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Abstract—Humans and animals are capable of learning a new
behavior by observing others perform the skill just once. We
consider the problem of allowing a robot to do the same – learning
from a video of a human, even when there is domain shift in
the perspective, environment, and embodiment between the robot
and the observed human. Prior approaches to this problem have
hand-specified how human and robot actions correspond and
often relied on explicit human pose detection systems. In this
work, we present an approach for one-shot learning from a video
of a human by using human and robot demonstration data from
a variety of previous tasks to build up prior knowledge through
meta-learning. Then, combining this prior knowledge and only a
single video demonstration from a human, the robot can perform
the task that the human demonstrated. We show experiments on
both a PR2 arm and a Sawyer arm, demonstrating that after
meta-learning, the robot can learn to place, push, and pick-and-
place new objects using just one video of a human performing
the manipulation.

I. INTRODUCTION

Demonstrations provide a descriptive medium for speci-
fying robotic tasks. Prior work has shown that robots can
acquire a range of complex skills through demonstration,
such as table tennis [28], lane following [34], pouring wa-
ter [31], drawer opening [38], and multi-stage manipulation
tasks [62]. However, the most effective methods for robot
imitation differ significantly from how humans and animals
might imitate behaviors: while robots typically need to receive
demonstrations in the form of kinesthetic teaching [32, 1] or
teleoperation [8, 35, 62], humans and animals can acquire the
gist of a behavior simply by watching someone else. In fact,
we can adapt to variations in morphology, context, and task
details effortlessly, compensating for whatever domain shift
may be present and recovering a skill that we can use in new
situations [6]. Additionally, we can do this from a very small
number of demonstrations, often only one. How can we endow
robots with the same ability to learn behaviors from raw third
person observations of human demonstrators?

Acquiring skills from raw camera observations presents
two major challenges. First, the difference in appearance and
morphology of the human demonstrator from the robot intro-
duces a systematic domain shift, namely the correspondence
problem [29, 6]. Second, learning from raw visual inputs
typically requires a substantial amount of data, with modern
deep learning vision systems using hundreds of thousands to
millions of images [57, 18]. In this paper, we demonstrate that
we can begin to address both of these challenges through a

Fig. 1. After meta-learning with human and robot demonstration data, the
robot learns to recognize and push a new object from one video of a human.

single approach based on meta-learning. Instead of manually
specifying the correspondence between human and robot,
which can be particularly complex for skills where different
morphologies require different strategies, we propose a data-
driven approach. Our approach can acquire new skills from
only one video of a human. To enable this, it builds a rich prior
over tasks during a meta-training phase, where both human
demonstrations and teleoperated demonstrations are available
for a variety of other, structurally similar tasks. In essence, the
robot learns how to learn from humans using this data. After
the meta-training phase, the robot can acquire new skills by
combining its learned prior knowledge with one video of a
human performing the new skill.

The main contribution of this paper is a system for learning
robotic manipulation skills from a single video of a human by
leveraging large amounts of prior meta-training data, collected
for different tasks. When deployed, the robot can adapt to a
particular task with novel objects using just a single video
of a human performing the task with those objects (e.g., see
Figure 1). The video of the human need not be from the
same perspective as the robot, or even be in the same room.
The robot is trained using videos of humans performing tasks
with various objects along with demonstrations of the robot
performing the same task. Our experiments on two real robotic
platforms demonstrate the ability to learn directly from RGB
videos of humans, and to handle novel objects, novel humans,
and videos of humans in novel scenes. Videos of the results
can be found on the supplementary website.1

1 The video is available at https://sites.google.com/view/daml

https://sites.google.com/view/daml
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II. RELATED WORK

Most imitation learning and learning from demonstration
methods operate at the level of con�guration-space trajecto-
ries [44, 2], which are typically collected using kinesthetic
teaching [32, 1], teleoperation [8, 35, 62], or sensors on the
demonstrator [11, 9, 7, 21]. Instead, can we allow robots
to imitate just by watching the demonstrator perform the
task? We focus on this problem of learning from one video
demonstration of a human performing a task, in combination
with human and robot demonstration data collected on other
tasks. Prior work has proposed to resolve the correspondence
problem by hand, for example, by manually specifying how
human grasp poses correspond to robot grasps [20] or by
manually de�ning how human activities or commands translate
into robot actions [58, 23, 30, 37, 40]. By utilizing demon-
stration data of how humans and robots perform each task,
our approach learns the correspondence between the human
and robot implicitly. Several prior approaches also explicitly
represent the positions of the human's hands [22] or use care-
fully engineered pipelines for visual activity recognition [37].
In contrast to such approaches, which rely on precise hand
detection or a pre-built vision system, our approach is trained
end-to-end, seeking to extract the aspects of the human's
activity that are the most relevant for choosing actions. This
places less demand on the vision system, requiring it only to
implicitly deduce the task and how to accomplish it, rather
than precisely tracking the human's body and nearby objects.

