
A Square Root Inverse Filter for Efficient
Vision-aided Inertial Navigation on Mobile Devices

Kejian J. Wu∗, Ahmed M. Ahmed†, Georgios A. Georgiou† and Stergios I. Roumeliotis†
∗Department of Electrical and Computer Engineering
†Department of Computer Science and Engineering

University of Minnesota, Minneapolis, Minnesota, USA
Email: {kejian, medhat, georgiou, stergios}@cs.umn.edu

Abstract—In this paper, we present a square-root inverse
sliding window filter (SR-ISWF) for vision-aided inertial nav-
igation systems (VINS). While regular inverse filters suffer
from numerical issues, employing their square-root equivalent
enables the usage of single-precision number representations,
thus achieving considerable speed ups as compared to double-
precision alternatives on resource-constrained mobile platforms.
Besides a detailed description of the SR-ISWF for VINS, which
focuses on the numerical procedures that enable exploiting the
problem’s structure for gaining in efficiency, this paper presents
a thorough validation of the algorithm’s processing requirements
and achieved accuracy. In particular, experiments are conduct-
ed using a commercial-grade cell phone, where the proposed
algorithm is shown to achieve the same level of estimation
accuracy, when compared to state-of-the-art VINS algorithms,
with significantly higher speed.

I. INTRODUCTION AND RELATED WORK

Combining inertial data, from an inertial measurement unit
(IMU), with visual observations, from a camera, in what is
known as a vision-aided inertial navigation system (VINS),
has become a popular choice for navigating in GPS-denied
areas (e.g., underground, in space, or indoors). Moreover,
commercial-grade mobile devices (e.g., cell phones) have
recently been recognized as promising platforms for VINS,
because of their sensing capabilities, and wide-spread, low-
cost availability [1].

It is well known that under certain assumptions the Maxi-
mum a Posteriori (MAP) estimator for VINS can be cast as a
nonlinear batch least-squares (BLS) problem, often referred to
as bundle adjustment (BA) in the computer vision literature.
BLS methods (e.g., [25, 5]), however, that optimize over the
sensor’s entire trajectory and the map of the environment,
have processing and memory requirements that increase at
least linearly (often quadratically) with time, and thus are
not amenable to real-time implementations. Although various
approximations of the BLS have been proposed (e.g., [11, 12,
22]) to reduce the processing cost, they are still far from being
able to generate real-time estimates on resource-constrained
mobile devices.

To achieve constant processing time, filtering approaches
or fixed-lag smoothers (FLS) optimize over a bounded-size
sliding window of recent states by marginalizing out past states
and measurements. Popular filtering techniques for VINS are
either based on the extended Kalman filter (EKF) (e.g., [20,

10, 8]) or the inverse filter (INVF) (e.g., [23, 6, 15]). While
real-time performance on mobile devices has been successfully
demonstrated using EKFs (e.g., [17, 8]), to the best of our
knowledge, no real-time INVF-based system has been shown
on resource-constrained platforms such as cell phones.

Despite the fact that the INVF is mathematically equivalent
to the EKF, one of the main disadvantages of the INVF is
its poor numerical properties in general [19], but primarily for
VINS. Specifically, the Hessian matrix employed by the INVF
is typically ill-conditioned (i.e., condition number ∼ 109 or
higher), which necessitates using double-precision arithmetic,
else the numerical errors can easily become the dominant error
source affecting estimation accuracy, or even cause the filter to
diverge. Achieving efficient VINS solutions on mobile devices,
however, requires single-precision arithmetic for the following
reasons: i) A 32-bit single-precision representation occupies
less hardware resources, and the corresponding operations are
likely to be faster, than 64-bit double-precision representations,
and ii) most current mobile devices feature ARM NEON co-
processors that provide a 4-fold processing speed increase
when using 32-bit number representations.

In order to overcome the numerical limitations of the INVF,
square-root inverse filters [19, 2] have been developed in the
past that improve numerical stability by maintaining and up-
dating the square root of the Hessian matrix. This way, square
root filters can yield twice the effective precision of regular
filters when using the same wordlength.1 Recently, a sliding
window inverse smoother for VINS, based on iSAM2 [12],
was proposed in [4]. Few details, however, were provided
for the realization of this algorithm, or its processing require-
ments. In contrast, in this paper we focus on taking advantage
of the structure of the VINS problem when formulated as an
inverse square root filter to achieve computational gains that
allow operating in real time on mobile devices.

Specifically, in this paper, we present the square root inverse
sliding window filter (SR-ISWF) for VINS, which maintains
the upper triangular Cholesky factor of the Hessian matrix of
a sliding window of recent states. Our main contributions are:

• To the best of our knowledge, we present the first VINS
in the information domain that operates in real time on

1Note that the condition number of the square root matrix is the square
root of the condition number of the corresponding Hessian matrix.

resource-constrained devices, specifically, cell phones.
• Our implementation of the proposed algorithm achieves

more than double the speed, with comparable accuracy, of
the multi-state constraint Kalman filter (MSC-KF) [20],
which has been successfully demonstrated on mobile
devices. Similar results are achieved when compared with
the short-term smoother in [4].

• The proposed SR-ISWF for VINS handles limita-
tions of low-cost devices, by estimating on-the-fly
the IMU-camera extrinsic calibration parameters, time-
synchronization, and the camera’s rolling shutter time.

The rest of this paper is structured as follows: In Section II,
we briefly overview the key components of a VINS. Section III
presents the derivations of the proposed SR-ISWF algorithm
that leads to efficient implementations. Experimental results
over several cell phone datasets are shown in Section IV,
comparing the performance of the proposed SR-ISWF against
state-of-the-art VINS. Finally, Section V concludes the paper.

