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Abstract—This paper proposes a novel methodology for
decentralized multi-robot navigation with multiple arbitrarily
shaped obstacles in 2-dimensional environments. The proposed
methodology is based on the novel concepts of the Navigation
Transformation and the Harmonic Function based Navigation
Functions. A version of the Navigation Transformation - the
Multi-Agent Navigation Transformation - is proposed in this
paper to map geometrically complex topologies resulting from
moving workspace entities to simple topologies enabling the
construction of Harmonic Function based Navigation Functions.
The resulting vector field is guaranteed to be free of local minima
by construction. A construction of a candidate Multi-Agent Nav-
igation Transformation is proposed. In addition to the theoretical
guarantees, the effectiveness of the proposed methodology is
demonstrated through non-trivial computer simulations utilizing
the proposed construction.

I. INTRODUCTION

Multi-robot navigation is a problem that has been consid-
ered by the robotics community since the early 90’s [17], while
still being an active research topic [18, 15, 3, 8, 10].

One of the arguably most successful frameworks for robotic
navigation is the Navigation Functions (NF) framework [9].
NFs provide the capability for closed-form fast-feedback based
control for navigating a robot from any initial configuration to
its destination configuration, while being amenable to rigorous
analysis regarding convergence and stability properties. Due
to the closed-form solution, the NF framework enable ap-
plications on systems with limited computational capabilities.
The NF framework has been successfully extended to handle
multiple robots in centralized [15] and decentralized setups
[3, 16], with non-holonomic constraint [14] and has also
been augmented with spacio-temporal scheduling and planning
capabilities [6, 4].

One of the major points of criticism for the NF based
techniques has been the issue of tuning1. Recent results on
Navigation Functions based on Harmonic Potentials [12] that
utilize the Navigation Transformation concept [13], provide
vector fields that are free of local minima by construction,
whereas automatic tuning controllers can enforce the Morse
property (non-degeneracy of critical points), yielding a vir-
tually tuning free application. These results enable on-the-fly

1Navigation Function tuning refers to the process of determining the
appropriate level of the parameter k that will render the candidate Navigation
Function (i) free of local minima and (ii) a Morse function.

addition, removal and re-arranging of obstacles without losing
the Navigation Function properties. However these results
are valid only for single robot navigation. An appropriate
extension of those results is required to enable multi-robot
navigation and this is what is provided in the current work.

Multi-robot NF based techniques that have appeared in the
literature assume disk shaped robots even-though the multi-
robot NF theory does not exclude the possibility of robots
diffeomorphic to spheres. One of the major drawbacks in
handling obstacles under the framework of multi-robot nav-
igation functions (MRNFs), is the absence of an appropriate
transformation of arbitrarily shaped worlds to the spherical
world where MRNFs were constructed. This paper is the first
to the author’s knowledge that treats multi-robot navigation
in environments with arbitrarilly shaped obstacles under the
Navigation Functions framework. Global knowledge regarding
the location and geometry of each workspace entity is assumed
to be available to every robot in this paper. In this paper
robots are assumed to only have 2 degrees of freedom, hence
only translational motion of robots is considered, whereas
rotational motion is beyond the scope of this paper. The
major contributions of the methodology proposed in this paper
over the existing Multi-Robot Navigation Functions literature
(MRNF) are as follows:

1) Correct by construction: Absence of local minima is
inherited from the underlying harmonic function without
need for tuning, whereas a tuning controller is imple-
mented to establish the non-degeneracy of critical points.

2) On the fly addition and removal of workspace entities
without need for tuning.

3) Handling of static obstacles. MRNF literature has
demonstrated handling of controlled, sphere-shaped
workspace entities. Static, arbitrarily shaped and arbi-
trarilly spaced obstacles have not been formally treated
under MRNFs. These cases may yield grown obstacles
that are non-spherical. Moreover grown obstacles may
modify the number of disjoint workspace entities which
would either require conservative tuning or re-tuning of
MRNFs.

4) Handling of arbitrarilly shaped workspace entities
through an appropriate transformation. MRNF literature
has only demonstrated handling of sphere-shaped ob-



jects, even though the MRNF theory does not explicitly
exclude arbitrarily shaped objects.

The rest of the paper is organized as follows: Section II
introduces preliminary notions, definitions and assumptions.
Section III motivates and introduces the concept of adsorp-
tion mapping and proposes a construction for a candidate
Multi-Agent Navigation Transformation. Section IV presents
the construction of a Harmonic Function based navigation
Function, the controller design and system stability analysis.
Section V presents simulation results whereas section VI
concludes the paper.

