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Abstract—There has been a great deal of progress in developing
probabilistically complete methods that move beyond motion
planning to multi-modal problems including various forms of
task planning. This paper presents a general-purpose formula-
tion of a large class of discrete-time planning problems, with
hybrid state and action spaces. The formulation characterizes
conditions on the submanifolds in which solutions lie, leading
to a characterization of robust feasibility that incorporates
dimensionality-reducing constraints. It then connects those condi-
tions to corresponding conditional samplers that are provided as
part of a domain specification. We present domain-independent
sample-based planning algorithms and show that they are both
probabilistically complete and computationally efficient on a set
of challenging benchmark problems.

I. INTRODUCTION

Many important robotic domains of interest require planning
in a very high-dimensional space that includes not just the
robot configuration, but also the “configuration” of the external
world state, including a variety of quantities such as object
poses, reaction states of chemical or biological processes, or
intentions of other agents. There has been a great deal of
progress in developing probabilistically complete sampling-
based methods that move beyond motion planning to multi-
modal problems including various forms of task planning.
These new methods each require a new formulation, definition
of robust feasibility, sampling methods, and search algorithm.
This paper presents a general-purpose formulation of a large
class of discrete-time planning problems, with continuous or
hybrid state and action spaces.

The primary theoretical contribution of this paper is a
formulation of factored transition systems that exposes the
topology of their solution space, particularly in the presence of
dimensionality-reducing constraints. The key insight is that, in
some cases, the intersection of solution constraint manifolds is
itself a manifold that can be identified using only the individual
constraint manifolds. By understanding the topology of the
solution space, we can define a robust feasibility property that
characterizes a large class of problems for which sampling-
based planning methods can be successful.

The primary algorithmic contribution is the construction
of two sample-based planning algorithms that exploit the
factored, compositional structure of the solution space to
draw samples from a space in which solutions have positive
measure. These algorithms search in a combined space that in-

Fig. 1. Left: experiment 1. Right: experiment 3.

cludes the discrete structure (which high-level operations, such
as “pick” or “place” happen in which order) and parameters
(particular continuous parameters of the actions) of a solution.
Theoretically, these algorithms are probabilistically complete
when given sufficient samplers. Practically, they can solve
complex instances of task-and-motion planning problems.

II. RELATED WORK

Planning problems in which the goal is not just to move
the robot without collision but also to operate on the objects
in the world have been addressed from the earliest days of
motion planning to this day, for example [28, 27, 40, 2, 1, 33,
35, 36, 38, 17, 3, 23, 15, 10]. In recent years, there have been
a number of approaches to integrating discrete task planning
and continuous motion planning [5, 32, 21, 12, 13, 31, 7, 37],
aimed at increasing the capabilities of autonomous robots.

Hauser et al. [18] introduced a framework and algorithm for
probabilistically complete multi-modal motion planning. Vega-
Brown et al. [39] extended these ideas to optimal planning with
differential constraints.

Lagriffoul et al. [25, 26] interleave the search for a discrete
action sequence and the geometric parameters and focus on
limiting the amount of geometric backtracking. They generate
a set of approximate linear constraints imposed by a plan
skeleton under consideration, e.g., from grasp and placement
choices, and use linear programming to compute a valid
assignment or determine that one does not exist. Lozano-
Pérez and Kaelbling [29] take a similar approach but lever-
age constraint satisfaction problem (CSP) solvers to identify



transition parameter x and likewise xt is x0. Solutions using
this skeleton must satisfy a single conjunctive clause of all
plan-wide constraints C~a = C0 \ Ca1 \ ... \ Cak \ C�.

Given a plan skeleton, finding a set of valid parameter values
is a classical constraint satisfaction problem. The joint set
of constraints forms a constraint network, a bipartite graph
between constraints and parameters [8, 26]. An edge between
a constraint node Cat

b and state or control node xt�1
v , utv , or xtv

is defined if and only if v 2 P at
b . Figure 2 displays a general

constraint network. Many transition systems in practice will
have constraint networks with many fewer edges because each
P at
b contains only a small number of parameters.
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Fig. 2. A constraint network for a generic plan skeleton ~a = ( a1 ; :::; ak ) .

IV. EXAMPLE DOMAINS

We are interested in a general algorithmic framework that
can be applied in many domains. A domain D = fP, ...g
is loosely defined as a set of problems that share the same
constraint forms and variable forms. Consider the following
two domains and their representation as factored transition sys-
tems. We begin with a motion planning example to illustrate
the approach, and then describe a pick-and-place problem.

