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Abstract—A novel method is presented for efficiently testing
the stability of an object under contact that accommodates
empirically determined sets of admissible forces at contact points.
These admissible force volumes may exhibit a wide variety
of geometries, including anisotropy, adhesion, and even non-
convexity. The method discretizes the contact region into patches,
performs a convex decomposition of a polyhedral approximation
to each admissible force volume, and then formulates the prob-
lem as a mixed integer linear program. The model can also
accommodate articulated robot hands with joint torques, joint
frictions, and spring preloads. Predictions of our method are
evaluated experimentally in object lifting tasks using a gripper
that exploits microspines to exert strongly anisotropic forces.

I. INTRODUCTION

Contact force modeling is an essential component of grasp
planning, physics simulation, end effector design, and biome-
chanics. The general purpose of such models is to simplify
the countless microscopic interactions of a region of contact
into a finite approximate representation that can be used
for macroscopic predictions. Simple, mathematically conve-
nient models like Coulomb friction are commonly used, but
they fail to capture many phenomena including deformation,
anisotropic friction, and adhesion, which are useful to exploit
in engineering (e.g., novel surfaces [1, 11, 17] and microma-
nipulation [5]) as well as in understanding biological systems
(e.g., the hairs on insect feet, Van der Waals forces on gecko
feet, and claws on squirrels). For these complex interactions,
an alternative approach is to use empirical data to capture the
range of applicable forces during contact without slipping or
separating [13, 14]. Although such data is useful for analysis
and design, few methods use contact force data to make
computationally efficient predictions.

This paper presents a computational method for testing
static equilibrium of an object under empirical contact models.
Empirical material-material contact modeling is conducted
with a simple force measurement procedure that captures a
force limit surface describing the maximum forces exhibited
by a small contact unit in any given direction. Then, for
an object touched by a novel assembly of contact units, its
equilibrium status under an external wrench is predicted using
a constrained optimization procedure. Unlike traditional force
limit surfaces which bound conic and/or convex regions, this
paper interested in supporting calculations with non-convex

Fig. 1. The microspine unit used in this work (left) uses spring-loaded needles
to yield high effective friction on rough surfaces. Our method uses empirical
measurements of its applicable contact forces to predict the maximum loading
characteristics of a hypothetical four-fingered gripper (right).

regions. To handle non-convex admissible force volumes, a
mixed-integer linear programming (MILP) approach is pre-
sented that performs a branch-and-bound (BnB) using a hierar-
chical convex decomposition. The method is globally optimal
and significantly faster than off-the-shelf MILP solvers. The
basic method is also extended to account for constraints in
articulated robots, such as joint frictions, torques, and springs.

Experiments are conducted on a microspine unit that uses
spring-loaded needles oriented at an angle to achieve high
lateral loads on rocky surfaces [1, 21]. When pressed against a
rough surface, several needles engage with asperities (indenta-
tions) on the surface leading to very large effective friction and
slightly adhesive properties. We apply our method to design
microspine grippers that handle objects with a given geometry
and load. Our method is applied to microspine grasp analysis,
in which the goal is to evaluate the lifting capability of a
gripper at a given contact and finger configuration (Fig. 1). We
compute wrench spaces for a variety of gripper configurations,
and experiments show that even on problems of relatively
modest size, the novel algorithm outperforms standard MILP
solvers by one or more orders of magnitude.

II. RELATED WORK

The standard Coulomb friction point contact model is
mathematically convenient, and allows for adequate and fast
predictions about contact behavior between rigid objects such
as force closure, optimal forces to resist an external wrench,
static equilibrium, and dynamic simulation [2, 3, 4, 6, 18, 19].



Fig. 2. Non-convex admissible force volumes (right) can arise out of micro-
interactions. Consider a peg-in-hole setup where the peg makes frictional
contact with different sides of the hole depending on the external loading
condition. Friction leads to apparent adhesion when shear loads are applied.

Mathematically, Coulomb friction may be expressed as a
cone constraint, which leads to linear constraints in 2D or
second-order cone constraints in 3D. A variety of conic ex-
tensions to the Coulomb model have been proposed, including
a soft-finger approximation, polyhedral approximations, and
anisotropic friction with elliptical constraints [2, 3].

