Optimal Robust Control for Bipedal Robots through Control Lyapunov Function based Quadratic Programs

Quan Nguyen and Koushil Sreenath

Abstract—This paper builds off of recent work on rapidly exponentially stabilizing control Lyapunov functions (RES-CLF) and control Lyapunov function based quadratic programs (CLF-QP) for underactuated hybrid systems. The primary contribution of this paper is developing a robust control technique for underactuated hybrid systems with application to bipedal walking, that is able to track desired trajectories with significant model perturbation (mass and inertia increased by up to 200%). We evaluate our proposed control design on a model of RABBIT, a five-link planar bipedal robot.

I. INTRODUCTION

There is tremendous interest in employing legged and humanoid robots for dangerous missions in disaster and rescue scenarios. This is evidenced by the ongoing grand challenge in robotics, The DARPA Robotics Challenge (DRC). Such time and safety critical missions require the robot to operate swiftly and stably while dealing with high levels of uncertainty and large external disturbances. In addition to inaccurate robot models, model uncertainty can also arise from interaction tasks. For instance, practical robotic applications involving walking robots that lift and carry large unknown loads, pull unknown weights, drag heavy hoses, etc., will have to deal with significant changes to the dynamical model. The limitation of current research, as well as the demand of practical requirement, motivates our research on robust control for hybrid systems in general and bipedal robots in particular.

In recent years, the method of Hybrid Zero Dynamics (HZD), [1, 2], has been very successful in dealing with the hybrid and underactuated dynamics of legged locomotion. This method is characterized by choosing a set of output functions, which when driven to zero, creates a lower-dimensional time-invariant zero dynamics manifold. Stable periodic orbits designed on this lower-dimensional system are then also stable orbits for the full system under an appropriate controller. Until recently, experimental implementations of the HZD method relied on input-output linearization with PD control to drive the system to the zero dynamics manifold, for instance see dynamic walking [3] and running [4] on MABEL. However, recent work on control Lyapunov function (CLF)-based controllers has enabled effective implementations of stable walking, both in simulations and experiments [5]. This flexible control design, based on Lyapunov theory, has also enabled computing the control based on online quadratic programs (QPs), facilitating incorporating additional constraints into the control computation. For instance, control Lyapunov function based quadratic programs (CLF-QPs) with constraints on torque saturation were demonstrated experimentally in [6], and CLF-QPs were used to design a unified controller for performing locomotion and manipulation tasks in [7]. Sufficient conditions for Lipschitz continuity of the control produced by solving the CLF-QP problem are reported in [8].

However, a primary shortcoming of all these controllers is that they assume perfect knowledge of the dynamic model. The goal of this paper is to relax the requirement of perfect knowledge of the model by allowing for bounded uncertainty, and designing an optimal robust controller through a CLF-QP so as to still retain stability.

Robust control is an extensively studied topic. For robust control of linear systems, we have well established methods, such as H_∞-based robust control and linear quadratic Gaussian (LQG) based robust control [9, 10]. Additionally, a robust optimal control scheme developed by Lin [11, 12, 13] presented uncertainties in the cost functional of the optimization based on the LQR problem.

For robust control for nonlinear systems, there are two essential methods: input-to-state stability (ISS) and sliding mode control (SMC). The ISS technique developed by Sontag (see [14, 15, 16]) is used to analyze the robustness of nonlinear...
systems and design a robust controller based on Control Lyapunov Functions. In recent years, robust control of hybrid systems based on the ISS technique has attracted attention, for instance see [17] [18] [19]. However, ISS based controllers tend to maintain system errors in a sufficiently small neighborhood of the origin, and thus have a non-zero tracking error. In contrast, sliding mode control can deal with a wide range of uncertainties and drive the system to follow a given sliding surface, thereby driving outputs to desired values without any tracking errors (see [20] [21] [22]). However, the primary disadvantage of SMC is the chattering phenomenon caused by discrete switching for keeping the system attracted to the sliding surface.

