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Abstract—This paper examines the relationship between sys-
tem dynamics and problem complexity of collision avoidance
in multi-agent systems. Motivated particularly by results in the
field of automated driving, a variant of the reciprocal n-body
collision avoidance problem is considered. In this problem, agents
must avoid collision while moving according to individual reward
functions in a crowded environment. The main contribution
of this work is the novel result that there is a quantifiable
relationship between system dynamics and the requirement
for agent coordination, and that this requirement can change
the complexity class of the problem dramatically: from P to
NEXP or even NEXPNP. In addition, a constructive proof is
provided that demonstrates the relationship and potential real-
world applications of the result are discussed.

I. INTRODUCTION

In industries as varied as mining, agriculture, health
care, and autonomous driving, many practical applications
in robotics involve navigating through dynamic environments
in the presence of intelligent agents. A large and relatively
mature body of literature has been developed that examines
various types of these multi-agent systems and the theoretical
complexity of planning within them. The focus in this work
is specifically how system dynamics interact with problem
complexity. For single agent systems, an early result due
to Reif and Sharir [27] showed that adding velocity bounds
to one type of motion planning problem can change its
complexity from NP-hard to PSPACE-hard. This result clearly
indicates that system dynamics can play a role in determining
complexity class, however, relatively little attention has been
paid to the role that system dynamics play in the complexity
of multi-agent problems.

As will be shown, one of the key factors affecting com-
plexity of multi-agent problems is agent coordination. In real
world applications for multi-agent systems, path planning has
historically been treated as the primary problem ahead of agent
coordination. But, in many cases, this may not reflect where
the true difficulty lies. For example, in the case of an auto-
mated vehicle moving along a road network, the environment
explicitly bounds the set of paths that make progress toward a
goal, which significantly reduces the difficulty of path planning
without necessarily a commensurate reduction in difficulty of
the coordination problem. The team behind the planner used
in the Bertha Benz drive (Ziegler et al. [35]), as well as the
winning teams of the 2007 DARPA Urban Challenge (Urmson

A1 A2

A3

Fig. 1: Agents A1, A2, and A3 attempt to navigate past each
other along fixed paths. This paper examines how system
dynamics affect the need for them to coordinate their actions.

et al. [29], Montemerlo et al. [23], and Bacha et al. [4]) all cite
coordination ahead of path planning as an area of future work.
Given the importance of the coordination problem and that
practically any real-world system is dynamically constrained,
understanding the relationship between system dynamics and
coordination requirements is especially important and serves
as one of the primary motivations for this work.

Recent years have seen a significant push toward automated
driving (AD), but one of main difficulties of AD is the problem
of handling inter-vehicle interactions safely and efficiently. At
first glance, explicit coordination among vehicles (V2V) would
seem to provide a solution, and much work has been done
to develop the technology and standards. However, it is not
foreseeable that the availability of the required communication
channels can be guaranteed to levels required of safety-critical
applications [15]. But it’s also unclear to what degree that
kind of communication is actually necessary: human drivers
navigate successfully with only very limited1 forms of com-
munication, which implies that the coordination they do is also
very limited. This raises the question of whether, and to what
extent, coordination is actually required for navigating multi-
agent systems, and it implies that a better understanding of that

1Indicator lights are a common channel of communication, but they are
notoriously unreliable. Horns also provide a form of communication, but are
limited by context. Relative positions and speeds can convey intent, but, as
channels of communication, these are very low bandwidth.



requirement will lead to the development of more practical and
robust navigation algorithms.

This paper examines agent coordination in a variant of
the reciprocal n-body collision avoidance problem described
by van den Berg et al. [31]. The key insight is that system
dynamics can introduce a requirement for coordination where
there otherwise would be none, and a constructive proof is
given that allows the existence of this requirement to be tested.
The importance of the coordination requirement is that once
it exists within a system, the space of appropriate models
for the problem changes, which changes the complexity class
of any solutions to the problem. This result demonstrates
the existence of fundamental ties between system dynamics
and problem complexity for multi-agent collision avoidance
problems.

First a selection of relevant background literature is covered
and then the main results of the paper are derived. Finally,
future work and conclusions will be discussed.