II. VISION-AIDED INERTIAL NAVIGATION SYSTEM (VINS)

In this section, we provide a brief description of the key
components of the proposed VINS.

A. System State

At each time step k, the system maintains the following
state vector

xk =
[
xT
S xT

Ck−M+1
· · · xT

Ck
xT
P xT

Ek

]T
(1)

where xS is the state vector of the current SLAM features
under estimation, with xS =

[
GpT

f1
· · · GpT

fn

]T
, and Gpfj ,

for j = 1, · · · , n, denotes the Euclidean coordinates of the
point feature fj in the global frame {G}. xCi , for i = k +
M − 1, · · · , k, represents the state vector of the cloned2 IMU
poses at time step i, where M is the size of the sliding window.
Each cloned state is defined as

xCi
=

[
IiqT

G
GpT

Ii
tdi

]T
(2)

where IiqG is the quaternion representation of the orientation
of the global frame {G} in the IMU’s frame of reference {Ii},
GpIi is the position of {Ii} in {G}, and tdi is the IMU-camera
time offset,3 at time step i, similar to the definition in [8]. The
parameter state vector, xP , consists of the constant parameters:

xP =
[
IqT

C
IpT

C tr
]T

(3)

where IqC is the quaternion representation of the orientation
of the camera frame {C} in the IMU’s frame of reference
{I}, IpC is the position of {C} in {I}, and tr is the rolling-
shutter time of the camera (i.e., the readout time of each image,
which is constant). Finally, the states necessary for modelling

2We refer to the same stochastic cloning as in the MSCKF [20], for
maintaining past IMU poses in a sliding window estimator.

3The IMU and camera operate at different frequencies, and the time
stamps reported by the camera are not accurate. Thus, the unknown time
difference between the two sensors is time-varying and needs to be estimated
per image.

the IMU biases and determining the sensor’s current speed are
kept in

xEk
=

[
bT
gk

GvT
Ik

bT
ak

]T
(4)

where bgk and bak
correspond to the gyroscope and ac-

celerometer biases, respectively, and GvIk
is the velocity of

{I} in {G}, at time step k.

B. Inertial Measurement Equations and Corresponding Cost
Terms

The IMU provides measurements of the device’s rotational
velocity and linear acceleration contaminated by white Gaus-
sian noise and time-varying biases. The biases are modelled
as random walks driven by white, zero-mean Gaussian noise
processes nwg(t) and nwa(t) [see (6)], while the gyroscope
and accelerometer measurements, ωm(t) and am(t) are:

ωm(t) = Iω(t) + bg(t) + ng(t) (5)
am(t) = C(IqG(t))(

Ga(t)− Gg) + ba(t) + na(t)

where the noise terms, ng(t) and na(t) are modelled as zero-
mean, white Gaussian noise processes, while the gravitational
acceleration Gg is considered a known deterministic constant.
The device’s rotational velocity Iω(t) and linear acceleration
Ga(t), in (5), can be used to relate consecutive IMU poses
through the device’s continuous-time system equations:

Iq̇G(t) =
1

2
Ω(ωm(t)− bg(t)− ng(t))

IqG(t)

Gv̇I(t) = C(IqG(t))
T (am(t)− ba(t)− na(t)) +

Gg
GṗI(t) =

GvI(t) ḃa(t) = nwa(t) ḃg(t) = nwg(t)
Iq̇C(t) = 0 IṗC(t) = 0 ṫd(t) = ntd(t) ṫr(t) = 0 (6)

where, Ω(ω) ,
[
−⌊ω⌋ ω
−ωT 0

]
for ω ∈ R3, and the IMU-

camera time offset td is modelled as random walk driven by
the white zero-mean Gaussian noise process ntd.

Given the inertial measurements uk,k+1 =
[
ωT

mk
aTmk

]T
,

analytical integration of (6) within the time interval
[
tk, tk+1

]
is used to determine the discrete-time system equations [24],
which imposes a constraint between the consecutive states xIk

and xIk+1
as:

xIk+1
= f(xIk , uk,k+1 −wk,k+1) (7)

where xIk =
[
xT
Ck

xT
Ek

]T
, and wk,k+1 is the discrete-time

zero-mean white Gaussian noise affecting the IMU measure-
ments with covariance Qk.

Linearizing (7), around the state estimates x̂Ik and x̂Ik+1
,

results in the following IMU measurement model, relating the
error states x̃Ik and x̃Ik+1

:

x̃Ik+1
= (f(x̂Ik ,uk,k+1)− x̂Ik+1

)

+Φk+1,kx̃Ik +Gk+1,kwk,k+1 (8)

where Φk+1,k and Gk+1,k are the corresponding Jacobians. In
this paper, we define the error state x̃ as the difference between
the true state x and the state estimate x̂ employed for lineariza-
tion (i.e., x̃ = x− x̂), while for the quaternion q we employ

a multiplicative error model q̃ = q ⊗ q̂−1 ≃
[
1
2δθ

T 1
]T

,
where δθ is a minimal representation of the attitude error.

Hence, the inertial measurements uk,k+1 contribute a lin-
earized cost term of the form:

Cu(x̃Ik , x̃Ik+1
) = ||

[
Φk+1,k −I

] [x̃Ik

x̃Ik+1

]
− (x̂Ik+1

− f(x̂Ik ,uk,k+1))||2Q′
k

(9)

where Q′
k = Gk+1,kQkG

T
k+1,k.

