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Abstract—We build on previous works advocating the use of
the Gravito-Inertial Wrench Cone (GIWC) as a general contact
stability criterion (a “ZMP for non-coplanar contacts”). We
show how to compute this wrench cone from the friction cones
of contact forces by using an intermediate representation, the
surface contact wrench cone, which is the minimal representation
of contact stability for each surface contact. The observation that
the GIWC needs to be computed only once per stance leads to
particularly efficient algorithms, as we illustrate in two important
problems for humanoids: “testing robust static equilibrium”
and “time-optimal path parameterization”. We show, through
theoretical analysis and in physics simulations, that our method
is more general and/or outperforms existing ones.

I. INTRODUCTION

Planning motions for legged robots requires taking into
account three types of constraints : (i) avoid self-collisions and
undesired collisions with the environment; (ii) respect actuator
limits; (iii) keep balance (or avoid falling). While type (i) and
type (ii) constraints are also experienced by fixed-base robots,
type (iii) constraints are peculiar to legged robots and will
constitute the main focus of this paper.

One way for legged robots to keep balance is to ensure that
the links through which they make contact do not move with
respect to the environment. A popular approach to guarantee
this condition is to ensure that the Zero Moment Point (ZMP)
be contained within the convex hull of the support area [1, 2].
This approach however presents several serious limitations :
• it only applies when all contacts are coplanar, and thus

cannot be used when multiple non-coplanar contacts are
involved;

• it only constraints 2 out of the 6 degrees of freedom
(DoF) of a surface contact. More precisely, if the normal
direction to the contact surface is denoted Z, then the
rotation around X and Y are constrained by the ZMP
condition, but nothing can be said about translations along
X, Y, Z, as well as rotations around Z [3]. This limitation
is particularly serious at low friction [4, 5].

There have been many attempts to generalize the ZMP
condition to overcome the above limitations. One approach is
to consider individual contact forces distributed at the contact
surfaces (see e.g., [6, 7, 8]), or surface contact wrenches [3],
and require that these forces (or wrenches) satisfy the Coulomb
condition. However, this approach lacks the concision and
computational efficiency associated with the ZMP condition
because of the large numbers of variables to consider (three
times the number of individual contact forces or six times the
number of contact wrenches).

Fig. 1. One of the settings demonstrated in the paper : the humanoid climbs
a box using a tilted support surface. Contact friction cones (for an arbitrary
number of frictional contact points) are all combined into a single Gravito-
Inertial Wrench Cone using the double description method. This representation
is in turn converted to TOPP constraint vectors and the path retimed to
get a highly dynamic, non-quasi-statically stable motion (i.e., which cannot
be executed slowly). We checked the feasibility of the result in a physics
simulator with simulated PID torque control.

Analyzing separately the unactuated part of the equation of
motion (corresponding to the position and orientation of the
base-link) reveals that, under the assumption that torque limits
are sufficiently large, the stability of the contacts depends only
on the gravito-inertial wrench [9]. This wrench, an object of
dimension six, should lie in a convex cone (the Gravito-Inertial
Wrench Cone or GIWC) generated by the contact constraints.
This condition was proposed as a “universal stability criterion”
by the authors of [6]. However, the representation of the
gravito-inertial wrench that they used at that time was highly
redundant (all contact forces as input variables) and their
proof of stability was incorrect 1. A derivation of the GIWC
from contact forces was recently given in [10, 11], where the

1Equations (8) and (9) of [6] assume that the end-effector displacement
∆xk at contact k is the same for all contacts, i.e., ∀k,∆xk = ∆xG.
This is true for single rigid bodies but false for articulated systems. For
example, imagine a robot in contact with the floor, the ceiling, and two walls
in front and behind it. The normal vectors are then n1 = (0, 0, 1),n2 =
(0, 0,−1),n3 = (1, 0, 0) and n4 = (−1, 0, 0). Equation (8) would yield
∆xG = 0, i.e., the Center-of-Mass cannot move, but a redundantly-actuated
humanoid can obviously move its CoM while making these four contacts.



authors also proposed an algorithm to compute the GIWC
using an efficient implementation of the double description
method [12]. In both cases, the authors neglected the angular
momentum : [10] assumed a point-mass model at the CoM,
resulting in a simplified three-dimensional cone, while [11]
dealt only with static equilibrium.

In the present paper, we propose to use an intermediate
representation, the surface contact wrench [3], which elimi-
nates the redundancy at the level of each surface contact and
which constitutes a useful abstraction. Next, studying more
closely the GIWC, we note that this cone only depends on the
surface contact wrench cones and on the absolute positions and
orientations of the contacts : in particular, it depends neither
on the robot joint angles, nor on the position of its Center-
of-Mass, nor on the direction of the gravity vector. Thus,
the GIWC needs only be computed once per stance 2. This
observation enables us to propose more general and/or more
efficient algorithms for the problems of “testing robust static
equilibrium” and “time-optimal path parameterization”.