Limit surfaces were introduced as a description of forces
exerted on objects during planar sliding [9] and frictional
contact [15] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
20]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [12] and
microspines [1]. More related to our work is Hawkes et al.
[12], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM WITH EMPIRICAL FORCE MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly under
the estimated external wrench.

We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model

A contact region C between bodies OA and OB is modeled
as a rigid surface with a normal direction n defined at each
point x ∈ C. To handle anisotropy of friction forces, two
orthogonal vector fields u and v are defined over C, which
defines an orthogonal frame R = (u; v; n) at all points x ∈
C. The region is discretized into a finite number of contact
patches p1; : : : ; pk. Each patch i = 1; : : : ; k is centered at the
point xi and is associated with frame Ri.

At each contact patch, an admissible force volume Fi ⊆ R3

describes the set of valid forces fi applied to object OB at
each point xi. This volume is defined as the interior of the
force limit surface fmax(d) : S2 → [0;∞) which describes

Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
Axes are labeled as follows: x (red) the shear direction, y (green) the lateral
tangent direction, and z (blue) the normal direction pointing into the unit.
(Figure best viewed in color)

the maximum force in every direction in 3D. In other words
Fi = {f ∈ R3 | ‖f‖ ≤ fmax(f̂)} where f̂ = f=‖f‖ is the
unit vector in the direction of f . The world-oriented admissible
force volume is a rotation of a local limit surface rotated by
the frame Ri.

We measure a local limit surface described with respect to
a canonical 3D reference frame aligned with R = (u; v; n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, fmax(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
fmax(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular micro-contact (Fig. 2), which can cause
them to exhibit exotic adhesive behavior such as the mi-
crospine units presented below (Fig. 3). There may also be
non-convex behavior in the compressive limits of buckling
internal structures, such as corrugated cardboard which are
stiffer in directions not parallel to the normal.

B. Equilibrium Testing

Equilibrium testing asks whether an external wrench wext ≡
(fext; text) ∈ R6 applied to OB can be resisted by forces at



the contact points. Assume text is the external torque about the
origin. Often, the external wrench is due only to gravity, the
center of mass of OB is taken to be the origin, and hence
fext = mg and text = 0. Three conditions must be met
for equilibrium to hold: force balance, torque balance, and
admissibility of contact forces. In other words, it seeks an
solution to the following feasibility problem:

Find f1; : : : ; fk such that
kX
i=1

fi + fext = 0

kX
i=1

xi × fi + text = 0

fi ∈ Fi for i = 1; : : : ; k

(1)

For notational convenience, define the wrench matrix

W =

�
I I · · · I

[x1] [x2] · · · [xk]

�
(2)

where [v] denotes the skew-symmetric cross product matrix,
and define f = (f1; : : : ; fk) as the vector of contact forces.
Problem (1) can then be expressed more compactly as

Find f such that
W f + wext = 0

fi ∈ Fi for i = 1; : : : ; k:

(3)

To solve this problem efficiently and exactly when all of the
Fi are convex polyhedral regions, a linear program (LP) can
be solved. This LP has 3n variables and 6 + nk constraints
where k is the number of faces bounding each Fi. However,
alternative techniques are needed to solve the case of non-
convex regions.

C. Joint torques

To apply this method to an articulated robot, we enforce
static equilibrium of forces and joint torques. This functional-
ity is useful for determining whether equilibrium holds in the
presence of passive joints or torque limits.

Let OA be the robot at configuration q and OB be the object.
Given the effects of gravity and a set of forces f1; : : : ; fk that
yield static equilibrium with OB , the robot’s joint torques �
must obey the following equilibrium balance equation:

G(q) = � −
kX
i=1

Ji(q)
T fi (4)

where G(q) is the generalized gravity vector and Ji is the
Jacobian of the i’th contact point. Note the introduction of the
negative sign because the forces act on the object, while the
equal and opposite force acts on the robot.