C. Visual Measurement Equations and Corresponding Cost
Terms

We use point features extracted from consecutive images as
visual measurements to be processed by the estimator. When
working with commercial-grade mobile devices (e.g., cell
phones), the images suffer from the rolling-shutter effect; that
is the image pixel rows are read sequentially in time, so each
row has a different actual observation time. In addition, there
exists a time-varying offset between the IMU and the camera’s
time stamps (i.e., the two clocks are not synchronized). To
handle these issues, we use the interpolation model of [8],
where each camera pose is interpolated using the two closest
cloned poses. In particular, the measurement model is:

zjk = h(Ck+tpfj) + nj
k = π(Ck+tpfj) + nj

k (10)

with π(
[
x y z

]T
) =

[
x
z

y
z

]T
, where Ck+tpfj is the

feature position expressed in the camera frame of reference
at the exact image-acquisition time instant, nj

k is zero-mean,
white Gaussian noise with covariance σ2I2, and I2 is the
2 × 2 identity matrix. Note that without loss of generality,
we express the feature measurement (10) in normalized pixel
coordinates, after we perform intrinsic camera calibration
offline [3]. Linearizing (10) around current state estimates
(where the feature positions are obtained through triangulation
using all the measurements in the current window) yields:

z̃jk = Hj
x,k x̃F +Hj

f,k
Gp̃fj + nj

k (11)

where Hj
x,k and Hj

f,k are the corresponding Jacobians evalu-
ated at the state estimate x̂k, and we define

xF =
[
xT
Ck−M+1

· · · xT
Ck

xT
P xT

Ek

]T
(12)

which is the state vector comprising all current states except
the SLAM features. Stacking together all Nj observations to
this feature, we get:

z̃j = Hj
xx̃F +Hj

f
Gp̃fj + nj (13)

Consider a square orthonormal matrix Qj , partitioned as Qj =[
Sj Uj

]
, where the 3 columns of Sj span the column space

of Hj
f , while the 2Nj−3 rows of Uj , its left nullspace. Then,

the visual measurements zj contribute a linearized cost term:

Cz(x̃F ,
Gp̃fj) = ||Hj

xx̃F +Hj
f
Gp̃fj − z̃j ||2σ2I2Nj

(14)

= ||QT
j H

j
xx̃F +QT

j H
j
f
Gp̃fj −QT

j z̃
j ||2σ2I2Nj

= ||ST
j H

j
xx̃F + ST

j H
j
f
Gp̃fj − ST

j z̃
j ||2σ2I3

+ ||UT
j H

j
xx̃F −UT

j z̃
j ||2σ2I2Nj−3

= ||Fj
1x̃F +Rj

f
Gp̃fj − z̃j1||2σ2I3

(15)

+ ||Fj
2x̃F − z̃j2||2σ2I2Nj−3

(16)

= Cz1(x̃F ,
Gp̃fj) + Cz2(x̃F) (17)

with

Fj
1 , ST

j H
j
x Fj

2 , UT
j H

j
x Rj

f , ST
j H

j
f

z̃j1 , ST
j z̃

j z̃j2 , UT
j z̃

j (18)

To perform the above orthonormal transformation, i.e., to
compute (18), we apply Givens rotations [7] (pages 252-253)
to triangularize Hj

f , while the other quantities are obtained in
place through the Givens process. As a result of this Givens,
in (18), the Jacobian Rj

f is square and upper-triangular, while
Fj

2 is block upper-triangular. These structures will lead us to
efficient update steps later on.

D. Visual-Information Management

Our VINS employs two types of visual measurements, as
in [20, 21, 16], so as to provide high estimation accuracy
while remaining computationally efficient. Hence, we designed
an information management module, which classifies the ob-
served features, so as to be appropriately processed, into two
categories:

• SLAM features: These features are added in the state
vector (1) and updated across time. In terms of the cost
function in (17), Cz1 is used for initializing new SLAM
features, while Cz2 is exploited for state update.
By maintaining a structure of the scene, SLAM features
increase the estimation accuracy and improve the esti-
mator’s robustness, especially when viewed over many
frames. This, however, comes at higher cost as compared
to the MSCKF features (described later on). Hence, the
information manager selects as new SLAM features those
whose tracks span the entire sliding window (since these
tracks are likely to last longer), while limits the number
of SLAM features in the estimator. Once a SLAM feature
is successfully initialized by the filter, it stays in the
VINS state vector until the track is lost (i.e., when this
feature is no longer observed by the newest pose in the
sliding window); then this feature will be marginalized
and removed from the state vector. Note that this is still
a sliding window scheme though SLAM features can stay
longer than the window-size duration dictates.

• MSCKF features: These features are processed as in
the MSC-KF approach [20], hence the name,4 where the
feature states are marginalized from the measurement
equation (13) to generate constraints between poses.
Compared with SLAM, this approach directly exploits
the cost term Cz2 in (17). Note, however, that all the

4Throughout this paper, we use the term “MSC-KF” to denote the
algorithm itself in [20], while “MSCKF features” signifies the features
processed in such a manner.

information on the poses from the measurements is
absorbed into Cz2 , since Cz1 contains only information
about the feature’s position.
MSCKF feature measurements provide “local” informa-
tion relating multiple poses in each sliding window. They
require less computations than SLAM since their feature
states are not directly estimated. After the SLAM features
have been selected, the information manager classifies all
the remaining feature tracks into the MSCKF category.

Finally, and in order to address the processing limitations
of resource-constrained platforms, the information manager
trades estimation accuracy for computational efficiency, by
limiting the number of features processed in each update.
Moreover, MSCKF features are selected based on their track
lengths, with higher priority given to the longer tracks.