A. Motion Planning

Many motion planning problems may be defined by a
bounded configuration space Q � Rd and collision-free con-
figuration space Qfree � Q. A motion between configurations
q and q0 is valid if the straight-line trajectory between them is
collision free: CFree = f(q, q0) 2 Q2 j 8t 2 [0, 1]. tx+ (1�
t)x0 2 Qfreeg. Problems are given by an initial configuration
q0 2 Q and a goal configuration q� 2 Q.

Motion planning can be modeled as a transition system
with state-space X̄ = Q and action-space Ū = ;. The
transition relation has a single clause fCStepg. Clause CStep =
fh(q, q0),CFreeig is a single collision-free constraint. The
transition relation does not exhibit any useful factoring. The
initial clause is C0 = fx̄ = q0g and the goal clause is
C� = fx̄ = q�g. Figure 3 displays the constraint network
for a plan skeleton of length k. Because the transition relation
has a single clause, all solutions have this form. Dark gray
parameters, such as the initial and final configurations, are
constrained by constant equality. Free parameters are yellow.

Fig. 3. Motion planning plan skeleton of length k.

B. Pick-and-Place Planning

A pick-and-place domain is defined by a single robot with
configuration space Q � Rd, a finite set of moveable objects
O, a set of stable placement poses S tableo � SE(3) for
each object o 2 O, and a set of Graspo � SE(3) relative
grasp poses for each object o 2 O. The robot has a single
manipulator that is able to rigidly attach itself to a single
object at a time. The robot can execute trajectories τ specified
by a sequence of configurations that respect joint limits and
avoid fixed obstacles. We will assume that each trajectory also
encodes the grasp of the object that the robot may be holding.

This domain can be modeled as a transition system with
state-space X̄ = Q�SE(3)jOj�(fNoneg[O). States are x̄ =
(q, p1, ..., pjOj, h). Let h 2 O indicate that the robot is holding
object h and h = None indicate that the robot’s gripper is
empty. When h = o, the pose po of object o is relative to
the end-effector. Otherwise, po is relative to the environment.
Controls are trajectories τ . The transition relation has 1+3jOj
clauses fCMoveg [ fCoMoveH , CoPick, CoPlace j o 2 Og because
pick, move-while-holding, and place depend on o.

� CMove = fh(q, τ, q0),Motioni, h = None, h0 = Noneg[
fpo′ = p0o′ , h(τ, po′), CFreeo′i j o0 2 Og

� CoMoveH = fh = o, h0 = o, h(q, τ, q0, po),MotionHiig [
fpo′ = p0o′ , h(τ, po′), CFreeo′i j o0 2 O, o 6= o0g

� CoPick = fh(po), Stableoi, h(p0o), Graspoi, q = q0, h =
None, h0 = o, h(p0o, po, q),Kinoig [ fpo′ = p0o′ j o0 2
O, o 6= o0g

� CoP lace = fh(po), Graspoi, h(p0o), Stableoi, q = q0, h =
o, h0 = None, h(po, p0o, q),Kinoig [ fpo′ = p0o′ j o0 2
O, o 6= o0g

Motion is the set of legal start configurations, trajectories,
and end configurations. MotionHo is the set of legal start
configurations, trajectories, end configurations, and grasps
when holding object o. CFreeo is the set of collision-free
poses and trajectories with respect to object o. Kino is the set
of kinematic solutions involving object o for a grasp, pose,
and configuration.

Consider a pick-and-place problem with two movable ob-
jects A,B: initial state x̄0 = (q0, p0

A, p
0
B ,None) is fully spec-

ified using equality constraints and X̄� is given as constraints
fh(pA) 2 Regioni, q = q�g where Region � S tableA is a
region of poses. Figure 4 displays the constraint network for
a plan skeleton that manipulates A and moves the robot to q�.
Thick edges indicate pairwise equality constraints. Light gray
parameters are transitively fixed by pairwise equality. Despite
having 29 total parameters, only 7 are free parameters. This
highlights the strong impact of equality constraints on the
dimensionality of the plan parameter space.
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Fig. 4. Pick-and-place constraint network.

V. SAMPLE-BASED PLANNING

Constraints involving continuous variables are generally un-
countably infinite sets, which are often difficult to characterize
and reason with explicitly. Instead, each constraint can be
described using a blackbox, implicit test. A test for constraint
C = hP,Ri is a boolean-valued function fC : Z̄P ! f0, 1g
where fC(z̄P ) = [z̄P 2 R]. Implicit representations are
used in sample-based motion planning, where they replace
explicit representations of complicated robot and environment
geometries with collision-checking procedures.