If sufficient torque were always available to the robot to
enact the desired equilibrium balance, the force vector f
could be solved independently from the torques, and torques
calculated from (4). However, in the presence of torque limits,
it may not be possible to enact such torques for a given

solution f , whereas contact force indeterminacy might allow
for valid torques for some other solution f 0.

As a result we incorporate torque limits �min ≤ � ≤ �max
(inequalities taken element-wise) into constraints on f as
follows:

�min ≤ G(q) +

kX
i=1

Ji(q)
T fi ≤ �max: (5)

For fixed q these inequalities are linear in f .

D. Wrench-space limit surface calculation

A useful procedure for design of grasps and fixtures is to
calculate the contact arrangement’s wrench space W . W is
defined as the subset of wrenches wext ∈ R6 that can be
resisted in equilibrium by admissible forces according to (3).
We note that this is not necessarily a convex set. But it is
apparent that for any point w ∈ W , we can say that cw ∈ W
for all c ∈ [0; 1]. In other words, in order to determine W it
suffices to calculate its limit surface @W .

To do so we employ a method to optimize the external
wrench in a given 6D direction such that equilibrium is
maintained. Specifically, given some unit direction ŵ ∈ R6, a
new variable d is introduced into (3). Rather than only finding
the contact force vector, d is maximized subject to the equality
constraint wext = dŵ, i.e., we solve

max
f ;d

d

W f + dŵ = 0

fi ∈ Fi for i = 1; : : : ; k:

(6)

Then, the limit surface can be obtained by sweeping ŵ about
the unit sphere in 6D, S5. In practice, to avoid requiring
a excessive number of points, it can be more effective to
approximate the wrench space by calculating its extents along
different subspaces. Then W can be approximated as the
intersection of the cylindrical extrusion of these extents back
into 6D space.

E. Separation Direction Prediction

In the case that equilibrium does not hold, it may be valuable
to predict which contact patches will separate and how the
object will behave upon separation. Hence, we propose testing
an alternative formulation that uses the maximum dissipation
principle, which posits that frictional forces are determined to
minimize the post-contact derivative of kinetic energy of the
system. This condition seeks

minf
1

2
�q(f)TB�q(f)

NWT �q(f) ≥ 0

fi ∈ Fi for i = 1; : : : ; k

(7)

where �q(f) ∈ R6 is the post-forcing acceleration and angular
acceleration (twist rate) of OB , B is the 6 × 6 mass matrix
of the object, and N is the n × 3n block matrix of normal



directions at each contact pointdiag(nT
1 ; : : : ; nT

k ). We express
•q(f ) as

•q(f ) = B � 1(W f + wext ): (8)

Hence, if all theFi are convex polytopes, then (7) can be
solved exactly as a convex quadratic program.

F. Branch-and-bound equilibrium solver

We are now ready to present our primary contribution,
which is a method for handling non-convex admissible force
volumes in problem (3), with optional constraints (5). Given
that these problems can be solved via a convex program
when given convex admissible force volumes, we proceed by
computing a convex decomposition of each of theFi , and
formulating a mixed integer linear program (MILP). First,
we present the method in the simpler context of equilibrium
testing (3), which asks for the �rst feasible solution.

Suppose each of thek force volumes is decomposed intoc
components,Fi = Fi; 1 [ � � � [ Fi;c where eachFi;j is a convex
polyhedron. With each component given by a set of halfplanes
Fi;j � f f 2 R3 jA i;j f � bi;j g, we formulate a MILP with
ck indicator variableszi;j 2 f 0; 1g as follows:

Find f ; z1;1 : : : zk;c such that

Wf + wext = 0

A i;j f i � bi;j + M (1 � zi;j ) for i = 1 ; : : : ; k and j = 1 ; : : : ; c

zi;j 2 f 0; 1g for all i; j
cX

j =1

zi;j = 1 for all i

(9)
whereM is some large number (e.g., larger than the maximum
radius of any force volume). Each of the indicators, when
1, activates the constraints of the corresponding convex com-
ponent. However, solving this MILP is usually prohibitively
expensive because it is large (more than 10,000 constraints in
many of our test problems) and may require exploring up to
ck integer solutions, which is7:9� 1028 in our largest problem
with c = 4 andk = 48. As a result we use a BnB method, with
a convex bounding volume hierarchy to speed up the search.