III. ESTIMATION ALGORITHM DESCRIPTION

In this section, we describe in detail the main steps of the
SR-ISWF algorithm. Our presentation will be from the cost
function perspective: We first show the effect that each step
has on the cost function being minimized, and then present
the corresponding equations, with special attention to specific
problem structures for efficient implementation.

At each time step k, our objective is to minimize the cost
function C⊕

k that contains all the information available so far:

C⊕
k = Ck−1 + Cu + CZR + CZS + CZM

= Ck−1 + Cu + CZR
+ CZ1

S
+ CZ2

S
+ CZ2

M
(19)

where Cu represents the cost term arising from the IMU
measurement uk−1,k, CZR from the visual re-observations of
the active SLAM features, CZS

from the camera measurements
to new SLAM features (to be initialized), and CZM from
the visual measurements to the MSCKF features. The new-
SLAM cost term is further split into CZ1

S
and CZ2

S
, while the

MSCKF cost term only consists of CZ2
M

, according to (17) (see
Sect. II-D). Finally, all the prior information obtained from the
previous time step is contained in

Ck−1(x̃k−1) = ∥Rk−1x̃k−1 − rk−1∥2 (20)

where ∥ · ∥ denotes the standard vector 2-norm, Rk−1 and
rk−1 are the prior (upper-triangular) information factor matrix
(i.e., the square root of the Hessian) and residual vector,
respectively, and x̃k−1 = xk−1 − x̂k−1 the error state from
time step k−1 [see (1)]. Note that in (20), rk−1 = 0 and will
be updated along with the information factor Rk−1.

We hereafter describe how the SR-ISWF algorithm com-
bines each cost term in (19) to eventually obtain C⊕

k . Mean-
while, we will show how the system’s state vector evolves
from xk−1 to xk. An overview of the SR-ISWF algorithm is
shown in Algorithm 1.

A. Propagation

In our sliding window, a new pose state xIk [see (7)] is
added to the current state vector at each time step k:

x⊖
k =

[
xT
k−1 xT

Ik

]T
(21)

Algorithm 1 SR-ISWF

Input:
• Prior estimate x̂k−1

• Upper-triangular prior information factor Rk−1

• Inertial measurements uk−1,k

• SLAM re-observation measurements ZR

• New SLAM feature measurements ZS

• MSCKF feature measurements ZM

Function Steps:
Propagation [see (23)]
Marginalization [see (28)]
Covariance factor recovery [see (33)]
Information factor update:

• SLAM re-observations [see (37)]
• New SLAM features initialization [see (45)]
• New SLAM & MSCKF pose constraints [see (50)

and (48)]
State update [see (53) and (54)]

using the IMU measurement uk−1,k. Hence the cost function,
which initially comprised only the prior Ck−1, becomes

C⊖
k (x̃⊖

k) = Ck−1(x̃k−1) + Cu(x̃Ik−1
, x̃Ik)

= ∥Rk−1x̃k−1 − rk−1∥2 + ∥
[
Φk,k−1 −I

] [x̃Ik−1

x̃Ik

]
− (x̂Ik − f(x̂Ik−1

,uk−1,k))∥2Q′
k

= ∥R⊖
k x̃

⊖
k − r⊖k ∥

2 (22)

from (20) and (9), with

R⊖
k =

[
Rk−1 0
V1 V2

]
, V2 = −Q

′− 1
2

k

V1 =
[
0 · · ·0 Q

′− 1
2

k Φ
(C)
k,k−1 0 · · ·0 Q

′− 1
2

k Φ
(E)
k,k−1

]
r⊖k =

[
rk−1

Q
′− 1

2

k (x̂Ik − f(x̂Ik−1
,uk−1,k))

]
(23)

where Φ
(C)
k,k−1 and Φ

(E)
k,k−1 are block columns of the Jacobian

Φk,k−1 with respect to the clone and extra IMU states [see (2)
and (4)], respectively. And here r⊖k = 0, since rk−1 = 0 and
x̂Ik = f(x̂Ik−1

,uk−1,k) from state propagation (7). Note that
the resulting factor R⊖

k is not upper-triangular in (23), but will
be triangularized in the next step.

B. Marginalization

To maintain constant computational complexity, at time step
k, the SR-ISWF marginalizes the following states: Past SLAM
features, x̃DS , whose tracks are lost (DS for “disappeared
SLAM”), the oldest clone x̃Ck−M

, and the extra IMU states
x̃Ek−1

from the previous time step. If we define the (error)

state vector consisting of all states to be marginalized as

x̃M
k =

[
x̃T
DS x̃T

Ck−M
x̃T
Ek−1

]T
(24)

and denote x̃R
k the remaining states [following the structure

in (1)] after removing x̃M
k from x̃⊖

k , then we can write

PM x̃⊖
k =

[
x̃MT

k x̃RT

k

]T
(25)

where PM is a permutation matrix. In terms of the cost
function, marginalization corresponds to removing x̃M

k from
the cost function by minimizing with respect to it, i.e.,

CM
k (x̃R

k) = min
x̃M
k

C⊖
k (x̃⊖

k) = min
x̃M
k

C⊖
k (x̃M

k , x̃R
k) (26)

Combining (22) and (25), we obtain:

C⊖
k (x̃M

k , x̃R
k) = ∥R⊖

k x̃
⊖
k − r⊖k ∥

2

= ∥R⊖
k P

T
MPM x̃⊖

k − r⊖k ∥
2

= ∥R⊖
k P

T
M

[
x̃M
k

x̃R
k

]
− r⊖k ∥

2 (27)