II. PRELIMINARIES

In this section we introduce the necessary terminology and
definitions for the development of the methodology.

If K is a set, then
◦
K is the interior, ∂K the boundary and

(K)
c the complement of K. Also if set K is finite, then Ki

denotes its i’th element whereas |K| denotes its cardinality.
Let D̄ρ denote the closed disk with radius ρ that is centered
at the origin. We denote with ∇xiφi the gradient of φi along
the x and y components of xi.

Definition 1: Let Pi ∈ R2, i ∈ {1, . . .M} be M discrete
elements of R2. Then a 2-D point world is defined as a
manifold

P ⊆ R2 \
M⋃
i=1

Pi

Definition 2: A 2-D point world with spherical boundary
is a manifold

P̃ ⊆ P \ (Dρ)
c

where
M⋃
i=1

Pi ∈ Dρ.

Definition 3: The workspace W ⊂ R2 is a manifold such
that

◦
W is diffeomorphic to P̃ or P .

Assume that our workspace is populated with entities
comprising nR robots and ns obstacles. Let R, S and M
denote the sets of robots and obstacles respectively. Workspace
entities are grouped in the set

E , R∪ S ∪M.

The robots are assumed to be holonomic systems with kine-
matics as follows:

q̇i = ui, i = 1 . . . nR (1)

where qi ∈ R2 is the reference point of robot i and ui =[
ux,i
uy,i

]
it’s velocity input. The destination configuration is

denoted as qid. The decentralized approach adopted in this
paper is robot-centric, i.e. every robot has its own point of
view of the world. Now assume that we treat robot η. The
volume of robot η is subtracted from robot η and added to all
the rest workspace entities (other robots, obstacles, external
boundary). In that way robot η treats the rest of the workspace
entities as grown obstacles by taking the Minkowski sum ⊕
(see e.g. [11]) so that robot η can be treated as a point.

Definition 4: Robot destination configurations physically
blocking the path to the destination configuration of another
robot for a given workspace, are called blocking arrangements.

Let x(t) and f(x, t) be n-dimensional vector valued func-
tions. We need the following definitions from the Carathéodory
differential equations literature:

Definition 5 (Carathéodory conditions [1, 5]): In the do-
main D of the (x, t) space, function f(x, t) has the following
properties:

1) Continuity: For almost all t, f(x, t) is continuous in x.
2) Measurability: For each x, f(x, t) is measurable in t.
3) Boundedness: |f(x, t| ≤ m(t), where function m(t) is

summable (on each finite interval if t is not bounded in
the domain D).

Definition 6 (Carathéodory equation [5]): The equation

ẋ = f(x, t) (2)

where x is a scalar or a vector and the function f satisfies
the conditions of Definition 5, is called the Carathéodory
equation.

Definition 7 (Carathéodory solution concept [5]): A func-
tion x(t) defined on an open or closed interval l is called
a solution of the Carathéodory equation if it is absolutely
continuous on each closed interval [α, β] ⊂ l and satisfies
almost everywhere equation (2) or, which under the conditions
in Definition 5 is the same thing, if it satisfies the integral
equation:

x(t) = x(t0) +

∫ t

t0

f(x(s), s) ds (3)

for some t0 ∈ l
In order to formulate the problem, we need the following

assumptions:
Assumption 1: .
a. Obstacles and robot destination configurations do not

form blocking arrangements.
b. At destination configurations workspace entities have a

non-zero distance between each other.
Assumption 1.a is required to ensure that the destination

configuration of each robot is reachable.
Assumption 1.b is required since workspace entities are

not point-sized and they keep on occupying their workspace
portion even when they arrive at their destination.

An additional assumption is required:
Assumption 2: Workspace entities are formed as finite

unions of convex objects that admit smooth (at least C2)
distance metrics from their boundaries.

Assumption 2 does not pose practical limitations since any
possible shape can be approximated arbitrarilly well (but not
perfectly) by the union of finite convex objects.

Problem Statement: Given workspace W populated with
arbitrarily shaped static obstacles and a set of arbitrarily
shaped robots with kinematics as defined in (1). Assuming
that each robot has perfect knowledge of its state and the state
of the environment only, and that Assumptions 1 and 2 hold.



Determine a decentralized feedback based control law to be
executed on each and every robot to safely steer the robot
away from collisions with other workspace entities and to it’s
destination configuration.