Relation to other works involving cone representations

Using conversions between the face and span forms of a
cone (hence the term “double description”) to study contact
stability was first suggested in [13]. In [14], other contact
modes than the stable mode (for instance rolling, sliding,
etc.) were studied by this method. However, the authors of
these references were concerned with the problem of fixturing
workpieces and did not consider the specificity of legged
locomotion (e.g., surface contacts, gravito-inertial wrench,
etc.) These works also relied on the cone algorithms imple-
mented in [13], which is too slow to handle more than six
contact points, and which have been superseded by recent
advances in computational geometry [12]. In [3], the cone of
surface contact wrenches was studied, but through algebraic
manipulations rather than the double description method.

Another approach to deal with multi-dimensional cones
consists in projecting them onto a plane using recursive
polygon expansions [15, 7]. Note that this algorithm is pe-
culiar to the dimension two and is not easily generalizable
to higher dimensions ([15] does mention the possibility of
generalization but we are not aware of any work in this
direction). Nevertheless, it proved to be useful in the problems
of “testing static equilibrium” [15] and “time-optimal path
parameterization” [7, 8].

The above references highlight how crucial it is to find a
suitable cone representation for a given problem. The 2D-
polygonal cross-section in [15] may be the minimum polyhe-
dral representation when it comes to simple static equilibria,
but it cannot account for robust static equilibria [16], which
require computing 3D polyhedra.

In the problem of “time-optimal path parameterization”
(TOPP), the works of [7, 8] project the set of possible

2A stance is the set of contact status for all possible contact links, along
with the positions and orientations of the contacts. A change of stance occurs
when e.g., a new link enters into contact with the environment, a pre-existing
contact is broken, a sliding contact becomes a fixed contact, etc.

“motions” onto the (ṡ2, s̈) plane, where s(t) denotes the
position along a fixed path. The main limitation is that,
contrary to [15], the projection needs to be performed at each
discretized position s along the path, and not simply once
per stance. In the present communication, we show how, by
using the GIWC and neglecting torque limits, one can decrease
computation times from seconds to tens of milliseconds.

Organization of the paper

In Section II, we recall the relationship between stability
of surface contacts and convex cones, as well as some basic
definitions and results of polyhedral convex cone theory. In
Section III, we show how to compute the Gravito-Inertial
Wrench Cone from the contact friction cones by using an
intermediate representation, namely the surface contact wrench
cone. We then use the combined GIWC to revisit two impor-
tant problems arising in legged robotics : “testing robust static
equilibrium” in Section IV, and “time-optimal path parame-
terization” in Section V. We validate the latter by a dynamic
motion with non-coplanar contacts that we successfully run in
a dynamics simulator. Finally, we discuss in Section VI some
directions for further development.

II. BACKGROUND

A. Stability of surface contacts

As humanoid robots usually contact the environment
through surfaces (e.g., the soles of their feet) rather than
through points, we first recall some definitions and results
regarding the stability of surface contacts (see [3] for more
details).

Definition 1: In this paper, we consider the Coulomb friction
model. A contact force f is said valid when
• fn ≥ 0
• ‖f t‖ ≤ µfn

where µ is the friction coefficient, fn and f t denote respec-
tively the normal and tangential components of the force with
respect to a reference frame attached to the contact surface.
In the following development, we will use the polyhedral
approximation of the latter inequality, i.e.,

|fx| ≤ µfn, |fy| ≤ µfn,

where f t = (fx, fy). 4
Physically speaking, a surface contact is a continuum of

infinitesimal contact forces encoded by two fields : a scalar
pressure field p(x, y) and a two-dimensional stress field
σ(x, y). Here, (x, y) are 2D coordinates on the surface S.
The fields p and σ are the continuous analogues of fn and
f t.

Definition 2: The pair of fields (p(x, y),σ(x, y)) is said
valid when, for any (x, y) ∈ S,
• p(x, y) ≥ 0
• ‖σ(x, y)‖ ≤ µp(x, y) 4
When the environment and contacting link are rigid, the

interaction between them is fully described by a contact



wrench w = (f , τ ) where

f
def
=

∫
S
ν(x, y)dxdy, (1)

τ
def
=

∫
S

−−−→
OCxy ∧ ν(x, y)dxdy, (2)

with the three-dimensional vectors ν def
= (σ, p) and

−−−→
OCxy

def
=

(x, y, 0). We say that the field ν sums up to w, which get us
to the following definition

Definition 3: A contact wrench w is said valid if there exist
valid fields that sum up to w. 4

Assume that the convex hull of the contact area is a convex
polygon. Then the following proposition shows that, as far
as the validity of the wrench is concerned, it is sufficient to
consider forces at the vertices of the polygon instead of the
continuous fields.