As a result, with robust control problems for bipedal systems that require high quality tracking, guarantees on rate of convergence, smoothness of control inputs, and energy efficiency, the application of ISS and SMC seem to have some inherent limitations. There is some work on robust control with application to bipedal robots based on Sliding Mode Control [23] [24], and other methods [25], [26], nevertheless these approaches just deal with a small level of uncertainty. In [27], CLF-QPs are used to adapt to parameter uncertainty in a hybrid system, see Figure 1. The Lipschitz Continuity enables dealing with severe uncertainties, while also providing the best robustness of the closed-loop system. Our method results in the control inputs being optimal and guaranteeing the hybrid system to follow a given sliding motion such as walking is then a hybrid periodic orbit of bipedal robots such as RABBIT (described in [29]), which is characterized by single-support continuous-time dynamics, when one foot is assumed to be in contact with the ground, and double-support discrete-time impact dynamics, when the swing foot undergoes an instantaneous impact with the ground. Such a hybrid model is obtained as,

\[H = \begin{cases}
\dot{q} = f(q, \dot{q}) + g(q, \dot{q})u, & (q^-, \dot{q}^-) \notin S, \\
\dot{q}^+ = \Delta(q^-, \dot{q}^-), & (q^-, \dot{q}^-) \in S,
\end{cases} \]

where \(q \in \mathcal{Q} \) is the robot’s configuration variables, \(u \in \mathbb{R}^m \) is the control inputs, representing the motor torques, \((q^-, \dot{q}^-)\) represent the state before impact and \((q^+, \dot{q}^+)\) represent the state after impact, \(S \) represents the switching surface when the swing leg contacts the ground, and \(\Delta \) represents the discrete-time impact map.

We also define output functions \(y \in \mathbb{R}^m \) of the form

\[y(q) := H_0 q - y_d(\theta(q)), \]

where \(\theta(q) \) is a strictly monotonic function of the configuration variable \(q \), \(H_0 \) is an appropriately-sized matrix prescribing linear combinations of state variables to be controlled, and \(y_d(\cdot) \) prescribes the desired evolution of these quantities. (See [3] for details.) The method of Hybrid Zero Dynamics (HZD) aims to drive these output functions (and their first derivatives) to zero, thereby imposing “virtual constraints” such that the system evolves on the lower-dimensional zero dynamics manifold, given by

\[Z = \{(q, \dot{q}) \in T\mathcal{Q} | y(q) = 0, L_fh(q, \dot{q}) = 0\}, \]

where \(L_f \) denotes the Lie derivative [30]. In particular, the dynamics of the system on \(Z \), given by \(H|_Z \), is the underactuated dynamics of the system and is forward-invariant. Periodic motion such as walking is then a hybrid periodic orbit \(\Omega \) in the statespace with \(\Omega_Z \) being its restriction to \(Z \). (We have \(\Theta = i_0(\Theta_Z) \), where \(i_0 : Z \to T\mathcal{Q} \) is the inclusion map.) Prior results on feedback control for such underactuated hybrid systems assume stability of \(\Omega_Z \) and design controllers that stabilize \(\Theta \), see [31] [3]. These controllers are revisited next.

B. Input-output linearization

If \(y(q) \) has vector relative degree 2, then the second derivative takes the form

\[\ddot{y} = L^2_f y(q, \dot{q}) + L_\theta L_f y(q, \dot{q})u. \]

We can then apply one of the following control laws,

\[u(q, \dot{q}) = u^*(q, \dot{q}) + \mu, \]
or
\[u(q, \dot{q}) = u^*(q, \dot{q}) + (L_0L_fy(q, \dot{q}))^{-1}\mu, \quad (6) \]
where
\[u^*(q, \dot{q}) := -(L_0L_fy(q, \dot{q}))^{-1}L_f^y(q, \dot{q}). \quad (7) \]