Other prior approaches have sought to solve the problem of
learning from human demonstrations by explicitly determin-
ing the goal or reward underlying the human behavior (e.g.
through inverse reinforcement learning), and then optimizing
the reward through reinforcement learning (RL). For exam-
ple, Rhinehart and Kitani [39] and Tow et al. [53] learn a
model that predicts the outcome of the human's demonstration
from a particular scene. Similarly, other works have learned
a reward function based on human demonstrations [47, 49,
26, 46, 50]. Once the system has learned about the reward
function or desired outcome underlying the given task, the
robot runs some form of reinforcement learning to maximize
the reward or to reach the desired outcome. This optimization
typically requires substantial experience to be collected using
the robot for each individual task. Other approaches assume
a known model and perform trajectory optimization to reach
the inferred goal [27]. Because all of these methods consider
single tasks in isolation, they often require multiple human
demonstrations of the new task (though not all, e.g. [46, 27]).
Our method only requires one demonstration of the new task
setting and, at test time, does not require additional experience
on the robot nor a known model. And, crucially, all of the data
used in our approach is amortized across tasks, such that the
amount of data needed for any given individual task is quite
small. In contrast, these prior reward-learning methods only
handle the single-task setting, where a considerable amount
of data must be collected for an individual task.

Instead of using the previously mentioned approaches, we
use a meta-learning approach [51, 45], which in recent works
has shown the ability to learn from just one demonstra-
tion [15, 10] using prior knowledge built up from many

demonstrations of other tasks. In particular, we extend the
approach of model-agnostic meta-learning [14, 15]. Up until
now, these approaches have not considered the problem of
domain shift between the demonstration used for training and
for testing, e.g. learning from videos of humans.

Handling domain shift is a key aspect of this problem,
with a shift in both the visual scene and the embodiment of
the human/robot, including the degrees of freedom and the
physics. Domain adaptation has received signi�cant interest
within the machine learning community, especially for varying
visual domains [3, 33] and visual shift between simulation and
reality [56, 41]. Many of these techniques aim to �nd a repre-
sentation that is invariant to the domain [12, 16, 54, 41, 25].
Other approaches have sought to map datapoints from one
domain to another [48, 59, 5, 60]. The human imitation
problem may involve developing invariances, for example, to
the background or lighting conditions of the human and robot's
environments. However, the physical correspondence between
human and robot does not call for an invariant representation,
nor a direct mapping between the domains. In many scenarios,
a direct physical correspondence between robot and human
poses might not exist. Instead, the system must implicitly
recognize the goal of the human from the video and determine
the appropriate action.

III. PRELIMINARIES

Our approach builds upon prior work in learning to learn
or meta-learning, in order to learn how to infer a robot
policy from just one human demonstration. In particular, we
will present an extension of the model-agnostic meta-learning
algorithm (MAML) [14] that allows for the ability to handle
domain shift between the provided data (i.e. a human demo)
and the evaluation setting (i.e. the robot's execution), and the
ability to learn effectively without labels (i.e., the human's
actions). In this section, we will overview the general meta-
learning problem and the MAML algorithm.

Meta-learning algorithms optimize for the ability to learn
new tasks quickly and ef�ciently. To do so, they use data
collected across a wide range of meta-training tasks and are
evaluated based on their ability to learn new meta-test tasks.
Meta-learning assumes that the meta-training and meta-test
tasks are drawn from some distributionp(T ). Generally, meta-
learning can be viewed as discovering the structure that exists
between tasks such that, when the model is presented with
a new task from the meta-test set, it can use the known
structure to quickly learn the task. MAML achieves this
by optimizing for a deep network's initial parameter setting
such that one or a few steps of gradient descent on a few
datapoints leads to effective generalization (referred to as few-
shot generalization) [14]. Then, after meta-training, the learned
parameters are �ne-tuned on data from a new task. This meta-
learning process can be formalized as learning a prior over
functions, and the �ne-tuning process as inference under the
learned prior [42, 17].