In order to use tests, we need to produce potentially satis-
fying values for z̄P = (zp1 , ..., zpk ) by sampling Zp1 , ...,Zpk .
Thus we still require an explicit representation for X1, ...,Xm
and U1, ...,Un; however, these are typically less difficult
to characterize. We will assume X1, ...,Xm, U1, ...,Un are
each subsets of a bounded manifold. This strategy of sam-
pling variable domains and testing constraints is the basis
of sample-based planning [22]. These methods draw values
from X1, ...,Xm and U1, ...,Un using deterministic or random
samplers for each space and test which combinations of
sampled values satisfy required constraints.

Sample-based techniques are usually not complete over
all problem instances. First, they cannot generally identify
and terminate on infeasible instances. Second, they are often
unable to find solutions to instances that require identifying
values from a set that has very small or even zero measure in
the space from which samples are being drawn (this is referred
to as the “narrow passage” problem in motion planning).
Thus, sample-based algorithms are typically only complete
over robustly feasibly problems. A problem is robustly feasible
if there exists a plan skeleton ~a such that µ(

⋂
C2C~a

Ĉ) > 0
where µ is a product measure on the plan-parameter space Z̄ .

A. Dimensionality-reducing constraints

Some domains involve constraints that only admit a set
of values on a lower dimensional subset of its parameter
space. A dimensionality-reducing constraint C is one in which
µ(Ĉ) = 0 for all problems in the domain. Consider the S table
constraint. The set of satisfying values lies on a 3-dimensional
manifold. By our current definition, all plans involving this
constraint are not robustly feasible. When a problem involves
dimensionality-reducing constraints, we have no choice but
to sample at their intersection. This, in general, requires an

explicit characterization of their intersection, which we may
not have. Moreover, the number of dimensionality-reducing
constraint combinations can be unbounded. However, for some
domains, we can produce this intersection automatically using
explicit characterizations for only a few spaces.

Fig. 5. Intersection of two dimensionality-reducing constraints.

We motivate these ideas with an example. Consider a plan
skeleton ~a with parameters (x, y) 2 Z̄ = [�2,+2]2 and
constraints C~a = fC1, C2, C3g where C1 = h(y), f�1, 0, 1gi,
C2 = h(x, y), f(x, y) j x+ y = 0gi, and C3 = h(x), fx j x �
0gi. The set of solutions Ĉ1 \ Ĉ2 \ Ĉ3 = f(1,�1), (0, 0)g
is 0-dimensional while the parameter space is 2-dimensional.
This is because C1 and C2 are both dimensionality-reducing
constraints. A uniform sampling strategy where X,Y �
Uniform(�2,+2) has zero probability of producing a solution.
To solve this problem using a sampling-based approach, we
must sample from Ĉ1\ Ĉ2. Suppose we are unable to analyti-
cally compute Ĉ1\Ĉ2, but we do have explicit representations
of C1 and C2 independently. In particular, suppose we know
C2 conditioned on values of y, C2(y) = h(x), f�ygi. Now, we
can characterize Ĉ1 \ Ĉ2 = f(x, y) j y 2 R1, x 2 R2(y)g =
f(1,�1), (0, 0), (�1, 1)g. With respect to a counting measure
on this discrete space, Ĉ1 \ Ĉ2 \ Ĉ3 has positive measure.
This not only gives a representation for the intersection but
also suggests the following way to sample the intersection:
Y � Uniform(f�1, 0,+1g), X = �Y , and reject (X,Y )
that does not satisfy C3. This strategy is not effective for all
combinations of dimensionality-reducing constraints. Suppose
that instead C1 = h(x, y), f(x, y) j x� y = 0gi. Because both
constraints involve x and y, we are unable to condition on the
value of one parameter to sample the other.

B. Intersection of Manifolds

In this section, we develop the topological tools to gener-
alize the previous example. We start by defining conditional
constraints, a binary partition of P for a constraint hP,Ri.
Definition 1. A conditional constraint hI,O,Ri is given by a
set of input parameters I , a set of output parameters O, and
a relation R defined on I [O where I \O = ;.