After performing QR factorization [7] (pages 248-250) on the
column-permuted factor matrix R⊖

k P
T
M

R⊖
k P

T
M =

[
QM QR

] [RM
k RMR

k

0 RR
k

]
, (28)

(27) is written as

C⊖
k (x̃M

k , x̃R
k) =

∥∥∥∥∥
[
RM

k RMR
k

0 RR
k

] [
x̃M
k

x̃R
k

]
−

[
QMT

QRT

]
r⊖k

∥∥∥∥∥
2

=
∥∥∥RM

k x̃M
k +RMR

k x̃R
k −QMT

r⊖k

∥∥∥2
+
∥∥∥RR

k x̃
R
k −QRT

r⊖k

∥∥∥2 (29)

Since RM
k is invertible (from the QR process), for any x̃R

k ,
there always exists an x̃M

k that makes the first cost term in (29)
zero. Hence, combining (26) and (29), the cost function after
marginalization becomes

CM
k (x̃R

k) = min
x̃M
k

C⊖
k (x̃M

k , x̃R
k) =

∥∥RR
k x̃

R
k − rRk

∥∥2 (30)

where rRk = QRT

r⊖k = 0 since r⊖k = 0.

C. Covariance Factor Recovery

Before employing visual measurement updates, a robust
VINS system requires an outlier rejection module. In addition
to the 2-Point RANSAC [13], our SR-ISWF employs the
standard Mahalanobis distance test:

γ = z̃TS−1z̃, S = HPHT + σ2I (31)

where γ, z̃, S, H, P, σ represent the Mahalanobis distance,
measurement residual, residual covariance, measurement Ja-
cobian, covariance matrix, and measurement noise standard
deviation, respectively, for any measurement z. Among these
quantities, the only one not available is the covariance matrix
P, which when expressed as the inverse of the Hessian matrix,

equals:

P = (RRT

k RR
k)

−1 = RR−1

k RR−T

k = UpU
T
p (32)

Up = RR−1

k (33)

with Up upper-triangular. Hence, S can be expressed as

S = BBT + σ2I, B = HUp (34)

Note that this way we need not compute explicitly the covari-
ance matrix P, which is numerically unstable since it shares
the same condition number as the Hessian.

D. Update: SLAM Re-observations

Re-observations ZR of existing SLAM features are used
to perform updates. Specifically, all such measurements con-
tribute a cost term CZR as in (19), and thus [see (30) and (14)]
the cost function becomes:

CSR
k (x̃R

k) = CM
k (x̃R

k) + CZR
(x̃R

k)

= ∥RR
k x̃

R
k − rRk ∥2 + ∥HSRx̃

R
k − z̃R∥2σ2I

=

∥∥∥∥[RR
k

1
σHSR

]
x̃R
k −

[
rRk
1
σ z̃R

]∥∥∥∥2 (35)

where

HSR =

...

Hj
SR
...

 , z̃R =

...
z̃jR
...

Hj

SR =
[
0 · · ·0 Hj

f 0 · · ·0 Hj
x 0 · · ·0

]
(36)

for j = 1, ..., NSR, with NSR the total number of SLAM re-
observation measurements, and the Jacobians Hj

f , Hj
x and the

residual z̃jR are as in (13). If we perform the following thin
QR factorization [7] (page 248):[

RR
k

1
σHSR

]
= QSRRSR (37)

Then, from (35), and after dropping a constant term, the cost
function after the SLAM re-observation update becomes

CSR
k (x̃R

k) = ∥RSR
k x̃R

k − rSR
k ∥2 (38)

with
rSR
k = QSRT

[
rRk
1
σ z̃R

]
(39)

The QR factorization in (37) is carried out very efficiently
by taking advantage of the fact that RR

k is upper-triangular.
Furthermore, rSR

k is obtained in place during the QR process
(i.e., QSR does not need to be formed explicitly).

E. Update: New SLAM Features Initialization

When new SLAM features become available (i.e., points
whose tracks span the entire window), the SR-ISWF adds
them in the state vector and updates the information factor
accordingly. Recall that at this point, the system’s state vector

has the following structure [see (1) and (12)]:

xR
k =

[
xT
S xT

F

]T
(40)

and after adding the new SLAM features it becomes

xk =
[
xT
S xNT

S xT
F

]T
(41)

where the new NNS SLAM feature states, xN
S =[

GpT
f1

· · · GpT
fNNS

]T
, are appended to the end of the

existing SLAM states, xS .
As shown in (19), the cost term corresponding to the

information from the new SLAM feature measurements, CZS
,

is split into two parts (17): CZ1
S

contains all the information
on the features, while CZ2

S
involves only the poses. Hence,

we use CZ1
S

in this step to initialize new SLAM features,
while CZ2

S
will be used in the next step (see Sect. III-F) to

perform updates. Specifically, from (38) and (15), initializing
new SLAM features corresponds to the cost function:

CNS
k (x̃k) = CSR

k (x̃R
k) + CZ1

S
(x̃N

S , x̃F)

= ∥RSR
k x̃R

k − rSR
k ∥2

+

NNS∑
j=1

∥Rj
f

Gp̃fj + Fj
1S
x̃F − z̃j1S∥

2
σ2I (42)

If we partition the current upper-triangular information factor,
RSR

k , and the corresponding residual vector, rSR
k , according

to the state xR
k in (40) as:

RSR
k =

[
RSS RSF

0 RFF

]
, rSR

k =

[
rS
rF

]
(43)

then the cost function in (42), after initializing the new SLAM
features, becomes

CNS
k (x̃k) = ∥RNS

k x̃k − rNS
k ∥2 (44)

RNS
k =

RSS 0 RSF

1
σR

1
f

1
σF

1
1S

0
. . .