II. RELATED WORK

This section will detail a selection of the large body of
relevant work on collision avoidance, planning, and com-
plexity. First several general theoretical complexity results
are described, then a brief description of notable solution
techniques for multi-agent systems, and, finally, a brief survey
of approaches taken in practical solutions is given.

In the absence of dynamic constraints and other moving
agents, the problem of planning a collision-free path through
an environment is typically referred to as the “mover’s prob-
lem,” which is the problem of moving an articulated polyhedral
body through a Euclidean space populated with static polyhe-
dral obstacles. Reif [26] showed the general problem to be
complete for PSPACE and the classical problem, referred to
as the “piano mover’s problem,” where the moving body is
a rigid polyhedron moving in R2 or R3, to be in P under
the condition that geometric constraints can be expressed
algebraically. Work by Halperin and Sharir [14] further showed
near quadratic bounds for the R2 case. The multi-body variant
of the piano mover’s problem, known as the “warehouseman’s
problem,” was shown by Hopcroft et al. [17] to be PSPACE-
hard. Reif and Sharir [27] additionally showed that introducing
agents that follow fixed-trajectories into the piano mover’s
problem for R3 changes the complexity class of the problem to
NP-hard, and that adding velocity bounds makes the problem
PSPACE-hard.

For multiple agents following non-fixed trajectories, the
problem is generally formulated in terms of sequential decision
making in a discretized space rather than geometric motion
in a continuous space. When planning for these agents can
be done independently while still achieving a jointly opti-
mal solution, the problem can be formulated as a type of
Markov decision process (MDP), which Papadimitriou and
Tsitsiklis [24] showed belongs to complexity class P. However,
as noted by Boutilier [8], independent planning cannot be
guaranteed in general to result in a globally optimal plan. For
global optimality to be guaranteed, joint planning must occur.

While typical centralized2 joint planning problems can also
be formulated as types of MDP’s, and therefore belong to P,
others, such as the unlabeled3 variant, are PSPACE-hard. For
decentralized problems Bernstein et al. [7] showed that for
cooperative4 agents this class of problems is at least complete
for NEXP in both the jointly fully-observable (DEC-MDP) and
jointly partially-observable (DEC-POMDP) cases. Goldsmith
and Mundhenk [13] showed the non-cooperative version of this
problem, the partially-observable stochastic game (POSG), to
be complete for NEXPNP.

In the context of collision avoidance in multi-agent systems,
Fiorini and Shiller [10] introduced the notion of “velocity
obstacles” to address the pairwise collision avoidance problem.
In this approach the set of velocities resulting in collision
between a robot and another moving agent are computed
explicitly, and this set is called the velocity obstacle (VO).
Collision avoidance is then guaranteed by assigning velocities
outside the VO to the agent. Fraichard and Asama [12]
described the more general idea of an “inevitable collision
state” (ICS) as a “state for which, no matter what the future
trajectory followed by the system is, a collision with an
obstacle eventually occurs.” Similar state descriptors had been
proposed by LaValle and Kuffner [21]. Owing to the inherent
computational complexity of the ICS representation, Bekris
[5] examined sampling-based approximation methods. The
Optimal Reciprocal Collision Avoidance (ORCA) framework
introduced by van den Berg et al. [31] expanded the ideas of
VO and ICS to first-order multi-agent systems. Later, van den
Berg et al. [32] extended their results to consider second-order
constraints. Pairwise collision avoidance for holonomically
constrained systems was demonstrated by Wilkie et al. [34]
and extended to general multi-agent systems by Alonso-Mora
et al. [2]. When coordination among agents is allowed, Bekris
et al. [6] demonstrated that non-collision can be guaranteed
for a broad class of de-centralized motion planning problems.
Shoham and Tennenholtz [28] describe an alternate approach
to these types of problems that imposes artificial rules, or
“social laws,” on agent coordination in order to remove the
need for online coordination altogether.

The distinction between sequential decision making prob-
lems and continuous geometric motion planning problems
is typically formulated mathematically as the problem of
choosing among a finite number of homotopy channels in
some state space (decision making), and generating actuation
commands to navigate those channels (motion planning). In
practice, most interesting problems have characteristics of both
problem types, and therefore are hybrid problems with hybrid
solutions. An early approach from Kambhampati et al. [20]
solved these hybrid problems by interleaving graph planning

2“Centralized” planning problems are those in which a central planner
coordinates the motions of all agents. In “decentralized” problems, each agent
invokes its own planner.