III. MULTI-AGENT NAVIGATION TRANSFORMATION

A. Adsorption Mapping

As workspace entities evolve, the purpose of the multi-agent
Navigation Transformation (maNT) is to map their boundaries
to appropriate locations in P̃ or P (depending whether the
workspace is bounded) so that a Harmonic Function based NF
can be constructed. However one of the major issues in the
multi-robot plus static obstacles (MRSO) problem that prob-
ably hindered previous developments of a “MRSO” sphere-
world transformation is that, contrary to the static-environment
single-robot case, its not only the position of the images under
the transformation of the workspace entities that need to be
dynamically modified to correspond to the current location
of workspace entities. It is also the topology i.e. the Euler
characteristic of the workspace that is changing. Although
shifting the image position is straightforward, dynamically
modifying the transformation to correspond to the dynamically
changing topology is non-trivial. To see this consider two
workspace entities approaching each other and eventually
intersecting (e.g. in the case of grown obstacles from the
i’th agent’s point of view). Initially the two entities are two
distinct topological entities, however when they intersect the
two distinct topological entities merge into one. Intuitively to
be able to exploit the concept of navigation transformation in
the case of multiple robots, we need a transformation with
the capability to adsorb2 the volume of the two intersecting
entities and collapse them to a single point in P (or P̃). This
behavior, termed the adsorption mapping, is captured by the
maNT.

Assume now that we are treating the problem from the η’th
robot’s point of view. Whenever not necessary, the robot index
will be dropped for notational brevity. Let

η̄ = {ε⊕ η|ε ∈ E \ η}

denote the set of grown workspace entities resulting from the
Minkowski sum with robot η and let Wη denote the grown
workspace from agent η’s point of view (see Figure 1).

Assuming for analysis purposes an indexing of the elements
of η̄, then its i’th element is denoted as η̄i, where i ∈ Iη̄ and
Iη̄ is the index set of η̄ . Let dij denote a distance metric
between ∂η̄i and ∂η̄j . Let P iW ∈ W be the reference point of
η̄i and let q to be the reference point of robot η.

Define the edge set

Eη̄ , {(i, j) |i, j ∈ Iη̄ ∧ dij = 0}

and the vertex set

Vη̄ , {i|∃j ∈ Iη̄ : (i, j) ∈ Eη̄ ∨ (j, i) ∈ Eη̄} .

2adsorption: the capability of a substance to attract to its surface molecules
of substances that are in contact
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Fig. 1. A grown workspace Wη with eight workspace entities (η̄1, . . . η̄8)
plus the robot η with reference point q.

Then the graph of intersecting grown entities is defined as:

Gη̄ , {Vη̄, Eη̄}

Since there might be chains of intersecting grown entities we
need to identify the connected components in Gη̄ (see also
Fig. 2). Assume the set Cη̄ ∈ 2Gη̄ containing all the connected
components of Gη̄ . Construct the set Tη̄ such that T iη̄ is a
spanning tree3 of Ciη̄ . Construct the set Mη̄ such that Mi

η̄

is the first element of the graph center4 of T iη̄ . Construct the
set Dη̄ such that Diη̄ is defined by rooting T iη̄ at vertex Mi

η̄ ,
assigning it as a sink and enforcing the implied orientation.
Let the operator

P : {1, . . . |Dη̄|} ×
{
Diη̄ ∩ Vη̄

}
→
{
Diη̄ ∩ Vη̄

}
return the directed path Π from vertex v of Diη̄ to the rootMi

η̄ ,
such that Π1 = v, Π|Π| =Mi

η̄ and for any i ∈ {1, . . . |Π| − 1}
we have that

{
Πi,Πi+1

}
∈ Diη̄ .

With Assumption 1, let bi(x), i ∈ Iη̄ , be a smooth (at
least C2) monotonically increasing function with respect to the
distance of point x from the boundary of ηi and bi(∂ηi) = 0.
Also define the distance to the goal function of agent η as

γηd (q) = ‖q − qηd‖
2

.
Define the smooth switch function:

η(x, y) ,
s(x)

s(x) + s(y − x)

3Note that although cyclic graphs have multiple spanning trees, it is
assumed that a deterministic algorithms will return one specific Ct,iη̄ for the
same Ciη̄ input

4It is a well known result by C.Jordan[7] that the center of a tree graph
consists either of one vertex or two adjacent vertices



