiRRT base motion (m) from scratch. The partial E-Graph solution completes in an
—_— g"gi‘” gtgode" 2";‘;” g’t“:sdev order of magnitude less time. Figure 7 shows that when using
Cabinet | 0.88 1 027 153 1034 none of the E-Graph (planning from scratch) a similar sotuti

is found but it takes much longer. For comparison, the plagni

Egsphsﬂjmdgmion (rad “CAELF:]RT g{g“dfg\?ﬁon (rad) statistics for the provided demonstration without the ablst

Drawer 1537 T 272 550 [ 204 is shown as well. We see that the partial E-Graph only took

Cabinet| 6.83 | 2.00 242 | 0.86 slightly more time than the case where the obstacle is rethove
_ _ _ (and the complete demonstration could be used).

S E'Grapg.g‘;r‘s'“e”cy CB'RRTl(;‘;gS'Ste”Cy The end result of this simulation shows that the E-Graph

Cabinet 037 303 planner can take full advantage of provided experiences; ev

when parts of the provided experience are invalid.

Table Il compares E-Graphs to CBiRRT. In the rst section TABLE IV
. . PERFORMANCE STATISTICS FOR PARTIALE-GRAPH PLANNING.
of the table we can see that the planning times for the two
approaches are similar for simpler scenarios though E{@Grap Planning time | Expansions
perform better on others (across 35 trials). We expect Bpi@ra | Weighted A 51.90 16402

; : Partial E-Graph 2.22 59
to continue to perform better than sampling planners asstask Complete E-Graph (without 0bsiacld) 2.08 =

become more complicated since there is more room for reuse
of prior experience. We also found the E-Graph solutionseto b
of similar or better quality (refer to the base and arm dis¢an
metrics in the middle of the table). At the bottom of the table VI. CONCLUSION

we see results from a consistency experiment. Consistencyn this work we presented a way to use Experience Graphs
measures how similar output of a planner is, given simil&ao improve the performance of planning for constrained ma-
inputs (start and goal). In many domains, this kind of pathipulation by providing user demonstrations. The planser i
predictability is critical for people to be comfortable amal able to nd paths with bounded sub-optimality even though
robots. We tested this by choosing 5 similar start poses fine demonstrations can be of arbitrary quality (and dorénev




(a) The second half of the demon-(b) The planner reuses as much

stration is in collision with an ob- of the demonstration as it can

stacle. The last pose is shown hereand then generates the rest from
scratch. The nal pose in the path
is shown. The elbow has been
dropped to accomodate the ob-
stace.

Fig. 6.

Fig. 7. A similar solution is found when planning from scratch

[6

—_

[8]

[9]

[10]

[11]

need to be useful). Experimentally we provide results oih hig

dimensional mobile manipulation tasks using the PR2 rob

to open cabinets, freezers, and drawers both in simulatidn
on the real robot.

t
12]

In future work we would like to look into the use of demon-

strations for unconstrained manipulation and maniputatbd
objects that lie on multi-dimensional manifolds.
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