Defining transverse variables \(\eta = [y, \dot{y}]^T \), and using the IO linearization controller above with the pre-control law \(\mu \), we have,
\[\dot{y} = \mu. \quad (8) \]
Then, with the PD control
\[\mu = \left[- \frac{1}{\varepsilon^2} K_P \quad \frac{1}{\varepsilon} K_D \right] \eta, \quad (9) \]
the closed-loop system will become
\[\dot{y} + \frac{1}{\varepsilon} K_D \dot{y} + \frac{1}{\varepsilon^2} K_P y = 0, \quad (10) \]
and will be exponentially stable if we choose \(K_P \) and \(K_D \) such that
\[A = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix} \quad (11) \]
is Hurwitz. The \(\varepsilon \) factor is used to control the rate of convergence and is needed to ensure we converge sufficiently fast so as to account for the expansion produced by the impact map, see [32] for more details.

For the work presented here, we will use the pre-control law \(\mu \) that creates the closed-loop output dynamics \(\dot{y} \). Therefore, the input-output linearized dynamics will become
\[\dot{\eta} = \begin{bmatrix} \ddot{y} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} \mu. \quad (12) \]
The closed-loop dynamics in terms of the transverse variables \(\eta \) and the states \(z \in Z \) take the form,
\[\dot{\eta} = \bar{f}(\eta, z) + \bar{g}(\eta, z)\mu, \quad \dot{z} = p(\eta, z), \quad (13) \]
where \(\bar{f}(\eta, z) = F\eta \) and \(\bar{g}(\eta, z) = G \), with
\[F = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix}, \quad G = \begin{bmatrix} 0 \\ I \end{bmatrix}. \quad (14) \]

C. CLF-based control

An alternative control approach based on control Lyapunov functions, introduced in [5], provides guarantees of rapid exponential stability for the traverse variables \(\eta \). In particular, a function \(V_\varepsilon(\eta) \) is a rapidly exponentially stabilizing control Lyapunov function (RES-CLF) for the system \((13) \) if there exist positive constants \(c_1, c_2, c_3 > 0 \) such that for all \(0 < \varepsilon < 1 \) and all states \((\eta, z) \) it holds that
\[c_1\|\eta\|^2 \leq V_\varepsilon(\eta) \leq \frac{c_2}{\varepsilon^2}\|\eta\|^2, \quad (15) \]
\[V_\varepsilon(\eta, \mu) + \frac{c_3}{\varepsilon} V_\varepsilon(\eta) \leq 0. \quad (16) \]

In our problem, we chose a CLF candidate as follows
\[V_\varepsilon(\eta) = \eta^T \begin{bmatrix} \frac{1}{2}I & 0 \\ 0 & I \end{bmatrix} P \begin{bmatrix} \frac{1}{2}I & 0 \\ 0 & I \end{bmatrix} \eta =: \eta^T P \varepsilon \eta, \quad (17) \]
where \(P \) is the solution of the Lyapunov equation \(A^T P + PA = -Q \) (where \(A \) is given by \((11) \) and \(Q \) is any symmetric positive-definite matrix). The time derivative of the CLF \((17) \) is computed as
\[\dot{V}_\varepsilon(\eta, \mu) = L_f V_\varepsilon(\eta, z) + L_\eta V_\varepsilon(\eta, z) \mu, \quad (18) \]
where
\[L_f V_\varepsilon(\eta, z) = \eta^T (F^T P_\varepsilon + P_\varepsilon F) \eta, \]
\[L_\eta V_\varepsilon(\eta, z) = 2\eta^T P_\varepsilon G. \quad (19) \]

We can thus construct the set of control \(\mu \) that satisfies the RES condition \((16) \) as follows: We define the set,
\[K_\varepsilon(\eta, z) = \{ \mu \in U : \psi_0,\varepsilon(\eta, z) + \psi_1,\varepsilon(\eta, z) \mu c \leq 0 \}, \]

where,
\[\psi_0,\varepsilon(\eta, z) = L_f V_\varepsilon(\eta, z) + \frac{c_3}{\varepsilon} V_\varepsilon(\eta, z), \]
\[\psi_1,\varepsilon(\eta, z) = L_\eta V_\varepsilon(\eta, z). \quad (20) \]