Proposition 1: A contact wrench w is valid if and only if 3

there exist valid contact forces at the vertices of the polygon
that sum up to w. 4

Consider now a robot with n actuated joints making m
surface contacts with the environment. The equation of motion
of the robot is given by

M(q)q̈ + h(q, q̇) = S>τa +
∑

contact i

J>i wi, (3)

where q is a vector of dimension n + 6 describing the
configuration of the robot (the first n coordinates for the
actuated joints, the last 6 coordinates for the position and
orientation of the base link), S is a n×(n+6) selection matrix,
Ji is the 6 × (n + 6) contact Jacobian for contact i (i.e., the
Jacobian for the transformation of the surface reference frame),
wi is the contact wrench for contact i (expressed in the surface
frame).

The relationship between valid contact wrenches and
(weak [17, 14]) contact stability is illustrated by the following

Definition 4 (Feasibility under stable contacts): Assume that
the robot is in a given state (q, q̇) where Jiq̇ = 0 for all
contacts i. Then an acceleration q̈ is feasible under stable
contacts if (1) Jiq̈ = −Hiq̇ and (2) there exist torques τa
within the torque limits and valid contact wrenches wi that
satisfy the equation of motion (3) 4

In other words, wrench and torque validity are the dynamic
inequalities coupled with the kinematic binding of the posi-
tions of contacting links. (See [17, 14, 3] for more discussion
on contact stability.) As mentioned in the Introduction, we
shall always make the assumption that torque limits are
sufficiently large, so that our focus is on the existence of valid
contact wrenches. In Section III, we shall characterize this
existence by a single stability criterion : the Gravito-Inertial
Wrench Cone.

B. Cone double description
We recall here some definitions and results in the theory

of Polyhedral Convex Cones. For more details, the reader is

3The “if” part is true when one authorizes Dirac fields. If one does not
authorize Dirac fields, whether this implication is true is still an open question.

referred to [13, 14]. From now on, all the “cones” we mention
will implicitly be polyhedral.

Definition 5: A polyhedral convex cone C is defined by a
set of inequalities

C = face(u1, . . . ,um) = {x : u>1 x ≤ 0, . . . ,u>mx ≤ 0}.

for some vectors (u1, . . . ,um). 4
Cones can be equivalently defined as positive combination

of a family of base vectors
Theorem 1 (Weyl-Minkowski): For every polyhedral convex

cone C, there exists a set of vectors (v1, . . . ,vn) such that

C = span(v1, . . . ,vn) =

{
n∑

i=1

zivi : z1 ≥ 0 . . . zn ≥ 0

}
.4

If one stacks the u>i horizontally into a matrix U and the
vi vertically into a matrix V, the above definitions become in
matrix form (vector inequalities are element-wise)

C = face(U) = {x : Ux ≤ 0}
= span(V) = {Vz : z ≥ 0}.

The span and face forms have each their own advantages. It
is trivial to test whether a vector x belongs to a cone face(U)
(suffices to check Ux ≤ 0) but the same operation requires
solving a linear program in span form. Meanwhile, the span
form is compatible with linear combinations : if y = Ax, then
x belongs to the cone span(V) if and only if y belongs to
the cone span(AV). Doing the same in face form is a more
involved operation.

An important result in polyhedral cone theory is the possi-
bility to convert between the face and span forms of a cone
(hence the term “double description”), which we shall use
extensively in Section III.

Proposition 2: Given a matrix U, one can compute explic-
itly a matrix US such that span(US) = face(U).

Given a matrix V, one can compute explicitly a matrix VF

such that face(VF ) = span(V) 4
An algorithm to compute US and VF was developed

in [13]. Its complexity is exponential – the problem being NP-
complete – and in practice, computation times are prohibitive
when the number of span or face vectors is greater than 20.
In our implementation, we used the cdd library [12], which
performs fast conversions even for more than 100 span or face
vectors (see e.g., Tables I and II).

III. COMPUTING THE GRAVITO-INERTIAL WRENCH CONE
USING DOUBLE DESCRIPTION

We now show how to compute the Gravito-Inertial Wrench
Cone using surface contact wrenches. For each link k, denote
by pk the position of its Center-of-Mass (CoM) in the labora-
tory frame, Rk the orientation matrix of the link frame with
respect to the laboratory frame, ωk the angular velocity of
the link in the link frame, Ik the inertia matrix of the link in
the link frame. Let pCoM be the position of the CoM of the
robot, and L, its angular momentum calculated with respect
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Fig. 2. Outline of our approach to compute the face form of the GIWC.
Matrices U and V are associated with respectively the face and span forms
of the cones. Black arrows denote matrix multiplication while red arrows
denote uses of the double description algorithm.