Concretely, consider a supervised learning problem with a
loss function denoted asL (�; D), where� denotes the model
parameters andD denotes the labeled data. For a few-shot
supervised learning problem, MAML assumes access to a
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small amount of data for a large number of tasks. During
meta-training, a taskT is sampled, along with data from
that task, which is randomly partitioned into two sets,D tr

and Dval. We will assume thatD tr hasK examples. MAML
optimizes for a set of model parameters� such that one or
a few gradient steps onD tr produces good performance on
Dval. Effectively, MAML optimizes for generalization fromK
examples. Thus, using� T to denote the updated parameters,
the MAML objective is the following:

min
�

X

T

L (� � � r � L (�; D tr
T ); Dval

T ) = min
�

X

T

L (� T ; Dval
T ):

where � is a step size that can be set as a hyperparameter
or learned. Moving forward, we will refer to the inner loss
function as theadaptation objectiveand the outer objective
as the meta-objective. Subsequently, at meta-test time,K
examples from a new, held-out taskTtest are presented and
we can run gradient descent starting from� to infer model
parameters for the new task:

� Ttest = � � � r � L (�; D tr
Ttest

):

For convenience, we will use only one inner gradient step in
the equations. However, using multiple inner gradient steps is
straight-forward, and frequently done in practice.

Finn et al. [15] applied the MAML algorithm to one-shot
imitation learning problem, using robot demonstrations col-
lected via teleoperation and a mean-squared error behavioral
cloning objective for the lossL . While this enables learning
from one robot demonstration at meta-test time, it does not
allow the robot to learn from a raw video of a human or
handle domain shift between the demonstration medium and
the robot. Next, we will present our approach for one-shot
imitation learning from raw video under domain shift.

IV. L EARNING FROM HUMANS

In this section, we will present the problem statement
of one-shot imitation learning from humans, introduce our
method, and discuss a key aspect of our approach: a learned
temporal adaptation objective.

A. Problem Overview
The problem of learning from human video can be viewed

as an inference problem, where the goal is to infer the
robot policy parameters� Ti that will accomplish the task
Ti by incorporating prior knowledge with a small amount
of evidence, in the form of one human demonstration. In
order to effectively learn from just one video of a human,
we need a rich prior that encapsulates a visual and physical
understanding of the world, what kinds of outcomes the human
might want to accomplish, and which actions might allow a
robot to bring about that outcome. We could choose to encode
prior knowledge manually, for example by using a pre-de�ned
vision system, a pre-determined set of human objectives, or
a known dynamics model. However, this type of manual
knowledge encoding is task-speci�c and time-consuming, and
does not bene�t from data. We will instead study how we
can learn this prior automatically, using human and robot
demonstration data from a variety of tasks.

Formally, we will de�ne a demonstration from a humandh

to be a sequence of image observationso1; :::; oT , and a robot
demonstrationd r to be a sequence of image observations,
robot states, and robot actions:o1; s1; a1; :::; oT ; sT ; aT . The
robot state includes the robot's body con�guration, such as
joint angles, but does not include object information, which
must be inferred from the image. We do not make any
assumptions about the similarities or differences between the
human and robot observations; they may contain substantial
domain shift, e.g. differences in the appearance of the arms,
background clutter, and camera viewpoint.

Our approach consists of two phases. First, in the meta-
training phase, the goal will be to acquire a prior over policies
using both human and robot demonstration data, that can
then be used to quickly learn to imitate new tasks with only
human demonstrations. For meta-training, we will assume a
distribution over tasksp(T ), a set of tasksfT i g drawn from
p(T ) and, for each task, two small datasets containing several
human and robot demonstrations, respectively:(Dh

Ti
; D r

Ti
).

After the meta-training phase, the learned prior can be used in
the second phase, when the method is provided with a human
demonstration of a new taskT drawn fromp(T ). The robot
must combine its prior with the new human demonstration to
infer policy parameters� T that solve the new task. We will
next discuss our approach in detail.