3“Unlabeled” refers here to the idea that multiple agents must reach multiple
goal positions without concern for which agent reaches which goal.

4“Cooperative” here means that agents have a shared reward function. In
contrast, “non-cooperative” means that each agent only optimizes for positive
outcomes for some subset of all agents.



(a) For a given agent state A(s) and path p, the absolute
stopping path ASP(A(s), p) is the minimal set of states A must
occupy while coming to zero velocity from s along p. Here
disc agent A starts on the left and comes to a stop in the upper
right. In the illustration the motion is discretized at fixed time
intervals, so the spacing between steps indicates relative speed.

(b) For a given agent state A(s) and complete set of followable
paths P , the absolute stopping region ASR(A(s), P ) is the
union of all ASPs over P . This illustration shows the ASR
for disc agent A from (a). The region is plotted by sampling
agent trajectories generated by sweeping steering commands
from hard right to hard left.

Fig. 2: Illustrations of the shapes of an ASP (Definition 6)
and an ASR (Definition 7) for a hypothetical disc agent
following constant control trajectories with unicycle dynamics
traveling along a 2D plane. System was initialized with non-
zero velocity, bounded deceleration, and bounded yaw rate.

with motion planning in pre-defined discrete spaces. Later,
Kaelbling and Lozano-Pérez [19] dealt with uncertainty and
introduced sophisticated task description languages. When
the topography of the state space is not known beforehand,
Alterovitz et al. [3] introduced a sampling-based approach that
can be used to construct roadmaps in the state space.

III. PROBLEM DESCRIPTION

As stated earlier, this paper examines agent coordination
under a variant of the reciprocal n-body collision avoidance
problem described by van den Berg et al. [31]. In the formu-
lation used here, the problem is generalized slightly to allow
general system dynamics, and to make each agent’s task to
choose an appropriate control command rather than velocity:

Problem 1. Let A be a set of agents navigating a shared
space with a shared reference frame and assume that collision

is never inevitable in the initial system state. Assume each
agent can fully observe the instantaneous dynamic state of the
environment. Assume global constraints on dynamics, and that
each agent moves according to a unique decision process. Each
agent may assume with certainty that other agents will prefer
both to avoid collision and to avoid causing collision, but that
otherwise the future actions of other agents are not generally
observable. Agents may coordinate, or negotiate, their future
actions via communication under the following restrictions:

1) Communications are strictly pairwise
2) Agents may only communicate with regard to their own

actions (that is, they may not relay information)
3) There is always some non-zero cost associated with

communication
The question is: when |A| > 2, how can a given agent

choose a control with the guarantee that it will be possible for
all agents to remain collision free for some time horizon?

The focus of this paper is on how system dynamics affect
the model space and complexity of Problem 1.

A. Notations and Definitions

Assume all agents operate in a shared workspaceW , and let
S denote the time-augmented state space [11] for all agents.
Let Φ denote the set of all control trajectories5 where for each
φ ∈ Φ the state of an agent A at time t from start state s0 ∈ S
under control trajectory φ is st = φ(s0, t). Let A(s) denote
the region of state space occupied by agent A at state s.

Definition 1. The actions of two agents are said to require
coordination when the feasibility of either agent’s actions
cannot be guaranteed independently of the actions of the other.

Definition 2. For a given agent A an obstacle (O) is a member
of the set of obstacles O, which is defined as6:

O = A \ A

Definition 3. A state space obstacle (Bi) is the set of states
swept out by an obstacle Oi as it is controlled from an initial
state si to an infinite time horizon T under φi:

Bi =
⋃
T

Oi(φi(si, t))

Definition 4. An inevitable collision state (ICS)7 for an agent
A is a state from which all feasible future trajectories of A
result in collision:

s is ICS↔ ∀φ, ∃Bi,∃t :: A(φ(s, t)) ∩ Bi 6= ∅

It is important to note that by Definition 3, the computation
of ICS space requires knowledge of future control trajectories
of all obstacles.

5The set of controls is assumed to be shared, but this is not necessary.
6Non-interacting obstacles (e.g. walls or rolling rocks) follow fixed policies,

so coordination with them is never required (or possible). For simplicity, they
are excluded from treatment in this paper.