In our analysis, we will assume all constraints are constraint
manifolds. A constraint manifold C = hP,Mi is a constraint
where the relation is a manifold M defined by a finite set
of charts. We will relate constraint manifolds back to con-
straints involving arbitrary relations in the subsequent section.
The following lemma indicates that all conditional constraint
manifolds are also manifolds when parameterized with values



for their input parameters. We give all proofs in supplemen-
tary material available here: http://web.mit.edu/caelan/www/
publications/rss2017.pdf. Let projP (Z̄) = fZ̄P j z̄ 2 Z̄g be a
set-theoretic projection of Z̄ onto parameters P .

Lemma 1. For any conditional constraint hI,O,Mi where M
is a d-dimensional manifold and for all x 2 projI(M), the
set proj�1

I (x) = fz̄ 2M j z̄I = xg is a (d�dim projI(M))-
dimensional manifold.

Let S =
⋂n
i=1 M̂i be the intersection of constraint man-

ifolds M = fhP1,M1, i, ..., hPn,Mnig. S � Z̄ is defined
on parameters Θ =

⋃n
i=1 Pi. We now present the main

theorem which gives a sufficient condition for when S is a
manifold. This theorem is useful because it identifies when
the intersection of several possibly dimensionality-reducing
constraints is a space that we can easily characterize.

Theorem 1. S is a manifold of dimension∑n
i=1

(
dimMi � dim projIi

(Mi)
)

if there exists an
ordering and conditioning of M into constraint manifolds
(hI1, O1,M1i, ..., hIn, On,Mni) such that

⋃n
i=1 Oi = Θ and

8i 2 f1, ..., ng:
1) 8j 2 f1, ..., ng n fig. Oi \Oj = ; ,
2) Ii �

⋃i�1
j=1 Oj

3) dim projIi

(⋂i
j=1 Mj

)
= dim projIi

(⋂i�1
j=1 Mj

)

We will call S a sample-space when theorem 1 holds.
From condition 1, each parameter must be the output of
exactly one conditional constraint manifold. From condition
2, each input parameter must be an output parameter for some
conditional constraint manifold earlier in the sequence. And
from condition 3, the input parameter space projIi

(Mi) must
not reduce the dimensionality of the space. A sufficient and
more direct criterion for condition 3 is that the input parameter
space has full dimensionality.

Lemma 2. If dim projIi
(Mi) = dim Z̄Ii , then

dim projIi

(⋂i
j=1 Mj

)
= dim projIi

(⋂i�1
j=1 Mj

)

Theorem 1 can be understood graphically using sampling
networks. A sampling network is an acyclic orientation of
a constraint network defined on constraint manifolds M in
which each parameter node has exactly one incoming edge.
Directed edges go from input parameters to constraints or
constraints to output parameters. Each parameter is the output
of exactly one constraint. Additionally, the graph is acyclic.

C. Robustness

When S is a sample-space, we can define a measure µS on
it. Let µS be the uniform measure on the Euclidean codomain
of S. Now we can provide a more general definition of robust
feasibility. We will define robustness properties with respect to
a set of constraint manifoldsM. This will allow us to analyze
the set of solutions in a lower dimensional space where it may
have nonzero measure.

Definition 2. A set of constraints C is robustly sat-
isfiable with respect to M if for some subset of

fhP1,M1, i, ..., hPn,Mnig � M, their intersection S =⋂n
i=1 M̂i is a sample-space and µS(S \⋂

C2C Ĉ) > 0.

Definition 3. A factored transition problem P is robustly
feasible with respect to M if there exists a plan skeleton ~a
such that C~a is robustly satisfiable with respect to M.

We still need to identify an appropriate set of constraint
manifoldsM for a domain. These are spaces within a domain
for which we have an explicit representation. In particular,
useful constraint manifolds are those that not only contain
the low-dimensional intersection of one or more constraints
but also have equivalent dimensionality. Thus, constraint
manifolds can be thought of as a known, true space that
a constraint resides in. More formally stated, a constraint
manifold hP,Mi is useful for a set of constraints fC1, ..., Ckg
when

⋂k
i=1 Ĉi �M and for all other manifolds M 0 such that⋂k

i=1 Ĉi �M 0, dimM � dimM 0.
Motion planning does not involve any dimensionality-

reducing constraints. Thus, the configuration space itself is
the only appropriate constraint manifold M = fh(q),Qig.
In pick-and-place problems, Stable , Region , Grasp, Kin ,
Motion , and MotionH are all individually dimensionality-
reducing constraints. Fortunately, we generally understand
explicit representations of these sets barring collisions with
fixed obstacles. In the subsequent section, we will show that
these constraint manifolds are of sufficient dimension for many
problems to be robustly feasible.