Then, it can be show that for any Lipschitz continuous feedback control law \(\mu(\eta, z) \in K_\varepsilon(\eta, z) \), it holds that
\[\|\eta(t)\| \leq \frac{1}{\varepsilon} \sqrt{c_2} e^{-\frac{1}{\varepsilon^2} t} \|\eta(0)\|, \quad (21) \]
i.e. the rate of exponential convergence to the zero dynamics manifold can be directly controlled with the constant \(\varepsilon \) through \(\frac{c_3}{\varepsilon} \). One such controller is the pointwise min-norm control law [33], formulated as,

Pointwise min-norm:
\[\mu_\varepsilon(\eta, z) = \begin{cases} -\psi_0,\varepsilon(\eta, z)\psi_1,\varepsilon(\eta, z) & \text{if } \psi_0,\varepsilon(\eta, z) > 0 \\ 0 & \text{if } \psi_0,\varepsilon(\eta, z) \leq 0 \end{cases}. \quad (22) \]

D. CLF-based Quadratic Programs

CLF-based quadratic programs were introduced in [6], where \(\mu_\varepsilon \) was directly selected through an online quadratic program to meet \((16) \).

CLF-QP:
\[\arg \min_\mu \mu^T \mu \quad \text{s.t.} \quad \psi_0,\varepsilon(\eta, z) + \psi_1,\varepsilon(\eta, z) \mu \leq 0. \quad (23) \]

The quadratic program formulation now lets us incorporate additional constraints of the form \(A(q, \dot{q}) \mu \leq b(q, \dot{q}) \) into the control problem. However, for these additional constraints to be satisfied and to ensure feasibility of the quadratic program,
we relax the RES-CLF bound on the time-derivative of V. We do this by requiring $\dot{V}_e(\eta) \leq -c_3/\varepsilon \dot{V}_e(\eta) + d_1$, where d_1 is typically a small positive quantity. The relaxed CLF-QP is then written as

Relaxed CLF-QP:

$$\arg\min_{\mu, d_1} \mu^T \mu + p_1 d_1^2$$

s.t. \(\psi_{0, \varepsilon}(\eta, z) + \psi_{1, \varepsilon}(\eta, z) \mu \leq d_1\),

$$A(q, \dot{q}) \mu \leq b(q, \dot{q})$$

where p_1 is a large positive number that represents the penalty of relaxing the inequality. The formulation in (24) deals with additional state-based inequality constraint $A(q, \dot{q}) \mu \leq b(q, \dot{q})$, that potentially cannot ensure the same type of stability claims as those provided by [5, Thm. 2], as the relaxations in the bound on the time-derivative of V_e result in a loss of the RES-CLF quality for V_e. However, as we will see in this paper, under appropriate conditions, we still retain the stability of the hybrid periodic orbit. We will demonstrate this on the torque saturated controller:

CLF-QP with Torque Saturation:

$$\arg\min_{\mu, d_1} \mu^T \mu + p_1 d_1^2$$

s.t. $\psi_{0, \varepsilon}(\eta, z) + \psi_{1, \varepsilon}(\eta, z) \mu \leq d_1$,

$$\left(\bar{L}_g \bar{L}_f y(q, \dot{q})\right)^{-1} \mu \geq (u_{\text{min}} - u^*)$$,

$$\left(\bar{L}_g \bar{L}_f y(q, \dot{q})\right)^{-1} \mu \leq (u_{\text{max}} - u^*)$$

Having presented recent developments in control Lyapunov functions and control Lyapunov functions based quadratic programs for hybrid dynamical systems, we next consider the effect of uncertainty in the dynamics on these controllers.

III. ADVERSE EFFECTS OF UNCERTAINTY IN DYNAMICS ON THE CLF-QP CONTROLLER

The CLF-based approaches presented in Section II have several interesting properties. Firstly, they provide a guarantee on the exponential stability of the hybrid system, they are optimal with respect to some cost function, result in the minimum control effort, and provide means of balancing conflicting requirements between performance and state-based constraints. These controllers were even successfully implemented on MABEL, see [3, 6]. However, a primary disadvantage of these controllers is that they require an accurate dynamical model of the system. Specifically, as we will see, even for a simpler bipedal model such as RABBIT (compared to MABEL), uncertainty in mass and inertia properties of the model can cause bad control quality leading to tracking errors, and could potentially lead to walking that is unstable.