7Notations and definitions relating to ICSs are adapted from [12].



Definition 5. A contingency plan is a control sequence that
an agent can execute that is guaranteed to avoid ICS space.

Definitions 6 & 7 below introduce concepts that will aid
in the analysis of Problem 1. While sufficient to derive the
results of this paper, these definitions will be refined in §IV-E
to slightly generalize how dynamic systems are described.

Definition 6. For a given agent state A(s) and path p, the
absolute stopping path ASP(A(s), p) is the minimal set of
states A must occupy while coming to zero velocity from s
along p (Figure 2a).

Definition 7. For a given agent state A(s) and complete
set of followable paths P , the absolute stopping region
ASR(A(s), P ) is the union of all ASPs over P (Figure 2b):

ASR(A(s), P ) =
⋃
P

ASP(A(s), p)

IV. THEORY

This section will derive the main results of the paper.
First the necessary notations and definitions are defined, and
then the specific conditions are derived for which solutions
to Problem 1 can make non-collision guarantees with and
without agent coordination (Definition 1). An explicit problem
formulation for Problem 1 is given and it is shown that the
complexity of the problem is directly influenced by system
dynamics via the coordination requirement. The section is
closed with a discussion of results.

A. Relating Dynamics to Coordination

This section derives the relationship between system dy-
namics and the requirement for agent coordination under
Problem 1.

Lemma 1. In order to guarantee that any system can remain
collision free, at least some reachable subset of ICS space
must be computable from any state.

Proof: This follows from Definition 4. In order to guar-
antee that a system can remain collision free, it must only
move into states that are not in ICS space. To do that, some
subset of the complement of ICS space must be computable.
This equivalently means that some subset of ICS space must
be computable.

Lemma 2. Under Problem 1, ICS space is not computable
without coordination among agents.

Proof: This follows from Definitions 3 & 4: in order
to compute ICS space the future control trajectories of all
agents must be fully observable. However, under Problem 1,
the future control trajectories are not fully observable without
coordination among the agents.

Theorem 1. Under Problem 1, coordination is required in
general for each agent to maintain the ability to remain
collision free.

Proof: It follows directly from Definition 5 that all agents
must have a contingency plan in order to guarantee the system

can remain collision free. By Lemma 1 and Definition 5,
computing a contingency plan requires computing some subset
of ICS space. By Lemma 2, computing ICS space requires
coordination among agents.

Using the ASR concept from Definition 7, the requirement
for coordination will now be framed in terms of system
dynamics.

Lemma 3. Consider a system with two agent states A1(s1)
and A2(s2). Let ASR(A1(s1), P1) ∩ ASR(A2(s2), P2) = Q.
Assume there exist ASP(A1(s1), p1) and ASP(A2(s2), p2)
such that neither intersect Q. In other words, both A1 and
A2 have disjoint stopping paths available. Then neither s1
nor s2 is an ICS.

Proof: Since the stopping paths are disjoint, by Defini-
tion 6 both agent A1 and agent A2 can come to a stop without
intersecting. Therefore, collision is not inevitable.

Lemma 4. For a given agent state Ai(si), let ASR(O,P) =
∪iASR(Oi(si), Pi) be the union of all obstacle ASRs. A con-
tingency plan for agent Ai is guaranteed to exist if there exists
ASP(Ai(si), p) such that ASP(Ai(si), p) ∩ ASR(O,P) = ∅.

Proof: If ASP(Ai(si), p) ∩ ASR(O,P) = ∅, then
Lemma 3 says that si is not in an ICS. Therefore there must
exist a control sequence φ under which A remains collision
free. By Definition 5, φ is a contingency plan.

Theorem 2 establishes a condition under which any general
dynamic system is guaranteed to be able to remain collision
free without coordination:

Theorem 2. A multi-agent system is guaranteed to be able to
remain collision free without coordination if and only if for all
A there exists an ASP(Ai(si), p) such that ASP(Ai(si), p) ∩
ASR(O,P) = ∅.