Fig. 2. For the workspace Wη depicted in Fig. 1, we have the intersecting
grown entities graph Gη̄ and subsequently the sets Cη̄ , Tη̄ , Mη̄ , Dη̄ are
defined according to the methodology presented in Section III-A. Using the
maNT, Wη is eventually mapped to PηN (or P̃ηN ) as described in Section
III-B

where

s(t) ,

{
e−1/t t > 0
0 t ≤ 0

Define the function:

ηa (x, y1, . . . yn) ,
n∏
i=1

s(yi−xε + 1
2 )

s(yi−xε + 1
2 ) + s(x−yiε + 1

2 )
(4)

where ε > 0 is a small positive constant. Function ηa
becomes 1 if x is smaller than all yi − ε/2 and zero if x
is larger than any yi+ε/2. Constant ε introduces a technically
necessary transition region in order to make (4) smooth. This
function induces locally a Voronoi-like workspace partitioning
enabling the adsorption mapping to be initiated by the obstacle
that is closest to the robot.

Define δ to be the influence region of each workspace
entity. The influence region was initially introduced in [13],
to capture various features of the robots, like limited sensing
and regions necessary for abstracting kinematic and dynamic
constraints and was a feature of the Navigation Transforma-
tion. In this paper global knowledge is assumed. Practically
only knowledge of location and geometry of the connected
components (entities) to the proximal entity is required, since
these are necessary to perform the adsorption mapping. These
components, though, could span across the entire workspace.
This is equivalent to the case in single robot navigation where
the robot approaches a big obstacle that spans across the
workspace, so “local” knowledge about such an obstacle (i.e.
location plus geometry) implies knowledge about the state of
a significant portion of the workspace.

Define the function

σ1(x) ,
x

δ
(1− η(x, δ)) + η(x, δ)

Then define the adsorption transformation as:

vi (q, b) , (1− σ1 (b))
(
P iW − q

)
The path adsorption for vertex v = Π1 along path Π is

defined as follows:

UΠ(b, q) , vΠ|Π| (vΠ|Π|−1 (. . . (vΠ1 (q, b) , b) , . . . , b) , b)

Eventually the adsorption mapping for the i’th component
of Dη̄ is defined as the linear combination of path adsorptions
along the directed paths initiating from every vertex v ∈ Diη̄:

CiDη̄ (q) =
∑

Π=P (i,v)

v∈Diη̄

ηa(bv, b̄
γ
v)UΠ(bv, q)

where

b̄γv =
{
b1, . . . bv−1, bv+1, . . . b|Iη|, γ

η
d

}
.

The reason of including γηd in b̄γv is to enable the adsorption
mapping to diminish as the robot gets closer to it’s destination.



B. Multi-Agent Navigation Transformation (maNT)

Before proceeding with the present of the maNT we will
need a few more definitions: Let

Nη , {Iη̄ − Vη̄} ∪Mη̄. (5)

Index η will be dropped in the sequel for Nη for notational
brevity. Let us define the following 2-D point worlds:

PηN ⊆ R2 \
⋃
v∈N

P vW

and
P̃ηN ⊆ P

η
N \ (Dρ)

c
.

PηN will be referred to as the harmonic domain whereas P̃ηN
is the 2-D point world where a bounded workspace is mapped
through the maNT, both as seen from agent η’s point of
view. The Multi-Agent Navigation Transformation is defined
as follows:

Definition 8: The Multi-Agent Navigation Transformation
is a diffeomorphism Tη :

◦
Wη→ PηN (or Tη :

◦
Wη→ P̃ηN ).

According to the above definition, the Multi-Agent Navi-
gation Transformation is a multi-transformation that maps the
interior of the grown workspace Wη to multiple topologies
PηN (or P̃ηN ) dictated by the set N as defined in (5).

With Assumption 2, the following transformation is pro-
posed as a candidate Multi-Agent Navigation Transformation:

Tη (q) = id(q) +
∑

i∈{1...|Dη̄|}
CiDη̄ (q) . . .

+
∑

µ∈{Iη̄−Vη̄}
ηa(bµ, b̄

γ
µ)vµ(q, bµ)

(6)

The proposed candidate maNT is of the form Tη :
◦
Wη→

PηN . An appropriate maNT of the type Tη :
◦
Wη→ P̃ηN requires

an additional step for contracting grown workspace entities
that are in contact with the boundary, to the boundary - and this
step is not tackled in the current paper. Theoretical analysis
of the properties of the proposed transformation (6) is beyond
the scope of the current paper and is the subject of a separate
paper.

Figure 3 demonstrates conceptually how the position q of
agent η is mapped to a location in PηN through transformation
(6).