...
1
σR

NNS

f
1
σF

NNS
1S

0 0 RFF

 (45)

rNS
k =

rS

1
σ z̃

1
1S

...
1
σ z̃

NNS
1S

rF

 (46)

Note that RNS
k in (45) is already upper-triangular, since

both RSS and RFF are upper-triangular [see (43)], and Rj
f ,

j = 1, ..., NNS , are upper-triangular from the Givens rotation
operations in (18).

F. Update: New SLAM & MSCKF Pose Constraints
The last update step incorporates the pose-constraint in-

formation from both new-SLAM and MSCKF feature mea-

surements. Specifically, [see (19), (44), and (16)], this step
corresponds to the following changes to the cost function:

C⊕
k (x̃k) = CNS

k (x̃k) + CZ2
S
(x̃F) + CZ2

M
(x̃F)

= ∥RNS
k x̃k − rNS

k ∥2 +
NNS∑
j=1

∥Fj
2S
x̃F − z̃j2S∥

2
σ2I

+

NM∑
i=1

∥Fi
2M x̃F − z̃i2M ∥2σ2I (47)

Note that both CZ2
S

and CZ2
M

involve only the pose state
x̃F , which is, by design, at the end of the state vector x̃k

[see (41)]. After performing thin-QR factorization on the
following stacked Jacobians corresponding to the pose part
of the current factor:

RFF

...
1
σF

j
2S

...
1
σF

i
2M

...

= Q⊕

FFR
⊕
FF , (48)

the cost function, in (47), becomes [see (45) and (46)]:

C⊕
k (x̃k) = ∥R⊕

k x̃k − r⊕k ∥
2 (49)

R⊕
k =

RSS 0 RSF

1
σR

1
f

1
σF

1
1S

0
. . .

...
1
σR

NNS

f
1
σF

NNS
1S

0 0 R⊕
FF

 (50)

r⊕k =

rS

1
σ z̃

1
1S

...
1
σ z̃

NNS
1S

r⊕F

 , r⊕F = Q⊕T

FF

rF
...

1
σ z̃

j
2S

...
1
σ z̃

i
2M
...

(51)

where (51) is computed in place through the QR process, i.e.,
without explicitly forming Q⊕

FF .
Note that this step is very efficient for two reasons:

1) We only need to stack and perform QR on the pose
Jacobian part [see (48)], instead of working with the
whole factor.

2) Due to the upper-triangular structure of RFF , and the
block upper-triangular structure of the Jacobians Fj

2S
and Fi

2M (see Sect. II-C), a row permutation can bring
the stacked matrix in (48) into a block upper-triangular
form (with a large portion of zeros at the bottom left
corner), which allows very efficient QR.

At this point, the information factor has been updated, into

R⊕
k , using all the information inside the sliding window.

G. State Update

The last step in the SR-ISWF algorithm is to update the
state, by minimizing (49) with respect to the error state vector:

min
x̃k

C⊕
k (x̃k) = min

x̃k

∥R⊕
k x̃k − r⊕k ∥

2 (52)

Since R⊕
k is upper-triangular and invertible, this corresponds

to solving the linear equation

R⊕
k x̃k = r⊕k (53)

which simply requires an efficient back-substitution. More-
over, even faster solutions are achieved by noticing that the
top-left portion of R⊕

k , corresponding to the SLAM features,
is block-diagonal [see (50)].

Finally, after solving for x̃k, the state update is given by

x̂⊕
k = x̂k + x̃k (54)

where x̂k comprises estimates for the states considered in
the previous time step, x̂k−1, as well as the new pose state
estimate (from propagation) and the new SLAM feature esti-
mates (from triangulation).

At this point, both the information factor R⊕
k and the state

estimate x̂⊕
k have been updated, and will serve as the prior

state estimate and prior information factor, respectively, for
the next time step.5

IV. EXPERIMENTAL RESULTS

The goal of our experiments is to validate the capability
of the proposed SR-ISWF algorithm for real-time operation
on commercial-grade, resource-constrained devices, such as
cell phones. We compare our algorithm to what is considered
to be the state-of-the-art VINS in terms of accuracy and
speed on mobile devices, the MSC-KF6 [20, 10, 8], as well
as our efficient single-precision implementation of the short-
term smoother (STS) of [4], which is a square-root inverse
sliding window filter that does not take advantage of the
problem structure. For fair comparisons, all three algorithms
use the same feature selection scheme and estimate the time-
synchronization, rolling shutter, and extrinsic parameters.

A Samsung S4 mobile phone is used as our testbed. The
S4 is equipped with a 1.6 GHz quad-core Cortex-A15 ARM
CPU, a MEMS-quality IMU running at 100 Hz, and a rolling-
shutter camera providing images with resolution 640× 480 at
30 Hz. The camera and the IMU have separate clocks, while
the image time-stamps are inaccurate.

We implemented a single-threaded pipeline consisting of
feature extraction and tracking to provide visual measurements
to the filter. First, the pipeline extracts 200 Harris corners [9]
from images acquired at a frequency of 15 Hz, while these

5The SR-ISWF allows iterative updates (i.e., re-linearization of all
measurements), at each time step, hence reducing the effect of linearization
errors. This requires repeating the process of the factor and state updates, after
re-linearizing the measurements around the current, new, state estimates. In
this case, the SR-ISWF becomes a sliding-window smoother.

6Specifically the version demonstrated at RSS 2014 [8].