to pCoM, i.e.,

pCoM
def
=

1

m

∑
link k

mkpk, (4)

L def
=

∑
link k

(pk − pCoM)×mkṗk +RkIkωk. (5)

Definition 6: The gravito-inertial wrench wGI
def
=

(fGI, τGI), computed with respect to the origin of the lab-
oratory frame, is defined by

fGI
def
= m(g − p̈CoM), (6)

τGI
def
= pCoM ×m(g − p̈CoM)− L̇. (7)

Definition 7 (and Proposition): The set of gravito-inertial
wrenches that correspond to feasible joint accelerations under
given stable contacts (Definition 4) is a cone, called the
Gravito-Inertial Wrench Cone (GIWC). 4

Our approach can be summarized as follows (see also
Fig. 2). First, we convert the face representation of the friction
cones for individual contact forces into their span form. In span
form, combining the individual cones into the surface wrench
cones is immediate. We thus get one contact wrench cone for
every contacting link.

Next, based on the equation of motion for the free-floating
coordinates, we express the linear mapping between all con-
tact wrenches and the gravito-inertial wrench. Applying this
mapping to the contact wrench cones gives us the GIWC in
span form. Finally, we convert the span form of the GIWC to
its face form, which can be readily used in e.g., QP or TOPP
solvers. Note that only the last two steps need to be executed
at each change of stance.

A. Span form of the surface contact wrench cone

We first show the following proposition.
Proposition 3: Assuming polyhedral Coulomb friction, the

set of valid contact wrenches is a polyhedral convex cone. Its
expression depends only on the surface geometry and friction
model. 4

Proof : Consider a valid wrench w. By Proposition 1, there
exists a set of valid contact forces fj at the vertices of the poly-
gon that sum up to w. The summation procedure is linear and
can thus be encoded by a matrix Asurf , i.e., w = Asurffall,
where fall is the stacked vector of all the contact forces
fj . On the other hand, the validity of the contact forces of
Definition 1 can be put in the following matrix form (assuming
polyhedral approximation) Upointfall ≤ 0. It follows that
w ∈ span(AsurfU

S
point).

Conversely, consider a w ∈ span(AsurfU
S
point), which

means that there exists z ≥ 0 such that w = AsurfU
S
pointz.

Let f = US
pointz. Since z ≥ 0, f ∈ span(US

point) =
face(Upoint). Thus Upointf ≤ 0. Combined with the fact that
w = Asurf(U

S
pointz) = Asurff , this shows that w is valid.

�
One can also note Vpoint

def
= US

point and Vsurf
def
=

AsurfU
S
point = AsurfVpoint. The surface wrench cone is the

minimal representation of the contact constraint, in the sense
that its dimension (six) is equal to the contact DoF [3]. Note
that Vsurf can be reduced at this stage by eliminating the
columns that can be written as non-negative combinations of
the others. Note also that, as the matrix Vsurf depends only on
the surface geometry and friction coefficient, its computation
and reduction need to be done only once for all.

B. From surface contact wrenches to gravito-inertial wrench

The last six equations of the robot dynamics (3) can be
formulated as [9]

mp̈CoM =
∑

contact i

Rifi +mg, (8)

L̇ =
∑

contact i

(pi − pCoM)×Rifi +Riτi. (9)

One can next rewrite equations (8) and (9) in terms of the
gravito-inertial wrench

fGI = −
∑

contact i

Rifi, (10)

τGI = −
∑

contact i

pi ×Rifi +Riτi. (11)

In matrix form, this is equivalent to

wGI =
∑

contact i

[
−Ri 0
−p̂iRi −Ri

]
wi = Astancewall,

where wall is the stacked vector of the contact wrenches wi.
The key observation here is that Astance only depends on the
pi and Ri, which are fixed for each stance.

Proposition 4: The gravito-inertial wrench is linearly deter-
mined by the contact wrenches. Furthermore, this linear map-
ping only depends on the absolute positions and orientations
of the contacting links. 4

C. Face form of the GIWC

We can now prove the following proposition
Proposition 5: The set of gravito-inertial wrenches that cor-

respond to feasible joint accelerations is a polyhedral convex



cone, which depends only on (1) the absolute positions and
orientations of the contacting links, and (2) the local geometry
and friction properties at the contact surfaces. The face form
of this cone can be explicitly computed. 4

Proof : From Proposition 3, the contact wrench wi is
valid if and only if wi ∈ span(Vsurf

i ), which implies that
wall ∈ span(Vall) where

Vall
def
=

 Vsurf
1 0 0

0
. . . 0

0 0 Vsurf
N

 .
Thus, wGI = Astancewall ∈ span(AstanceVall). Define now
Ustance

def
= (AstanceVall)

F . Then, there exist valid wrenches
at the contacts if and only if UstancewGI ≤ 0. �

Since Astance depends only on the pi and Ri, Ustance

depends only on (1) the absolute positions pi and orientations
Ri of the contacting links, and (2) the local geometry and
friction properties at the contact surfaces. Thus, it needs to be
computed only once per stance.