If we consider uncertainty in the dynamics and assume that the functions, $f(q, \dot{q}), g(q, \dot{q})$ of the real dynamics [1], are unknown, we then have to design our controller based on nominal functions $\hat{f}(q, \dot{q}), \hat{g}(q, \dot{q})$. Thus, the pre-control law (6) is reformulated as

$$u(q, \dot{q}) = u^*(q, \dot{q}) + (\bar{L}_g \bar{L}_f y(q, \dot{q}))^{-1} \mu,$$

where $u^*(q, \dot{q}) := -(\bar{L}_g \bar{L}_f y(q, \dot{q}))^{-1} L_f^2 y(q, \dot{q}).$

Substituting $u(q, \dot{q})$ from (26) into (4), the second derivative of the output, $\dot{y}(q)$, then becomes

$$\ddot{y} = \mu + \Delta_1 + \Delta_2 \mu,$$

where

$$\Delta_1 = L_f^2 y(q, \dot{q}) - L_g \bar{L}_f y(q, \dot{q}) \left(L_g \bar{L}_f y(q, \dot{q})\right)^{-1} L_f^2 y(q, \dot{q}),$$

$$\Delta_2 = L_g \bar{L}_f y(q, \dot{q}) \left(L_g \bar{L}_f y(q, \dot{q})\right)^{-1} - I.$$

Using F and G as in (14) and defining,

$$\Delta H = \begin{bmatrix} 0 \\ \Delta_1 \end{bmatrix}, \quad \Delta G = \begin{bmatrix} 0 \\ \Delta_2 \end{bmatrix},$$

the closed-loop system now takes the form

$$\dot{\eta} = F\eta + (G + \Delta G)\mu + \Delta H.$$

(31)

For the following sections, we will abuse notation and redefine $\bar{f} = F\eta + \Delta H, \dot{\bar{y}} = G + \Delta G$.

Clearly for $\Delta H \neq 0$, or $\Delta G \neq 0$, the PD control [9] does not stabilize the system dynamics. In fact for $\Delta H \neq 0$, the closed-loop system does not have an equilibrium, and for $\Delta G \neq 0$, the controller could potentially destabilize the system. This raises the question of whether it’s possible for controllers to account for this model uncertainty, and if so, how do we design such a controller.

IV. CLF BASED QUADRATIC PROGRAMS WITH ROBUST CONTROL

Having discussed the effect of model uncertainty on the control Lyapunov function based controllers, we now develop a controller that can guarantee tracking and stability in the presence of bounded uncertainty. As we will see, both stability and tracking performance (rate of convergence and errors going to zero) are still retained for all uncertainty within a particular bound. This is evidenced in Figure [3] for uncertainty that exceeds the specified bound, there is graceful degradation in performance.

A. Proposed Robust CLF-QP Controller

We start with the closed-loop model with uncertainty as developed in (31) and develop the robust controller as follows. With the CLF defined in (17), we have:

$$\dot{V}_e = L_f V_e(\eta, z) + L_g V_e(\eta, z)\mu,$$

(32)

where we have

$$L_f V_e(\eta, z) = \eta^T (F^T P_c + P_c F)\eta + 2\eta^T P_c \Delta H,$$

$$L_g V_e(\eta, z) = 2\eta^T P_c(G + \Delta G).$$

(33)

Then, in order to guarantee the standard RES condition (16), we will have to guarantee:

$$\dot{\Psi}_{0, \varepsilon} + \hat{\Psi}_{1, \varepsilon} \mu \leq 0$$

(34)
where
\[\dot{\Psi}_{0,\varepsilon} = \eta^T (F^T P_\varepsilon + P_\varepsilon F) \eta + 2\eta^T P_\varepsilon \Delta H + \frac{c_3}{\varepsilon} V_\varepsilon, \]
\[\dot{\Psi}_{1,\varepsilon} = 2\eta^T P_\varepsilon (G + \Delta G). \quad (35) \]