D. Conditional Samplers
Now that we have identified spaces that arise from

dimensionality-reducing constraints, we can design samplers
to draw values from these spaces. Our treatment of samplers
will mirror the treatment of conditional constraints.

Definition 4. A conditional sampler ψ is a function from a
set of input values z̄I for input parameters I to a sampler.
The sampler generates a sequence of output values ψ(z̄I) for
output parameters O using SAMPLE(ψ(z̄I)).

We frequently design conditional samplers to intentionally
draw values from conditional constraints. A useful conditional
sampler for a kinematic constraint h(g, q, p),Kini has input
parameters I = (g, p) and output parameters O = (q). Condi-
tional samplers can directly sample conditional constraints by
performing rejection sampling on the conditional constraint
manifold. For Kin , SAMPLE performs inverse kinematics,
producing configurations q that have end-effector transform
g�1p. For a 7 degree-of-freedom manipulator in SE(3), this
would sample from a 1-dimensional manifold.

A conditional sampler must generally produce values cov-
ering the constraint to allow completeness across a domain. In
motion planning, a traditional sampler is dense with respect
a topological space Z if the topological closure of its output
sequence is Z. We extend this idea to conditional samplers.

Definition 5. A conditional sampler ψ is dense with respect
to a conditional constraint hI,O,Ri if 8z̄I 2 projI(R), ψ(zI)
is dense in projO(proj�1

I (z̄I)).

http://web.mit.edu/caelan/www/publications/rss2017.pdf
http://web.mit.edu/caelan/www/publications/rss2017.pdf


the discretized problem. This can be implemented using any
sound and complete search algorithm such as breadth-first
search (BFS). Artificial intelligence planning algorithms are
much more efficient than classical graph search algorithms for
high-dimensional, factored problems. Using generic heuristics,
they can frequently avoid exploring most of the discrete state-
space. Therefore, our implementation automatically compiles
to Planning Domain Definition Language (PDDL) [30] in
order to use the efficient FastDownward planning system [19].

SOLVE-DISCRETE(〈C0 ; C∗; {C1 ; :::; C� }〉, samples | SEARCH):
1 initial = INSTANCES(C0 , samples); goal = INSTANCES(C∗, samples)
2 transitions = {INSTANCES(C, samples) for C in {C1 ; :::; C� }}
3 return SEARCH(initial , goal , transitions)

PROCESS(queue, samples , CALL, blocked , k):
1 processed = ∅
2 while len(queue) 6= 0 and len(processed) < k :
3  (inps) = POP(queue)
4 samples += CALL( (inps)); processed += { (inps)}
5 for  ′(inps′) in reduce(INSTANCES( ′, samples) for  ′ in 	 )
6 if  ′(inps′) not in (queue + processed + blocked):
7 PUSH(queue,  ′(inps′))
8 return processed

Second, PROCESS iteratively calls sampler instances, con-
ditional samplers Ψ conditioned on particular values. PRO-
CESS’s inputs are a queue of samplers, a set of samples ,
and three additional parameters that are used differently by
INCREMENTAL and FOCUSED. CALL is a procedure that takes
as input a sampler instance and returns a set of values, blocked
is a set of samplers which are not to be processed, and
k is the maximum number of iterations. On each iteration,
PROCESS pops a sampler instance ψ(inps) off of queue , adds
the result of CALL to samples , and adds ψ(inps) to processed ,
a set of processed samplers. New sampler instances ψ0(inps 0)
resulting from the produced values are added to queue . After
k iterations or queue is empty, PROCESS returns processed .

A. Incremental Algorithm
INCREMENTAL(P | 	 , SEARCH):
1 samples = GET-SAMPLES(P)
2 queue = reduce(INSTANCES( , samples) for  in 	 )
3 while True:
4 processed = PROCESS(queue, samples , ∅ | SAMPLE, len(queue))
5 plan = SOLVE-DISCRETE(P , samples , SEARCH)
6 if plan 6= None: return plan
7 PUSH(queue, processed)

The INCREMENTAL algorithm alternates between generating
samples and checking whether the current set of samples
admits a solution. It can be seen as a generalization of the
probabilistic roadmap (PRM) [22] for motion planning and the
FFRob algorithm for task and motion planning [16]. INCRE-
MENTAL maintains a queue of samplers. On each iteration,
INCREMENTAL calls the PROCESS subroutine to sample at
most len(queue) samplers using the function SAMPLE. It calls
SOLVE-DISCRETE to attempt to find a plan using the current
set of samples . If SOLVE-DISCRETE is successful, plan is re-
turned. Otherwise, INCREMENTAL adds the processed sampler
instances back to queue to be used again on later iterations.