Proof: It is equivalent to show that contingency plans can
be guaranteed without coordination if and only if the above
condition is true. By Lemma 4, if all agents have disjoint
ASPs, then there must exist for all agents a contingency
plan. To show that a contingency plan is guaranteed without
coordination for all agents only if they all have disjoint ASPs,
assume the contrary. Then no agent can come to a stop
without potentially crossing the stopping path of one or more
other agents. Without disjoint stopping paths, agents must
know the future actions of other agents in order to have
a valid contingency plan. But by Theorem 1 this requires
coordination, which violates the premise. Thus, all agents are
guaranteed to have a contingency plan without coordination if
there is ASP disjointness, and if ASPs are not disjoint, they
are not guaranteed a contingency plan without coordination.

The intuition behind Theorem 2 is closely tied to the notion
of ICS space, and it would be equivalent to state that under
certain conditions, it is impossible to compute any subset of
ICS space without knowing the future actions of other agents.
This idea is related to the sufficient safety condition for partial
motion plans derived by Petti and Fraichard [25], which states



that if the final state of a collision-free trajectory is not an ICS,
then no state along the trajectory is an ICS state.

The following definition is made for convenience:

Definition 8. The condition that satisfies Theorem 2, that all
agents have at least one disjoint stopping path, will be called
ASP disjointness.

Theorem 2 states that coordination is unnecessary under
ASP disjointness. But how, in practice, could agents maintain
that property without coordination? Trivially, if an agent
modulates its dynamics such that it can always come to a
stop without possibly intersecting the path of any other agent,
the property is satisfied. Agents need no knowledge of the
plans of other agents for this; they simply need knowledge of
the dynamics of the system. This is the approach taken, for
example, by Mazer et al. [22] in the Ariadne’s Clew algorithm.
For most second-order systems, however, this behavior would
likely be too conservative to be very useful. Worse, it’s
possible to specify initial conditions in a second-order system
such that it is not possible to satisfy the property required
by Theorem 2 (see §IV-D). This is why, for example, the
algorithm for multi-agent collision avoidance for second-order
systems given by Bekris et al. [6] requires coordination in
order to maintain its guarantees.

But if Bekris et al. [6] require coordination, why is it
that van den Berg et al. [31] do not? The ORCA framework
they present is an efficient collision avoidance algorithm based
on the VO representation that guarantees non-collision for very
complex scenes without the need for agent coordination. As it
turns out, Theorem 2 allows the requirement for agent coor-
dination for certain systems to always be dropped. Theorem 3
will establish this possibility:

Lemma 5. For first-order systems, ASP(A(s), p) = A(s), and
by extension,

⋃
P ASP(A(s), p) = A(s) = ASR(A(s), P ).

Proof: That A can instantaneously stop means that the
minimal set of states A must occupy while coming to a
stop along any path p is exactly A(s). This implies further
that

⋃
P ASP(A, P ) = A(s) which is equal to ASR(A) by

Definition 7.

Theorem 3. A first-order multi-agent system that is not
currently in collision is guaranteed to be able to remain
collision free without coordination.

Proof: Lemma 5 implies that for systems with only first-
order constraints, ASP disjointness holds for all non-collision
states. By Theorem 2, such a system is guaranteed to be able
to remain collision free without coordination.

Note that any system described by the VO formulation
is necessarily a first-order system and therefore Theorem 3
applies to it. This means the fact that Bekris et al. [6] required
coordination for their solution and van den Berg et al. [31] did
not is directly a result of the system dynamics they employed:
the former dealt with a second-order system, and the latter a
first-order system.

At a deeper level, these results speak to the fundamental

problems with representing higher-order systems with lower-
order approximations. The VO representation, for instance,
is a first-order approximation often used for mutual collision
avoidance in multi-agent systems because of its simplicity and
elegance. However, Theorem 3 implies that the guarantees it
makes are invalid for higher-order systems. This is demon-
strated empirically by Wilkerson et al. [33] who showed that
using the VO representation in a second-order system can
result in collisions, even though the algorithms guarantee non-
collision.

B. Collision Avoidance as a Decision Problem

This section gives a formulation for Problem 1 as a se-
quential decision making problem. The problem formulation
is constructed such that it might reasonably map to real-world
problems, but, to be clear, its purpose in this paper is to aid
in the derivation of the main result, not to provide a practical
solution to any specific problem instance.