TABLE I
COMPARISON: LOOP-CLOSURE ERROR PERCENTAGES

Trajectory MSC-KF STS SR-ISWF
Length (m) (%) (%) (%)

Dataset 1 285 0.65 0.48 0.44
Dataset 2 56 0.52 0.71 0.77
Dataset 3 97 0.5 0.52 0.55
Dataset 4 105 0.58 0.74 0.7
Dataset 5 198 0.42 0.35 0.27

TABLE II
COMPARISON: TIMING RESULTS PER FILTER UPDATE (MSEC)

MSC-KF STS SR-ISWF
Filter Update
Mean / Std 50.7 / 6.8 52.1 / 7.0 23.5 / 4.3

Total Pipeline
Mean 114.4 100.2 71.8

features are tracked using the Kanade-Lucas-Tomasi (KLT)
algorithm [18] across images. Then, a 2-Point RANSAC [13]
is used for initial outlier rejection. The visual measurements
are assumed to be contaminated by zero-mean white Gaussian
noise with σ = 1.5 pixels. After that, the information manager
selects a maximum of 20 SLAM and 60 MSCKF features,
respectively. These feature measurements are then fed to the
filter, which maintains a sliding window of 10 cloned poses.
These clones are selected at a frequency of approximately
5 Hz. To achieve fast operation, our whole pipeline is running
in single-precision floating-point format and is optimized for
the ARM NEON co-processor.

A. Localization Accuracy

In the experiments, several indoor datasets were collected
using the S4 cell phone sensors. In all the datasets, the device
was returned back to its starting position. This allows us to
quantitatively evaluate the accuracy of the estimators using
the loop closure error percentage, which is computed as the
ratio of the distance between the estimated starting and ending
points against the total distance travelled (see Table I). In
addition, to visualize the estimation accuracy, we overlay the
trajectories onto the blueprints of the floor plans as reference.7

Figs. 1 - 3 depict the trajectory estimates by the SR-ISWF and
the MSC-KF. As evident, the estimated trajectories from the
SR-ISWF and the MSC-KF differ in certain parts, but in most
places they overlay each other. That, as well as the results
in Table I lead us to believe that all three algorithms achieve
comparable levels of accuracy.8

B. Computational Efficiency

Table II compares the processing times in milliseconds (m-
sec) of the three algorithms running on the S4 mobile phone.

7This is done based on the prior knowledge of the starting point and the
initial heading direction, which are projected on the blueprints.

8We are currently in the process of preparing off-line, high-accuracy maps
of the testing area, which will allow us to better quantify the errors of the
estimators throughout their trajectories.

Fig. 1. Dataset 1: Overhead x− y view of the estimated 3D trajectories.

Fig. 2. Dataset 4: Overhead x− y view of the estimated 3D trajectories.

As evident the SR-ISWF outperforms the other approaches in
terms of speed (the filter update requires less than half of the
time of either the MSC-KF or the STS), and achieves better
than real-time operation.9 This significant performance gain is
attributed to the efficiency of the proposed SR-ISWF algorithm
(see Sect. III), as well as the ability to operate in single-
precision data format thanks to the square-root formulation.

Finally, we aim to compare our SR-ISWF with the iterative
Kalman smoother (IKS) in [14]. The current optimized imple-
mentation of the IKS, however, can process MSCKF but not

9To the best of our knowledge, this is by far the fastest VINS algorithm on
mobile devices, which if needed can run at full frame rate (e.g., fast motion).

Fig. 3. Dataset 5: Overhead x− y view of the estimated 3D trajectories.

SLAM features. Thus, we are only able to provide qualitative
comparison results: In terms of estimation accuracy, the two
algorithms perform similarly under nominal conditions, yet
the IKS is more robust to disturbances (e.g., abrupt changes
in the time-synchronization due to changes in the lightening
conditions, navigating through featureless areas, etc). In terms
of speed, since the IKS employs iterative updates at each time-
step, it runs slower than the MSC-KF (see Table II), thus, the
IKS requires significantly more time than our SR-ISWF.

V. CONCLUSIONS

In this paper, we presented a square root inverse slid-
ing window filter (SR-ISWF) for high-precision, real-time
vision-aided inertial navigation systems (VINS) on resource-
constrained mobile devices. Due to the square-root formula-
tion, the proposed algorithm enjoys better numerical properties
than an inverse filter (INVF), which enables using single-
precision format for performing numerical operations very
fast. We provided detailed derivations of all the steps of the
SR-ISWF, which take advantage of the particular structure
of the matrices involved, to deliver significant computational
gain. A complete VINS with the proposed algorithm is im-
plemented, using single precision format and ARM NEON
instructions for specific steps. Experiments are carried out
using a Samsung S4 mobile phone, and the proposed algorithm
is compared with the state-of-the-art MSC-KF [8] and the
short-term smoother in [4]. Our results show that, the SR-
ISWF achieves comparable positioning accuracy with compet-
ing algorithms, while significantly outperforms them in terms
of speed.

ACKNOWLEDGEMENTS

This work was supported by the University of Minneso-
ta through the Digital Technology Center (DTC), AFOSR
(FA9550-10-1-0567), and the National Science Foundation
(IIS-1328722).

REFERENCES

[1] Project Tango, https://www.google.com/atap/projecttango.

[2] Gerald J. Bierman. Factorization Methods for Discrete
Sequential Estimation, volume 128 of Mathematics in
Science and Engineering. Academic Press, New York,
NY, 1977.

[3] Jean Y. Bouguet. Camera calibration toolbox for matlab.
2006. http://www.vision.caltech.edu/bouguetj/calib doc/.