Theorem 2. INCREMENTAL is probabilistically complete for

a domain given a sufficient set of conditional samplers.

Because INCREMENTAL creates sampler instances exhaus-
tively, it will produce many unnecessary samples.

B. Focused Algorithm

The FOCUSED algorithm uses lazy samples as placeholders
for actual concrete sample values. Lazy samples are similar
in spirit to symbolic references [34]. The lazy samples are
optimistically assumed to satisfy constraints with concrete
samples and other lazy samples. This allows SOLVE-DISCRETE
to reason about plan skeletons without some concrete param-
eters. After finding a plan, FOCUSED calls samplers that can
produce values for the lazy samples used. This algorithm is
related to a lazy PRM [4, 9], which defers collision checks
until a path is found. However, FOCUSED defers generation of
entire samples until an optimistic plan is found.

LAZY-CALL( (inps)):
1 return [LAZYSAMPLE( (inps), out) for out in OUTPUTS( )]

On each iteration, the FOCUSED algorithm creates a new
queue and calls PROCESS to produce mixed samples . It
passes the procedure LAZY-CALL rather than SAMPLE in to
PROCESS. For each output out of ψ, LAZY-CALL creates a
unique object for the combination of ψ, inps , and out . The
inputs inp may be lazy samples themselves. In order to avoid
producing an infinite number of lazy samples, out becomes
shared across sampler inputs after a fixed depth.

RETRACE(sample):
1 if not IS-LAZY(sample): return ∅
2  (inps) = GET-SAMPLER(sample)
3 return reduce(RETRACE(inp) for inp in inps) + { (inps)}

FOCUSED(P | 	 , SEARCH):
1 samples = GET-SAMPLES(P); new samples = ∅; called = ∅
2 while True:
3 mixed samples = COPY(samples)
4 queue = reduce(INSTANCES( , mixed samples) for  in 	 )
5 PROCESS(queue, mixed samples , LAZY-CALL, called, ∞)
6 plan = SOLVE-DISCRETE(P , mixed samples | SEARCH)
7 if plan = None:
8 samples += new samples; new samples = ∅; called = ∅
9 continue

10 if GET-SAMPLES(plan) ⊆ samples: return plan
11 for  (inps) in reduce(RETRACE(s) for s in GET-SAMPLES(plan)):
12 if inps ⊆ samples:
13 new samples += SAMPLE( , inps); called += { (inps)}

SOLVE-DISCRETE performs its discrete search using
mixed samples , a mixed set of samples and lazy samples.
If SOLVE-DISCRETE returns a plan , FOCUSED first checks
whether it does not use any lazy samples, in which case it
returns plan . Otherwise, it calls RETRACE to extract the set
of sampler instances used to produce the lazy samples. For
each sampler instance ψ(inps) without lazy sample inputs,
FOCUSED draws a sample and adds it to new samples. To
ensure all relevant samplers are called, each sampler instance
is added to called after it is processed. This prevents these sam-
pler instances from constructing lazy samples within PROCESS.
Additionally, samples are added to new samples before they
are moved to samples to limit the growth in sampler instances.



http://dl.acm.org/citation.cfm?id=112736
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.1060
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.1060
http://ieeexplore.ieee.org/document/844107/
http://ieeexplore.ieee.org/document/844107/
http://journals.sagepub.com/doi/abs/10.1177/0278364908097884
http://journals.sagepub.com/doi/abs/10.1177/0278364908097884
http://www.roboticsproceedings.org/rss12/p02.pdf
http://www.ics.uci.edu/~csp/r17-survey.pdf
http://lis.csail.mit.edu/pubs/deshpande-WAFR16.pdf
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/viewPaper/754
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/viewPaper/754
https://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper08-final.pdf
https://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper08-final.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-16595-0_11
https://link.springer.com/chapter/10.1007%2F978-3-319-16595-0_11
http://lis.csail.mit.edu/pubs/garrett-iros15.pdf
http://journals.sagepub.com/doi/abs/10.1177/0278364910386985
http://www.jair.org/papers/paper1705.html
http://www.jair.org/papers/paper1705.html
http://dl.acm.org/citation.cfm?id=1622404
http://dl.acm.org/citation.cfm?id=1622404