As formulated, Problem 1 is hybrid decision making/motion
planning problem, so its solution will also take a form similar
to the hybrid solutions mentioned in §II. Let R be some
sufficiently dense roadmap approximation to S (for instance,
a Stochastic Motion Roadmap [3]), where “sufficiently dense”
means dense enough to allow solutions to be found. Assume
each agent is initialized at some vertex of R, and assume all
agents plan at a uniform and aligned frequency. Assume all
agents have full knowledge of system dynamics and of R,
and that some efficient method for computing ASRs exists8.
Assume that agents are capable of coordinating their actions
(subject to the restrictions outlined in Problem 1) in a way
similar to that presented in Bekris et al. [6], in which agents
negotiate joint-contingency plans.

Define the problem G in its most general as a POSG:

Problem 2. Let G = (A, O, C, c0, A, T,Ω, R), where:
• A is a set of agents whose states include contingency

plans
• O is a set of finite observations (mapping of observable

agent states to vertices of R)
• C is a set of configurations of the system (mapping of

full agent states to vertices of R)
• c0 is a designated initial configuration
• A is a finite set of actions that enable transition between

any two vertices on R
• T : C × Ak × C → [0, 1] is the transition probability

function, where T (c, a1, . . . , ak, c
′) is the probability that

configuration c′ is reached from configuration c when
each agent i chooses an action ai

• Ω : C × I → O is the observation function, where Ω(c, i)
is the observation made in configuration c by agent i. The
observation of one other agent may include the result of
a negotiation (a joint-contingency plan); for all others the
observation includes a distribution over contingency plans

8ASR computation can be treated as reachable set computations performed
with either fast online approximations as in Johnson and Hauser [18] or Allen
et al. [1], or via offline computation as in Valtazanos and Ramamoorthy [30]



• R : C × Ak × I → R is an reward function, where
R(c, a1, . . . , ak, i) is the reward gained by agent i in
configuration c when the agents take actions a1, . . . , ak

C. Main Result

This section derives main result of the paper, namely, that
Problem 2 can be reduced to an MDP provided the non-
coordination guarantee of Theorem 2 holds, and that it remains
a POSG when it does not.

First, the reduction of G to an MDP under ASP disjointness:

Lemma 6. An agent A can assume arbitrary policies for all
O ∈ O and maintain the non-collision guarantee provided the
assumed policies at least maintain ASP disjointess.

Proof: This follows directly from Theorem 2. From the
standpoint of guaranteeing the ability to remain collision
free, the action an agent takes is irrelevant so long as ASP
disjointness is maintained.

Note that the principle of Lemma 6 is closely related to that
exploited by the ORCA framework.

Theorem 4. Under ASP disjointness, G can be modeled as
an MDP.

Proof: Lemma 6 states that the ability to remain collision
free can be assured whenever an agent A assigns arbitrary po-
lices to other agents so long as ASP disjointness is maintained.
This is key, because it means A does not need to observe
anything about the other agents beyond what is already fully
observable in order to plan and execute motions in the presence
of those other agents. A is free to assume full observability
in future actions and a shared reward function. The quality of
the assumptions about future actions is irrelevant; they can be
arbitrarily bad. It is only important that in the current state the
agents can rely on each other not to violate ASP disjointness,
and, as discussed previously, this can be done strictly with
knowledge of system dynamics. Under the assumption of
full observability, A can then incorporate the state of other
agents into its own transition function, effectively centralizing
the decision process. Thus, G is now equivalent to a fully-
observable, centralized, single-agent system. In other words,
G is an MDP.

Now, if ASP disjointness cannot be guaranteed, G must
remain a POSG:

Theorem 5. Without ASP disjointness, G must be modeled as
a POSG.

Proof: By Theorem 2 says that in the absence of ASP
disjointness, coordination among agents is required to maintain
any non-collision guarantee. In the worst case, the agent
ASRs may intersect in a way that requires more than two
agents to coordinate contingency plans. Due to communication
limitations, however, this necessarily induces partial observ-
ability of the contingency plans, and therefore the state, of
at least one of the agents. Further, reasoning about future
actions involving other agents requires consideration of non-
shared reward functions because they are what determine the

distribution over future actions. Under these conditions, the
decision process is decentralized, multi-agent, and partially-
observable with non-shared reward functions. By definition
this is a POSG.