IV. HFNF BASED CONTROLLER DESIGN

A. Construction of the Harmonic Function based Navigation
Function

The Harmonic Function based Navigation Function (HFNF)
that is implemented is the one proposed by Loizou [12]. For
the completeness of presentation, some basic facts are repeated
here:

The HFNF ΘNη will be different for each robot η and is
defined based on the underlying point world. For maNT of
the type Tη :

◦
Wη→ PηN it is a composition of the following:

ΘNη (·) =
[
σd ◦ σ ◦ φNη ◦ Tη

]
(·) . (7)
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Fig. 3. Mapping q to PηN through the maNT proposed in (6). Depicted is
the adsorption mapping of agent η located at q along the reference points of
entities {4, 3} to the root-entity {2}

For maNT of the type Tη :
◦
Wη→ P̃ηN it is a composition of

the following:

ΘNη (·) =
[
σd ◦ σ ◦ φNη ◦ c−1 ◦ Tη

]
(·) (8)

where T is a multi-agent Navigation Transformation. The
transformation c−1 : P̃ηN → P

η
N that takes the form:

c−1 (x) =
x

ρ− ‖x‖

maps the 2-D point world P̃ηN to the harmonic domain PηN .
Note that in this case, the destination configuration should be
mapped to the corresponding location in the harmonic domain,
i.e. hd = c−1(qd). Function φNη is the underlying harmonic
function defined as

φNη (h, t) = φd (h) +
∑
i∈N

φi (h)

where N as defined in eq. (5) is the set of adsorption points
mapped in PηN . Note that since the set N changes over time,
φNη exhibits discontinuities in t, but is smooth in h.

Function

φd (h) = (1 +M) ln (‖h− hd‖)

is the harmonic destination potential. According to the theo-
retical analysis presented in [12] the requirements on M are
that M ≥ |N |. Hence taking a conservative approach we can
use M = |E|. Functions:

φi (h) = − ln (‖h− hi‖)



are the harmonic potential contributions from the i’th con-
tracted workspace entity. In the case of a bounded workspace
we have hi = c−1(P iW).

Function
σ (x) ,

ex

1 + ex

maps the extended real number line to the interval [0, 1],
whereas

σd (x) , x2/k

is a distortion function.

B. Controllers

The tuning controller proposed in [12] is implemented to
establish the non-degeneracy of the critical points, by applying
the parameter update law to each agent:

k̇η = Kt ·Hε (c0,η (xη)) ·Hε (|θη (xη)|+ |η0,η (xη)|) (9)

with kη(0) = M + 1, ε � 1 and Kt a positive tuning
parameter. More details are provided in [12].

Let Iτ ∼ U(tz, ntz) be a uniformly distributed random
variable on the interval [tz, ntz], where tz > 0 and n ≥ 2.

The control law that is applied to robot η is given by:

uη(qη, t) =

{
−K∇qηΘη

N (qη, t), δ ≥ tz
0, δ < tz

(10)

where K a positive gain, τN = τN (t) is the ordered set
of time instants up to time t, when N was modified or t :=
τN + Iτ while δ < tz , whereas

δ =

{
δ(t) , τ

|τN |
N − τ |τN |−1

N , |τN | ≥ 2
2tz, |τN | < 2

Essentially control law (10) is the negated gradient flows of
Θη
N (qη, t), augmented with a random dwell time in the case

a Zeno-type behavior is detected.

C. Stability Analysis

We will start by stating some preliminary results
Lemma 1: System (1) with control law (10) forms a

Carathéodory equation
Proof: Due to space constraints only a sketch of proof is

provided.
According to Definition 6 we need to show that the system

with the control law satisfies the conditions of Definition 5.
Continuity: Since Θη

N (qη, t) is a composition of smooth
functions, its negated gradient vector field will also be smooth
and hence continuous in qη . Now for the almost everywhere
in t continuity, since no Zeno-type behavior is allowed in the
system when the number of entities is modified due to the
random dwell time introduced by controller (10) no infinite
switching is possible and the switching instances are a set of
measure zero.

Measurability: Since for each x, f(·, t) is an almost ev-
erywhere continuous function defined on measurable sets,
it will also be measurable since, since continuous functions
defined on measurable sets are measurable functions and sets

of measure zero do not affect the measurability of a function
[2].

Boundedness: Since the time domain is unbounded we only
need to show that on each finite interval Ω of the non-negative
real line, the integral∫

Ω

∇qηΘη
N (qη, t)dt < +∞

exists and is finite. Observing that ∇qηΘη
N (qη, t) is bounded

(observe this by expanding σd◦σ◦φNη and taking the gradient)
implies that the the integral is bounded on each finite interval
as required.