In general, we cannot satisfy the inequality \([34]\) for all possible unknown \(\Delta H, \Delta G\) in \([35]\). To address this, we assume the uncertainty is bounded as follows
\[\|\Delta H\| \leq \Delta H_{\text{max}}, \quad \|\Delta G\| \leq \Delta G_{\text{max}}, \quad (36) \]
where the first norm is a vector norm, while the second norm is a matrix norm.

The goal of the robust control design is then to find the control \(\mu\) satisfying the RES condition \([34]\), evaluated through the given bounds of uncertainty in \([36]\). Specifically, with the assumption on bounds on the uncertainty, the RES condition \([34]\) will hold if the following inequalities hold
\[\dot{\Psi}_{0,\varepsilon}^{\text{max}} + \dot{\Psi}_{1,\varepsilon}^{\text{max}} \mu \leq 0, \]
\[\dot{\Psi}_{0,\varepsilon}^{\text{max}} + \dot{\Psi}_{1,\varepsilon}^{\text{max}} \mu \leq 0, \quad (37) \]
where
\[\dot{\Psi}_{0,\varepsilon}^{\text{max}} = \max \left(\Psi_{0,\varepsilon}^{\text{max}}, \Psi_{0,\varepsilon}^{\text{p}} \right), \]
\[\Psi_{1,\varepsilon}^{\text{max}} = \eta^T (F^T P_\varepsilon + P_\varepsilon F) \eta + 2\eta^T P_\varepsilon \Delta H_{\text{max}} + \frac{c_3}{\varepsilon} V_\varepsilon, \]
\[\dot{\Psi}_{1,\varepsilon}^{\text{max}} = 2\eta^T P_\varepsilon (G + \Delta G_{\text{max}}), \]
\[\dot{\Psi}_{0,\varepsilon}^{\text{p}} = 2\eta^T P_\varepsilon (G + \Delta G_{\text{max}}). \quad (38) \]

We can then incorporate these inequalities into a new relaxed CLF-QP as follows:

Robust CLF-QP:
\[
\begin{align*}
\text{argmin}_{\mu, d_1, d_2} & \quad \mu^T \mu + p_1 d_1^2 + p_2 d_2^2 \\
\text{s.t.} & \quad \dot{\Psi}_{0,\varepsilon}^{\text{max}} (\eta, z) + \dot{\Psi}_{1,\varepsilon}^{\text{max}} (\eta, z) \mu \leq d_1, \\
& \quad \dot{\Psi}_{0,\varepsilon}^{\text{p}} (\eta, z) + \dot{\Psi}_{1,\varepsilon}^{\text{p}} (\eta, z) \mu \leq d_2, \\
& \quad (L_{\delta} L_{\delta}^T (g, \dot{q}))^{-1} \mu \geq (u_{\text{min}} - u^*), \\
& \quad (L_{\delta} L_{\delta}^T (g, \dot{q}))^{-1} \mu \leq (u_{\text{max}} - u^*).
\end{align*}
\]

Here \(d_1, d_2\) are the relaxations of the inequalities in \([37]\). The relaxed inequality has the benefit of making the solution to the above Quadratic program feasible and Lipschitz continuous in a larger region (see \([28]\)). The above robust CLF-QP enables the controller to be robust to all model perturbations that are within the specified bound in \([36]\). In particular, both stability and tracking performance (rate of convergence and errors going to zero) are still retained for all uncertainty within bounds. However, since we are expressing this as a relaxed CLF-QP, we lose the strict RES condition and thus require additional formulations to formally guarantee stability. We will develop these formulations next.