IV. TEST OF ROBUST STATIC EQUILIBRIUM

A robot is in static equilibrium if, at zero velocity and
acceleration, the gravity wrench can be “generated” by valid
contact wrenches. If the terrain is flat, static equilibrium is
achieved if the CoM of the robot lies above the convex
hull of the robot’s feet (support area), or in other words,
if the CoM belongs to an infinite right cylinder whose axis
is parallel to gravity and whose cross-section is the support
area. If the terrain is not flat, then the CoM positions that
induce static equilibrium are still an infinite right cylinder
with axis parallel to gravity, but whose cross-section is no
longer the support area. The computation of the cross-section
is given in [15]. Once this cross-section is computed, one can
test static equilibrium quickly by checking whether the (x, y)
coordinates of the CoM is within the cross-section.

Static equilibrium is said to be robust if not only the
gravity wrench, but any wrench in some neighborhood
around the gravity wrench can be generated by valid contact
wrenches [16]. In some limit situations, while simple static
equilibrium may be satisfied (e.g., when the CoM is at the
boundaries of the support polygon in flat terrain), robust static
equilibrium adds an informed safety margin. Uncertainties
such as model inaccuracies or unknown disturbances can be
modeled within this framework.

In [16], the authors studied robust equilibrium for a robot in
a 2D environment (one horizontal and one vertical directions)
and for a polytopic neighborhood. They showed that the set
of CoM positions that induce robust static equilibrium is no
longer an infinite vertical band, but a polygon. They also
gave a “line sweep” algorithm to compute that polygon. Here,
we show that the face representation of the GIWC given in
Section III-C provides a fast test for robust static equilibrium
in 3D, which generalizes both [15] (which discussed only
simple equilibrium) and [16] (which discussed only the 2D
case).

Fig. 3. Testing robust static equilibrium. The robot right
arm is supported by the ledge while its right foot is
supported by an inclined box. The desired neighborhood around
the gravity wrench is associated with {g1, g2, g3, g4} =
{(0.15, 0, g), (−0.15, 0, g), (0, 0.15, g), (0,−0.15, g)}. We sampled
one million random CoM positions, those of which satisfy robust static
equilibrium are depicted by a green dot. The aggregate of green dots outlines
the shape of the robust static equilibrium wrench cone. The three images
show views from the X, Y and Z directions respectively.

In the case of static equilibrium, we have p̈CoM = 0 and
L̇ = 0. Equations (8) and (9) become

0 =
∑

contact i

Rifi +mg,

0 =
∑

contact i

(pi − pCoM)×Rifi +Riτi,

i.e. (mg,mpCoM × g) = Astancewall.
We are now interested not only in the generation of the grav-

ity wrench (mg,mpCoM × g) but also in that of any wrench
in a polytopic neighborhood N (pCoM) around it. Consider
for simplicity the neighborhood defined as the convex hull
of {(mg1,mpCoM × g1), . . . , (mgK ,mpCoM × gK)} where
g1, . . . , gK are vectors around g.

Consider the sets Mk defined as

Mk
def
=

{
p : Ustance

(
gk

p× gk

)
≥ 0

}
(12)

and their intersection M def
=
⋂

k∈[1,K]Mk.. We show that
M is the set of CoM positions that ensure robust static
equilibrium.

Proof : assume that p ∈M. Consider a wrenchw∗ ∈ N (p).
There exists λ1 ≥ 0, . . . , λk ≥ 0 such that

w∗ = m(λg1 + . . . λgK ,p× (λg1 + . . . λgK)).

Since p ∈M, we have that, for all k,

Ustance

(
gk

p× gk

)
≥ 0,

thus there exist valid contact wrenches wall1 , . . . ,wallK such
that (−mgk,−mp × gk) = Astancewallk . By convexity, the
contact wrench wall =

∑
k λkwallk is valid. On the other

hand, by linearity, we have w∗ = Astancewall. Together, these
last two equations show that the wrench w∗ can be generated.
Since w∗ is arbitrary in N (p), this implies that p induces
robust equilibrium.