The following is the main result of the paper:
Proposition 1: System (1) with Assumption 1, under the

parameter update laws (9) and under the control laws (10), is
globally asymptotically stable, almost everywhere.

Proof: Due to space constraints only a sketch of proof is
provided.

Step 1: Positive invariance of W: Due to the uniform
maximality property of navigation functions, the gradient flow
is perpendicular to the workspace boundary and this implies
that robots are repelled by the workspace boundary. Hence W
is a positively invariant set.

Step 2: Types of ωη- limit sets: Since W is positively
invariant and each robot has a unique global attractor and a
finite number of non-degenerate saddle points, this implies
that ωη ⊂

◦
W . Now assume that for the trajectory τη of robot

η, there are ta, T > 0 such that τη(ta) = τη(ta + T ) and
the trajectory τη(t), t ∈ [ta, T ] is a Jordan curve. Since
according to Lemma 1, system (1) with control law (10) forms
a Carathéodory equation, it will satisfy the integral equation
in (3). Hence we have that∫ ta+T

ta

Θ̇η
Ndt = 0

So ∫ ta+T

ta

1

K
‖ẋi‖2 dt =

∑
j 6=i

∫ ta+T

ta

∇xjΘi
N ẋjdt (11)

This implies that at least one of ∇xjΘi
N ẋj is persistently pos-

itive over some time interval and xj is in the close proximity
of xi during that interval. This implies that ẋj and ẋi will have
directions in the same quadrant. Now observe that ϕi increases
whenever xj moves towards xi and vice versa, hence ∇xjϕi
and ∇xiϕj will be pointing in opposite directions, away from
i, j. This in turn implies an ordering, more specifically that i
leads and j follows. From the j’th agent’s point of view based
on the above reasoning, ∇xiϕj ẋi will be negative. However
for the equivalent of equation (11) for agent j to hold, using
the same reasoning, agent k has to follow agent j and so on.
However since we have a finite number of agents, the last
agent in the reasoning will not have an agent to render the
equivalent of eq. (11) true. Hence this agent will not be able
to transverse a Jordan curve and will be asymptotically stable
at its destination. Backtracking on our reasoning, no agent will



be able to maintain a trajectory on a Jordan curve as an orbit,
hence the ω-limit set of each agent contains only the set of
non-degenerate saddle points and the destination configuration.
This in turns implies the global - almost everywhere (due to
the existence of non-degenerate saddle points) - asymptotic
stability of the destination configurations.

V. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed approach
a simulation has been set up with 7 workspace entities, com-
prising 5 robots and 2 static obstacles as in Fig. 4. Workspace
entities were selected as unions of disks to approximate convex
and non-convex shapes.

Fig. 4. A workspace with 5 robots (R1, . . . R5 in blue) and two obstacles
(O1, O2 in magenta): Initial configuration.

Figure 5 depicts the destination configuration and figure 6
depicts the trajectories of the system.

Fig. 5. Destination configuration

Figures 7 and 8 depict snapshots from intermediate configu-
rations. As can be seen from the resulting system trajectories,
the robots were safely navigated from their initial configuration
to their destination avoiding collisions.

Remark It should be noted that the random dwell time
branch of controller (10) was not activated during the sim-
ulation. As the random dwell time was utilized to facilitate

Fig. 6. System trajectories

the theoretical analysis, a more thorough investigation on the
initial conditions that trigger its activation is part of ongoing
work and beyond the scope of the current paper.

VI. CONCLUSIONS AND FURTHER RESEARCH

This paper presents the first to the author’s knowledge
solution to the problem of multi-robot navigation in envi-
ronments with arbitrarily shaped obstacles under the Naviga-
tion Functions framework. The Navigation Transformation for
multi-agent systems is defined and a candidate multi-agent
Navigation Transformation is proposed. The proposed multi-
agent Navigation Transformation can handle the emerging
topology of the workspace as the Euler characteristic of
the workspace is changing due to the merging and splitting
of the grown-obstacle image of dynamic workspace entities.
Theoretical stability guarantees are provided and non-trivial
simulation results verify the feasibility of the methodology.

Future research directions include extending the solution
to account for dynamic obstacles, robot orientations, solving
the problem in higher dimensions and studying the case of
human-in-the-loop interactions. Extension of the proposed
methodology to more realistic scenarios with local sensing
and knowledge is currently being considered.
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