V. SUFFICIENT CONDITIONS FOR THE STABILITY OF CLF WITH RELAXED INEQUALITY

As we saw in the previous section, we can formulate a relaxed CLF-QP to be able to incorporate additional constraints while allowing for violation of the RES-CLF condition. This could lead to potential instability. However, here, we establish sufficient conditions under which we still retain the exponential stability of the hybrid periodic orbit. We will then use this result to establish stability of the robust CLF-QP.

A. Stability of the Relaxed CLF-QP Controller

The standard RES-CLF will guarantee the following inequality:
\[\dot{V}_\varepsilon + \frac{c_3}{\varepsilon} V_\varepsilon \leq 0 \quad (40) \]

The CLF-QP with the relaxed inequality will take the form
\[\dot{V}_\varepsilon + \frac{c_3}{\varepsilon} V_\varepsilon \leq d_1. \quad (41) \]

We define:
\[d_\varepsilon (t) = \dot{V}_\varepsilon + \frac{c_3}{\varepsilon} V_\varepsilon \quad (42) \]
and
\[w_\varepsilon (t) = \int_0^t d_\varepsilon (\tau) \, d\tau \quad (43) \]

Remark 1: First we define \(T_\varepsilon (\eta, z)\) to be the time-to-impact, that signifies ending time of the step. Then, intuitively, \(w_\varepsilon (T_\varepsilon (\eta, z))\) indicates a scaled version of the total violation of the RES-CLF bound in \([40]\) over one complete step. If \(w_\varepsilon (T_\varepsilon (\eta, z)) \leq 0\), it implies that \(V_\varepsilon (T_\varepsilon (\eta, z))\) is less than or equal to what would have resulted if the RES-CLF bound had not been violated at all. As we will see in the following theorem, we will in fact only require \(w_\varepsilon (T_\varepsilon (\eta, z))\) to be upper bounded by a positive constant for exponential stability.

We then have the following theorem:

Theorem 1: Let \(\mathcal{O}_Z\) be an exponentially stable periodic orbit of the hybrid zero dynamics \(\mathcal{H}|_Z\) transverse to \(S \cap Z\) and the continuous dynamics \([1]\) of \(\mathcal{H}\) controlled by a CLF-QP with relaxed inequality \([24]\). Then there exists an \(\bar{\varepsilon} > 0\) and an \(\bar{w}_\varepsilon > 0\) such that for each \(0 < \varepsilon < \bar{\varepsilon}\), if the solution \(\mu_\varepsilon (\eta, z)\) of the CLF-QP \([24]\) satisfies \(w_\varepsilon (T_\varepsilon (\eta, z)) \leq \bar{w}_\varepsilon\), then \(\mathcal{O} = \mathcal{O}_0 (\mathcal{O}_Z)\) is an exponentially stable hybrid periodic orbit of \(\mathcal{H}\).

Proof: See \([34]\). \(\blacksquare\)

B. Stability of the Robust CLF-QP Controller

It is clear that if there is no uncertainty in the system, i.e., \(\Delta H_{\text{max}} = \Delta G_{\text{max}} = 0\), then the robust CLF-QP \([39]\) is exactly the same as the CLF-QP with torque saturation \([25]\). In contrast, if uncertainties are too significant, say \(\Delta H_{\text{max}} \to \infty, \Delta G_{\text{max}} \to \infty\), it is obvious that we cannot guarantee the stability of the hybrid system. We require the uncertainty to be bounded. Moreover, model uncertainty further complicates the problem, since it causes the periodic orbit to move from \(\mathcal{O}_Z\) to \(\mathcal{O}_Z\), corresponding to a periodic orbit for the new perturbed model. To establish stability guarantees, we restate Theorem \([1]\) for the CLF-QP with robust control as follows:
Case I: model scale $= 1$
Case II: model scale $= 1.5$
Case III: model scale $= 0.7$
Case IV: model scale $= 3$.

For each case, we will compare the quality of three controllers:

Controller A: Min-norm Controller
Controller B: CLF-QP torque saturation controller
Controller C: CLF-QP robust controller

By setting the torque bounds slightly below the maximum torque that controller A uses for each particular case of model perturbation. In particular, the torque saturations were set as...
(b) Case II: model scale = 1.5

(c) Case III: model scale = 0.7

Fig. 4: Tracking errors of the virtual constraints (2) based on the simulation of cases I-III of perturbed model of RABBIT with three controllers as described in Section VI. Simulation of three walking steps are shown.