Conversely, assume that p induces robust equilibrium,
i.e., all wrenches w ∈ N (p) can be generated. In particu-



lar there exists a valid contact wrench wall1 that generates
(mg1,mp×g1). By construction of Ustance, this implies that
p ∈ M1. By repeating this reasoning, one can show that
p ∈M2,. . . , p ∈MK , which implies that p ∈M. �

It can be noted that the Mk are infinite right prisms with
axis parallel to gk. Thus, if the gk are not collinear, then
M will not be a right prism, but a polyhedron. Nevertheless,
from the development presented above, testing robust static
equilibrium requires simply to pre-compute once Ustance, and
subsequently, for each candidate CoM position, to evaluate
K matrix multiplications and comparisons as given in (12).
Note that the algorithm in [15] would require to perform K
polytope projections in the pre-computation phase.

Fig. 3 illustrates the proposed robust equilibrium test. For
two surface contacts (right arm and right foot), the matrix
Ustance had dimension 105 × 6 and could be computed in
3.5 ms on our 8-core 3.00 GHz microprocessor. Subsequently,
each test took 0.1 ms.

V. TIME-OPTIMAL PATH PARAMETERIZATION (TOPP)

Consider a path P – represented as the underlying path of a
trajectory p(s)s∈[0,send] – in the configuration space. Assume
that p(s)s∈[0,send] is C1- and piecewise C2-continuous. We are
interested in time-parameterizations of P , which are increas-
ing scalar functions s : [0, T ]→ [0, send], under kinodynamic
constraints. If the constraints can be expressed in the form

s̈a(s) + ṡ2b(s) + c(s) ≤ 0, (13)

then there exists efficient methods and implementations to find
the time-optimal parameterization s(t) (see [18] and references
therein).

A. TOPP reduction

Reducing constraints to the form (13) is relatively straight-
forward for fully-actuated systems, but harder for over-
actuated systems, which include closed-chain manipulators
or legged robots with more than one surface contact (see
e.g., [19]). In [7], the author adapts the 2D projection algo-
rithm of [15] to achieve this reduction. However, the projection
needs to be performed at each discretized position s along the
path, which is time-consuming. Using the development of III,
we now present a method that needs cone computations only
once per stance; for each discretized position s, only some
matrix multiplications are required to compute the vectors
a(s), b(s), c(s).

Consider a path p(s) of the CoM (note that we have dropped
the subscript CoM for simplicity). Differentiating twice, we
have

p̈ = pss̈+ pssṡ
2.

The angular momentum L can be expressed in Jacobian
form L = JL(q)q̇ = JL(s)qsṡ. Therefore, one can always
write

L̇ = l1s̈+ l2ṡ
2,

for some functions l1 and l2. In general, there is no function
l such that l1 = ls and l2 = lss (in other words, L is not

integrable). Exceptions include the cases when L = 0 or when
L is the angular momentum of a single rigid body.

Substituting the expressions of p̈ and L̇ into (6) and (7), we
have

wGI =

(
m(g − pss̈− pssṡ2)

mp× (g − pss̈− pssṡ2)− l1s̈− l2ṡ2
)
.

Thus, the condition UstancewGI ≤ 0 can be rewritten as

−s̈Ustance

(
mps

mp× ps + l1

)
−ṡ2Ustance

(
mpss

mp× pss + l2

)

+Ustance

(
mg

mp× g

)
≤ 0, (14)

which is in the canonical form of (13)

B. Trajectory generation

As equation (14) illustrates, the centroidal trajectory,
i.e., the joint trajectory of the linear and angular momenta
(mṗ(t),L(t))), is the only piece of information required to
formulate the contact stability constraint. Our first attempts
were therefore to interpolate a centroidal trajectory, re-time
it with TOPP to satisfy contact constraints, and then in-
terpolate a whole-body trajectory with the same linear and
angular momenta by Inverse Kinematics (IK). This approach
is however hampered by the difficulty in interpolating the
angular momentum L(t). Because of its non-holonomy, it is
impossible to integrate it into a position variable, as is the
case with the linear momentum. We experimented with the
suggestion from [20] to regulate L = 0, but it resulted in
large free limb movements with a tendency to get the limbs in
inconvenient positions (e.g., hands behind the back), making
the overall control task harder.

We subsequently opted for a different pipeline : interpolate
the CoM and end-effector trajectories first, compute a corre-
sponding whole-body trajectory q(s) by inverse kinematics,
and finally enforce contact stability along this trajectory by
TOPP. The angular momentum L(q, qs) will then result from
the configurations computed by the IK solver.