The general idea is to maintain for eachFi a tree Ti

of convex volumes whose leaves are the components of the
convex decompositionFi; 1; : : : ; Fi;c . Each parent node stores
the convex hull of all of its children, and hence the root node
of Ti storeshull (Fi ). As a result, we can state the following
facts about a given setT1; : : : ; Tk of trees or sub-trees. Let
S1; : : : ; Sk be the root volumes of each of the given trees, and
de�ne CP(S1; : : : ; Sk ) as the convex program (3) derived by
replacing eachFi with Si . Then:

1) If CP(S1; : : : ; Sk ) has no solution, there is no ad-
missible set of contact forces in any combination of
components amongst the leaves ofT1; : : : ; Tk .

2) If CP(S1; : : : ; Sk ) has a solutionf 1; : : : ; f k such that
f i 2 Fi for all i = 1 ; : : : ; k, then it is a solution to (9).

3) If CP(S1; : : : ; Sk ) has a solutionf 1; : : : ; f k but some
f i =2 Fi for some indexi , then there may or may not be
a solution amongst the leaves ofT1; : : : ; Tk .

The algorithm must branch only in Case 3. In order to
minimize the amount of branching the algorithm is designed
with three heuristics:

� The bounding hierarchy is constructed to minimize the
deviation between a convex volume and the volume of
Fi contained therein.

� In Case 3, only a single treeTi selected for branching.
The indexi and the order in which children ofTi are
tested are determined through heuristics described below.

� The objective function is constructed to prefer solutions
close to the centroids of each of theSi 's.
a) Bounding hierarchy construction:To construct a con-

vex hierarchy we use a bottom up approach. First, let the
convex decomposition of a polyhedral setA be given as
A1; : : : ; Ac. The convex hull of pairs of leaf volumesB i =
hull (A2i � 1 [ A2i ) is constructed, and set as the parent of
A2i � 1 and A2i in the hierarchy. Ifc is odd, then we set
Bdc=2e = Ac. The process is repeated amongst the volumes
B1; : : : ; Bdc=2e until only one volume is reached, namely the
convex hull of A. To minimize the amount of branching, it
is important to choose the parent bounding volumes to be as
close as possible to the union of the children. This increases
the chance of �nding an admissible solution at inner nodes of
the tree (i.e., Case 2 above). Hence, we precompute the trees
with a heuristic ordering ofA1; : : : ; Ac as follows. For each
pair of componentsA i andA j the hull B i;j = hull (A i [ A j )
and its volume measure� (B i;j ) are computed. The difference
� (B i;j ) � � (A i ) � � (A j ) is used as a priority score, with lower
values having higher priority. Once a certain pair(A i ; A j )
is chosen for merging, both components are removed from
consideration and the next best pair is chosen, and so on. This
process is repeated recursively for each stage in the hierarchy.

b) Branch ordering heuristics:When selecting a volume
Ti on which to branch, we pick the one that maximizes the
distance toFi amongst all contact forces for whichf i =2 Fi .
The children are then tested in order of increasing distance to
the solutionf i .

c) Objective function heuristics:To maximize the likeli-
hood ofCP(S1; : : : ; Sk ) �nding a solution that is admissible
(i.e., obeys Case 2 instead of Case 3), the objective function
is designed to prefer forces respectively near the centroids
of the union of the components in the leaves ofT1; : : : ; Tk .
Speci�cally, for each i = 1 ; : : : ; k we �nd the union of
components in the leaves ofTi , and compute its centroidci .
Then, the objective function is de�ned as the L-p norm

g(f ) =
kX

i =1

kf i � ci kp (10)

with p either 1, 2, or 1 . In the case ofp = 2 , the
problem becomes a quadratic program which is a bit more
computationally expensive than an LP, so we typically prefer
p = 1 or p = 1 .

G. Branch-and-bound optimizer

In optimization problems like (7) and calculating the wrench
space of an assembly, the �rst valid solution may not be
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