Fig. 5: Control inputs (motor torques for stance and swing legs) based on the simulation of cases I-III of perturbed model of RABBIT with three controllers as described in Section VI. Simulation of three walking steps are shown.

follows: 60 Nm, 80 Nm, 150 Nm, and 300 Nm for the model scale equals to 0.7, 1, 1.5, 3 respectively.

Each of the four models are evaluated with the three sets of controllers. The results are presented in Figures 3, 4, 5, 7.

Remark 2: From Figure 3, note that the performance (both rate of convergence and driving the tracking error to zero) of the proposed robust CLF-QP controller remains same for all the considered model variations.

Remark 3: For Case I: model scale = 1, when there is no uncertainty, we can observe from the top plot of Figure 3 and from Figure 4a that the robust CLF-QP controller (controller C) performs better than the two other controllers. This is because the robust controller is trying to satisfy the convergence bound on the worst possible model perturbation. Also notice that the CLF-QP with torque saturation (controller B) does slightly worse than the min-norm controller (controller A). This is due to the torque saturation that is slightly below the maximum torque the min-norm controller uses.

For Case II: model scale = 1.5 and Case III: model scale = 0.7, where mass and inertia were increased by 50% and reduced by 30% respectively, we can observe from the tracking error plots in Figures 4b, 4c, that while the min-norm controller (controller A) and the CLF-QP torque saturation controller (controller B) have non-zero tracking errors during each step, the robust CLF-QP controller (controller C) still performs perfectly, with tracking errors converging to zero. Thus, even with this level of uncertainty, the proposed robust CLF-QP controller is able to maintain the same control performance quality as in Case I (no model uncertainty). This is especially evident in Figure 4a, where we clearly see that the robust CLF-QP maintains the same rate of convergence for all model perturbations. Note that these comparisons are fair between the controllers since we maintain the same range of control inputs for each case of model perturbation, as evidenced in the control input plots in Figures 5.

In Case IV: model scale = 3, where we set up a highly significant level of uncertainty by scaling all mass and inertia properties by a factor of 3, while the Controllers A and B fail to sustain walking, the proposed CLF-QP controller is still able to regulate the outputs with only a slight degradation, see Figure 6. However, it must be noted that the underlying periodic orbit Θ_Z is unstable, and the walking slows down after
able to perform its task with such a large model perturbation. Future research will be directed towards addressing what can potentially be done for handling the effect of uncertainty for the underactuated dynamics.

Figure 4 illustrates the simulation of 25 steps of the proposed CLF-QP based robust controller for three cases of uncertainty as specified in Case I-III. This illustrates the controller converging to three periodic orbits that slightly vary from each other. As mentioned, the uncertainty in the model causes the underlying periodic orbit to change.

Figure 5 illustrates the hip velocity while carrying an unknown 60 kg load on the torso, corresponding to an additional 188% mass. Figure 6 illustrates walking with the carried unknown load randomly varying at each step.

Although the proposed robust CLF-QP based controller appears impressive, a primary limitation of the controller is that it always assumes the worst-case scenario with maximum model perturbation within the specified bounds, even when the model is known perfectly and there is no uncertainty. This results in the controller being unnecessarily aggressive, and may cause problems in experiments.

VII. CONCLUSION

In summary, we have presented a novel optimal robust control method that successfully handles significantly high model uncertainty (up to 200% increase in mass and inertia) and respecting torque saturations, while still retaining stability of walking for a nonlinear, hybrid, underactuated, five-link planar bipedal robot. The proposed robust controller is formulated based on recent advances in rapidly exponentially stabilizing control Lyapunov functions for hybrid systems, and control Lyapunov function based quadratic programs. Future directions involve experimental validations on an underactuated bipedal robot and developing controllers that can estimate the uncertainty in the model.

REFERENCES