Numerical TOPP solvers require relatively smooth velocity
and acceleration profiles. Discontinuities in velocity or accel-
eration are allowed and properly dealt with [18], but we found
that the acceleration profiles returned by a velocity-based IK
solver are too erratic for proper use with TOPP. To avoid
this, we used an acceleration-based IK solver. The whole-
body trajectory q(s) is computed as the double-integral of an
acceleration trajectory q̈(s), where accelerations are computed
as solutions to the following QP problem. Provided a reference
trajectory p(s) and flink(s) for the CoM and steered non-
contacting link, minimize

wCoM‖JCoMqss + γ(ṗ∗(t)− JCoMqs) + q
>
s HCoMqs‖2

+wlink‖Jlinkqss + γ(f∗link(t)− Jlinkqs) + qsHlinkqs‖2,

such that
(1) ∀c ∈ contacts, Jcq̇ss = −γJcq̇s + q̇

>
s Hcq̇s, and

(2) Kss(q̇min − q̇s) ≤ q̇ss ≤ Kss(q̇max − q̇s),



t = 0.0 s  t = 0.4 s  t = 0.8 s  t = 1.2 s  t = 1.6 s  t = 2.0 s  t = 2.4 s  t = 2.8 s

Fig. 4. Stair climbing motion where contact stability is checked using our method. Time stamps are shown under each frame. The retimed motion is very
fast as all underlying configurations are all statically stable.

where q̇max
def
= −Ks(q − qmax) and q̇min

def
= −Ks(q − qmin).

Here, J? (resp. H?) denote the Jacobians (resp. Hessians) of
constraints, where constraint labels are c for contact, CoM
for the center-of-mass and link for the free end-effector. This
problem can be readily addressed by many off-the-shelf QP
solvers. We used CVXOPT4 which is free software and could
deal efficiently with both equality and inequality constraints.
The reader is referred to [21] for a more general solution to
QP-based inverse kinematics.

In all experiments, we used Ks = Kss = γ = 10s−1,
wCoM = 1 and wlink = 0.1. CoM and end-effector trajectories
were interpolated as simple line segments.

C. Experiment 1 : stair climbing

We first illustrate our method on a common stair climbing
motion. The staircase (red boxes, reconstructed from point
cloud data) has a step height of 24 cm. The motion is quasi-
statically stable (it can be executed at arbitrary slow velocities)
and alternates single and double support segments where the
projection of the CoM is moved linearly from one support
foot to the other. The retimed motion is shown in Figure 4.
Computation times are reported in Table I, where we detail
the three consecutive computations : that of the gravito-inertial
wrench matrix Ustance (TUstance ), of the constraint vectors
a(s), b(s), c(s) (Tabc) and of the re-timing by our numerical
TOPP solver (TTOPP).

TABLE I
COMPUTATION TIMES (MS) FOR THE STAIR CLIMBING MOTION,

AVERAGED OVER 10 RUNS ON AN 8-CORE 3.00 GHZ PROCESSOR.
SEGMENTS ARE IDENTIFIED BY THEIR TIME STAMPS (SEE FIGURE 4).

Segment (s) Size of Ustance TUstance Tabc TTOPP
0.0 – 0.4 114 × 6 4.2 2.0 130
0.4 – 1.0 16 × 6 1.3 2.0 350
1.0 – 1.2 162 × 6 4.5 2.2 560
1.2 – 2.0 16 × 6 1.3 2.0 360
2.0 – 2.8 162 × 6 4.3 2.2 150

Total – 15.6 10.4 1,550

D. Experiment 2 : box climbing using tilted support

We now apply our method to the setting depicted in Figure
1. The robot climbs a 10-cm box using two contacts : its right
arm, set on a 90-cm high horizontal ledge, and its left foot, set

4http://cvxopt.org/

on a 25o inclined stepping surface. The motion generated in
this experiment may seem unnatural, as the robot could step
on the box directly. Yet, the motivation for this setting is two-
fold. First, stability throughout this motion cannot be checked
by ZMP, as frictional contacts may be lost (the “sufficient
friction” assumption does not apply) and the contact surfaces
non-coplanar. Second, the solution to this constrained problem
is not feasible at low velocities, which means CoM-based
methods such as [15] cannot be applied.

Figure 5 shows the execution of the motion in our physics
simulator. In this scenario, the friction coefficient of envi-
ronment bodies (respectively the floor, box, arm support and
inclined plane) was set to µ = 0.9. Due to the high speed of the
retimed segment (the combined duration of the right-foot and
left-foot steps is only two seconds), the position controller was
not responsive enough to track the reference trajectory exactly.
To palliate this, we made time-optimal trajectories slower by
using a smaller friction coefficient µ = 0.7 in the computations
of the GIWC for TOPP (namely, µ = 0.7 and contact surfaces
scale by 0.7) in order to get a “safer” motion.

A further difficulty, compared to other experiments were
humanoids walk on slightly inclined surfaces, was that we
could not use the stabilizer module of the humanoid, which is
designed for horizontal floors. Thus, the motion represented
in Figure 5 was run with pure open-loop position control.