[4] Han-Pang Chiu, Stephen Williams, Frank Dellaert, Supun
Samarasekera, and Rakesh Kumar. Robust vision-aided
navigation using sliding-window factor graphs. In Proc.
of the IEEE International Conference on Robotics and
Automation, pages 46–53, Karlsruhe, Germany, May 6 –
10 2013.

[5] Frank Dellaert and Michael Kaess. Square root sam:
Simultaneous localization and mapping via square root
information smoothing. International Journal of Robotics
Reasearch, 25(12):1181–1203, December 2006.

[6] Tue-Cuong Dong-Si and Anastasios I. Mourikis. Mo-
tion tracking with fixed-lag smoothing: Algorithm and
consistency analysis. In Proc. of the IEEE International
Conference on Robotics and Automation, pages 5655–
5662, Shanghai, China, May 9 – 13 2011.

[7] Gene Golub and Charles Van Loan. Matrix Computa-
tions. JHU Press, 4th edition, 2013.

[8] Chao Guo, Dimitrios G. Kottas, Ryan DuToit, Ahmed
Ahmed, Ruipeng Li, and Stergios I. Roumeliotis. Ef-
ficient visual-inertial navigation using a rolling-shutter
camera with inaccurate timestamps. In Proc. of the
Robotics: Science and Systems Conference, Berkeley,
CA, July 12 – 16 2014.

[9] Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proc. of the Alvey Vision Conference,
pages 147–151, Manchester, UK, August 31 – September
2 1988.

[10] Joel A. Hesch, Dimitrios G. Kottas, Sean L. Bowman,
and Stergios I. Roumeliotis. Towards consistent vision-
aided inertial navigation. In Proc. of the 10th Internation-
al Workshop on the Algorithmic Foundations of Robotics,
pages 559–574, Cambridge, MA, June 13–15 2012.

[11] Michael Kaess, Ananth Ranganathan, and Frank Dellaert.
isam: Incremental smoothing and mapping. IEEE Trans.
on Robotics, 24(6):1365–1378, December 2008.

[12] Michael Kaess, Hordur Johannsson, Richard Roberts,
Viorela Ila, John Leonard, and Frank Dellaert. isam2:
Incremental smoothing and mapping using the bayes tree.
International Journal of Robotics Research, 31(2):216–
235, February 2012.

[13] Laurent Kneip, Margarita Chli, and Roland Siegwart.
Robust real-time visual odometry with a single camera
and an imu. In Proc. of the British Machine Vision
Conference, pages 16.1–16.11, Dundee, Scotland, August
29 - September 2 2011.

[14] Dimitrios G. Kottas and Stergios I. Roumeliotis. An
iterative Kalman smoother for robust 3D localization on
mobile and wearable devices. In Proc. of the IEEE
International Conference on Robotics and Automation,
pages 6336–6343, Seattle, Washington, May 26 – 30

2015.
[15] Stefan Leutenegger, Simon Lynen, Michael Bosse,

Roland Siegwart, and Paul Furgale. Keyframe-based
visual–inertial odometry using nonlinear optimization.
International Journal of Robotics Research, 34(3):314–
334, December 2015.

[16] Mingyang Li and Anastasios I. Mourikis. Optimization-
based estimator design for vision-aided inertial naviga-
tion. In Proc. of the Robotics: Science and Systems
Conference, pages 241–248, Sydney, Australia, July 9
–13 2012.

[17] Mingyang Li, Byung Hyung Kim, and Anastasios I.
Mourikis. Real-time motion tracking on a cellphone
using inertial sensing and a rolling-shutter camera. In
Proc. of the IEEE International Conference on Robotics
and Automation, pages 4697–4704, Karlsruhe, Germany,
May 6-10 2013.

[18] Bruce D. Lucas and Takeo Kanade. An iterative im-
age registration technique with an application to stereo
vision. In Proc. of the International Joint Conference
on Artificaial Intelligence, pages 674–679, Vancouver,
British Columbia, August 24–28 1981.

[19] Peter S. Maybeck. Stochastic models, estimation and
control, volume 1. Academic Press, New York, NY, 1979.

[20] Anastasios I. Mourikis and Stergios I. Roumeliotis. A
multi-state constraint kalman filter for vision-aided in-
ertial navigation. In Proc. of the IEEE International
Conference on Robotics and Automation, pages 3482–
3489, Rome, Italy, April 10–14 2007.

[21] Anastasios I. Mourikis and Stergios I. Roumeliotis. A
dual-layer estimator architecture for long-term localiza-
tion. In Proc. of the Workshop on Visual Localization for
Mobile Platforms, pages 1 – 8, Anchorage, AK, June 24
- 26 2008.

[22] Esha D. Nerurkar, Kejian J. Wu, and Stergios I. Roumeli-
otis. C-KLAM: Constrained keyframe-based localization
and mapping for long-term navigation. In Proc. of the
IEEE International Conference on Robotics and Automa-
tion, pages 3638–3643, Hong Kong, China, May 31 –
June 7 2014.

[23] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. S-
liding window filter with application to planetary landing.
Journal of Field Robotics, 27(5):587–608, August 2010.

[24] Nikolas Trawny and Stergios I. Roumeliotis. Indirect
kalman filter for 3d attitude estimation. Technical report,
University of Minnesota, Dept. of Comp. Sci. & Eng.,
March 2005.

[25] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and
Andrew W. Fitzgibbon. Bundle adjustment - a modern
synthesis. In Proc. of the International Workshop on
Vision Algorithms: Theory and Practice, volume 1883
of Lecture Notes in Computer Science, pages 298–372,
Corfu, Greece, September 21-22 1999.