As covered in §II the complexity difference between MDP’s
and POSG’s is staggering, with the former falling into com-
plexity class P, and the latter into NEXP in the cooperative
case or NEXPNP in the non-cooperative case. The fact that the
complexity of the system can be manipulated to keep it within
a tractable realm simply by controlling the dynamics is both
surprising and powerful, and may provide insight into how
humans are capable of efficiently and successfully navigating
complex, multi-agent systems. In the case of roadways, for
instance, the environment constrains the set of motions to such
an extent that virtually any forward motion ensures progress
toward the goal, so optimality of the plan is of little value.
Instead, if the focus is on maintaining ASP disjointness in
the system, a planning problem that is, in principle, wildly
intractable becomes comfortably tractable.

To summarize, this section has shown that system dynamics
alone can be responsible for moving a problem between two
types of problem models, and so have shown that the dynamics
of a system can fundamentally change both the complexity
class and model space of the problem. This is the main result
of the paper, and is, to the best knowledge of the author, novel
within the field of multi-agent collision avoidance.

D. Exemplar Problem

This section presents a simple multi-agent system that can
be manipulated in certain ways to clearly demonstrate the ideas
of this paper. The problem is as follows: three agents A1, A2,
and A3 are traversing a fixed path that splits around a single
median (Figure 3a). All agents can only move along the path
or one of its branches. A1 and A2 desire to make it past the
median, and A3 desires to stay around the median. As A1

and A2 traverse the path, they reach a point where they must
make a decision about how to proceed (Figure 3b). Note that
because only the collision avoidance problem is of concern,
it is not a criterion for success that the agents can make it
past each other successfully. Success only requires that they
remain collision free, so, for instance, a deadlock situation
satisfies the requirements, even if it is not the most desirable
outcome.

Suppose the agents occupy a first-order system. In this
case, their ASRs are disjoint unless or until they actually
collide. Theorem 3 guarantees that, for any initial velocity,
they can all proceed without coordination while maintaining
the guarantee that collision is not inevitable (Figure 3c). On the
other hand, assume the agents occupy a second-order system.
For a sufficiently high initial velocity, none of the three agents
have an ASP that can be guaranteed to be disjoint of all other
ASRs (Figure 3d). It should be clear both by inspection and
by Theorem 2 that maintaining any non-collision guarantee is
only possible in this case if they somehow coordinate.



A1 A2

A3

(a) A simple multi-agent system: agents A1, A2, and A3 are
moving along shared paths and must navigate around each other.

A1 A2

A3

(b) At the branching point in the path, A1 and A2 must make
a decision about which branch to follow.

A1 A2

A3ASR3

ASR1 ASR2

(c) In a first-order system, the ASR’s are invariant to the state
of the system, and only extend longitudinally to the extents of
the agents. The pink regions illustrate the extent of the ASR
along the path being followed. In such a scenario, the ASP
disjointness property always holds for any initial state.

ASR3
ASR1ASR2

A2A1

ASR3 A3

(d) A second-order system with a high initial velocity results in
an initial system state without a guarantee of ASP disjointness.
ASR1 and ASR2 extend beyond the median, and ASR3 circles
the median. In such a scenario, there is significant overlap in the
ASR’s for each agent, indicated by the darker shaded regions.

Fig. 3: Exemplar problem. ASRs are indicated as exaggerated pink regions for each agent with dashed lines indicating extents.

(a) vref = v (b) vref = 0.66v (c) vref = 0.33v (d) vref = 0

Fig. 4: For a given agent state A(s), reference velocity vr, and set of followable paths P , the relative stopping region
RSR(A(s), vr, P ) is the ASR computed with respect to the reference velocity vr. This figure illustrates RSRs for various
reference velocities vref in a two agent system. The two disc agents are traveling on a 2D plane with the same velocity v. In
(a) the reference velocity is taken as v, so the stopping regions are the agents themselves. In (b)-(d) the reference velocity is
taken as progressively smaller fractions of v. Here agents obey the same dynamics as in in Figure 2.



E. Generalizing from Absolute to Relative Stopping Regions

So far ASPs and ASRs have been constructed in terms of the
agent coming to an absolute zero velocity state. However, this
is not strictly necessary. A stopping region defined in terms
of a relative zero velocity state is more general and can allow
ASP disjointness to be exploited in a wider range of systems,
in particular, those systems consisting of agents moving at
high absolute velocities, but low relative velocities. This wider
application is possible due to the fact that stopping regions
defined in terms of relative velocities can be much smaller
than their absolute counterparts. With only minor refinement
in the existing definitions, these relative stopping regions will
now be defined.