The transition between the first and second foot steps is
the most challenging part of the motion. Its configurations
are not statically stable, and it therefore needs a non-zero
minimum velocity to be performed without falling. As CoM
trajectories are straight lines in our design, the problem of
finding a feasible whole-body motion for this segment boiled
down to finding a suitable CoM velocity v. Manual trials
being unsuccessful, we chose this velocity heuristically as
v∗ = argmaxv βv(0, 1), where β is an internal vector field
from TOPP representing the maximum acceleration achievable
along the path (see [18] for details). This heuristic provided
feasible solutions in practice. Furthermore, from sampling
neighboring vectors, we estimated the solid angle of valid
CoM velocity vectors around v∗ to 0.1 steradian, i.e., less
than 0.8% of the orientation space.

E. Comparison to previous work
Tables II and I show the performances of our method on

the box and stair climbing motions. We compare these perfor-

http://cvxopt.org/


t = 3.9 s  t = 6.7 s  t = 10.6 s  t = 13.3 s  t = 15.0 s  t = 15.3 s

t = 15.6 s  t = 15.8 s  t = 16.1 s  t = 19.7 s  t = 21.1 s  t = 21.4 s

Fig. 5. Execution of the multi-contact whole-body trajectory on a humanoid robot in a physics simulator. Time stamps are written under each frame. The
dynamic part of the motion occurs between 15 s and 16 s, where movements need to be fast in order to maintain contact stability. This segment is dynamically
but not quasi-statically stable : at least one contact is lost when the motion is executed at lower velocities.

TABLE II
COMPUTATION TIMES (MS) FOR THE BOX CLIMBING MOTION, AVERAGED

OVER 10 RUNS ON AN 8-CORE 3.00 GHZ PROCESSOR. SEGMENTS ARE
IDENTIFIED BY THEIR TIME STAMPS (SEE FIGURE 5).

Segment (s) Size of Ustance TUstance Tabc TTOPP
0.0 – 6.7 113 × 6 4.4 2.4 420

6.7 – 15.0 84 × 6 3.7 2.5 310
15.0 – 15.3 55 × 6 3.0 2.5 60
15.3 – 21.4 118 × 6 4.0 2.5 320

Total – 15.1 9.9 1,110

mances with those reported in previous work by Hauser [7]
where the recursive polygon expansion algorithm is used to
retime humanoid trajectories under distributed contact forces
and actuator limits. The two main differences between this
work and our method are that (1) we calculate the GIWC
rather than a recursive polygon expansion, and (2) we use
a numerical TOPP solver rather than a Sequential Linear
Programming (SLP) solver. In order to make run times more
comparable, we used the same path discretization resolution
N = 100.

In accordance with previous work, we break down compu-
tation times as follows

• Pre-computation of feasible sets (TUstance
+ Tabc) : the

time reported in [7] is 2.40 s, while our solution takes
around 30 ms in both settings to perform this operation.
When actuator torque is not limiting, it is therefore one
to two orders of magnitude faster than previous work.

• Computation of the velocity profile (TTOPP) : the time
reported in [7] is 2.46 s, while our solution takes between
1 s and 1.5 s in the previous climbing motions. Two
factors are concurring here to put execution times on the
same magnitude : we use a numerical TOPP solver, an
approach that is usually orders of magnitude faster than
SLP; however, we do not prune redundant inequalities,
which is a side benefit of recursive polygon expansion.

Overall, our approach cuts down to tens of milliseconds the
pre-computations where previous work would spent half of the
computing budget, while having comparable performances on
the rest of the time-optimal re-timing. This comparison should
of course be taken with care, as our robot, task, and computing
environment are different from [7]. What we point out here
is the difference in orders of magnitude on the computation
times of feasible sets alone.

VI. CONCLUSION

In this paper, we derived the Gravito-Inertial Wrench
Cone from surface-wrench contact constraints. Maintaining
the gravito-inertial wrench within this cone is known as a
general stability criterion, a “generalized ZMP”. Armed with
this condition, we revisited two important problems arising
in humanoid robotics. In the problem of “testing robust static
equilibrium”, we extended the results of [15, 16] to three-
dimensional static equilibrium. In the problem of “time-
optimal path parameterization” (TOPP), we showed a new
reduction of the contact constraints to the classical form which
requires cone computations only once per stance, thereby
dramatically improving the performance of TOPP in multi-
contact [7, 8]. We compared our computation times to the
state-of-the-art, and validated our results by realistic simulated
motions on a full-size humanoid model.

There are many directions for further development. Our
derivation for time-optimal control can be directly integrated
into the framework of Admissible Velocity Propagation [22]
to perform non-quasi-static motion planning under contact
changes. Another prospect is that, although we focused on
stable contacts in this work, the surface contact wrench cones
from Section III-A can be used to express arbitrary contact
modes: stable, sliding, rolling, etc.

Besides these extensions, we believe that the wrench cone
condition developed through the works of [13, 14, 9, 6, 10]
and in the present paper has the potential to be to multi-contact
stability what the ZMP is to planar locomotion.
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