To derive relative stopping regions, the reference frame used
in Problem 1 is extended to include a velocity:

Definition 9. A velocity reference frame is a spatial reference
frame that is translationally offset from a parent frame over
time according to a constant reference velocity. Unless other-
wise noted, the phrase “velocity frame” will refer to velocity
reference frame.

Rather than restricting agents to a fixed, global reference
frame, they are allowed to choose among any velocity frame.
Naturally, this induces a dependence of the coordination
requirement on the reference velocity. Lemma 7 extends
Theorem 2 to account for this:

Lemma 7. A multi-agent system is guaranteed to be able
to remain collision free without coordination if there exists
a velocity frame such that Theorem 2 holds.

Proof: Suppose there exists a velocity frame F such
that Theorem 2 holds. Let F be the shared reference frame.
Theorem 2 can now be applied.

Relative stopping regions can now be defined:

Definition 10. For a given agent state A(s), reference velocity
vr, and set of followable paths P , the relative stopping region
RSR(A(s), vr, P ) is the ASR computed for the velocity frame
with reference velocity vr (Figure 4).

The relative stopping path (RSP) is defined similarly. Note
that there’s no incompatibility between the results derived in
this paper and the notion of relative stopping versus absolute
stopping; the reference frame chosen for any problem is
arbitrary to begin with. Formally including the reference frame
in the definition simply acknowledges that fact.

The next section will discuss future work and possible
applications for these results.

V. FUTURE WORK & APPLICATIONS

As stated before, RSPs and RSRs are especially useful
for high-absolute/low-relative velocity systems, and one very
important class of such systems is the highway (or freeway, or
motorway) system. One formulation for the highway problem
would be to plan motions that minimize RSR intersections by
treating the minimization as a minimum constraint removal
problem (Hauser [16], Erickson and LaValle [9]). Such a

formulation would allow fine-grained control over the degree
of coordination necessary and with whom it must be done.

In this paper, agents are assumed to have no knowledge of
how others move aside from their dynamic capabilities, but this
could be generalized to give all agents access to a set of pre-
defined rules. For instance, right-of-way rules could be defined
that allow the need for coordination to be removed from more
complex interactions because agents following those rules are
guaranteed to have contingency plans. This achieves the same
result as the ASP disjointness condition while allowing more
complex interactions. In fact, the ASP disjointness condition
itself is essentially a pre-defined rule, but one that is derivable
strictly from the physical properties of the system. Such an
extension to incorporate arbitrary rules would tie together the
results of this paper with the “social laws” ideas presented by
Shoham and Tennenholtz [28] and would be an interesting and
valuable avenue of investigation.

It seems also plausible that the applicability of the results
could be expanded even more by extending the stopping region
concept to include holding patterns, which are control trajec-
tories of agents that follow some fixed pattern. Coordination
requirements could then be derived for systems consisting
of airplane-like agents. Additionally, for systems with low
absolute and low relative velocities (such as navigating among
pedestrians), low-energy collisions may be permissible, and
the “stopping” region concept could be amended to define
terminal states of non-zero velocities.

Problem 1 also does not explicitly specify a discrete or
continuous time system. In practice, most systems are discrete
time. It should be straightforward to amend these results to
deal with them explicitly, and the incorporation of system
timing will be vital for any practical application. The work
of Bekris et al. [6] dealt extensively with the general problem
of discrete time steps in multi-agent systems and would serve
as an excellent resource.

VI. CONCLUSIONS

This paper presented a novel result showing that system
dynamics can have a direct impact on both the theoreti-
cal complexity and solution space of multi-agent collision
avoidance problems. The result is based on the fact that a
requirement for agent coordination in a multi-agent system can
fundamentally alter the problem model, and it was shown that
system dynamics alone can add or remove this requirement.
The proof of this assertion is constructive in nature, which
allows the coordination requirement to be quantified, which, to
the best of the author’s knowledge, is also a novel contribution.
An exemplar problem was given to demonstrate the results and
then future work and applications were discussed.
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