B. Domain-Adaptive Meta-Learning
We develop a domain-adaptive meta-learning method, which

will allow us to handle the setting of learning from video
demonstrations of humans. While we will extend the MAML
algorithm for this purpose, the key idea of our approach is
applicable to other meta-learning algorithms. Like the MAML
algorithm, we will learn a set of initial parameters, such that
after one or a few steps of gradient descent on just one human
demonstration, the model can effectively perform the new task.
Thus, the dataD tr

T will contain one human demonstration of
task T , and the dataDval

T will contain one or more robot
demonstrations of the same task.

Unfortunately, we cannot use a standard imitation learning
loss for the inner adaptation objective computed usingD tr

T ,
since we do not have access to the human's actions. Even if we
knew the human's actions, they will typically not correspond
directly to the robot's actions. Instead, we propose to meta-
learn an adaptation objective that does not require actions, and
instead operates only on the policy activations. The intuition
behind meta-learning a loss function is that we can acquire
a function that only needs to look at the available inputs
(which do not include the actions), and still produce gradients
that are suitable for updating the policy parameters so that it
can produce effective actions after the gradient update. While
this might seem like an impossible task, it is important to
remember that the meta-training process still supervises the
policy with true robot actions during meta-training. The role
of the adaptation loss therefore may be interpreted as simply
directing the policy parameter update to modify the policy to
pick up on the right visual cues in the scene, so that the meta-
trained action output will produce the right actions. We will
discuss the particular form ofL  in the following section.
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Algorithm 1 Meta-imitation learning from humans

Require: f (Dh
Ti

; D r
Ti

)g: human and robot demonstration data
for a set of tasksfT i g drawn fromp(T )

Require: � , � : inner and outer step size hyperparameters
while training do

Sample taskT � p(T ) f or minibatch of tasksg
Sample video of humandh � D h

T
Compute policy parameters� T = � � � r � L  (�; dh )
Sample robot demod r � D r

T
Update(�;  )  (�;  ) � � r �; L BC(� T ; d r )

end while
Return�;  

Algorithm 2 Learning from human video after meta-learning
Require: meta-learned initial policy parameters�
Require: learned adaptation objectiveL  

Require: one video of human demodh for new taskT
Compute policy parameters� T = � � � r � L  (�; dh )
return � �

During the meta-training phase, we will learn both an ini-
tialization � and the parameters of the adaptation objective
L  . The parameters� and  are optimized for choosing
actions that match the robot demonstrations inDval

T . After
meta-training, the parameters� and  are retained, while the
data is discarded. A human demonstrationdh is provided for
a new taskT (but not a robot demonstration). To infer the
policy parameters for the new task, we use gradient descent
starting from � using the learned lossL  and one human
demonstrationdh : � T = � � � r � L  (�; dh ).

We optimize for task performance during meta-training
using a behavioral cloning objective that maximizes the prob-
ability of the expert actions inDval. In particular, for a policy
parameterized by� that outputs a distribution over actions
� � (�jo; s), the behavioral cloning objective is

L BC(�; d r )= L BC(�; f o1:T ; s1:T ; a1:T g)=
X

t

log � � (at jot ; st )

Putting this together with the inner gradient descent adaptation,
the meta-training objective is the following:

min
�; 

X

T � p(T )

X

d h 2D h
T

X

d r 2D r
T

L BC(� � � r � L  (�; dh ); d r ):

The algorithm for optimizing this meta-objective is summa-
rized in Algorithm 1, whereas the procedure for learning from
humans at meta-test time is shown in Algorithm 2. We will
next discuss the form of the learned loss function,L  , which
is critical for effective learning.

C. Learned Temporal Adaptation Objectives
To learn from a video of a human, we need an adaptation ob-

jective that can effectively capture relevant information in the
video, such as the intention of the human and the task-relevant
objects. While a standard behavior cloning loss is applied to
each time step independently, the learned adaptation objective
must solve a harder task, since it must provide the policy with

Fig. 2. Visualization of the learned adaptation objective, which uses temporal
convolutions to integrate temporal information in the video demonstration.

suitable gradient informationwithoutaccess to the true actions.
As discussed previously, this is still possible, since the policy
is trained to output good actions during meta-training. The
learned loss must simply supply the gradients that are needed
to modify the perceptual components of the policy to attend
to the right objects in the scene, so that the action output
actually performs the right task. However, determining which
behavior is being demonstrated and which objects are relevant
will often require examining multiple frames at the same time
to determine the human's motion. To incorporate this temporal
information, our learned adaptation objective therefore couples
multiple time steps together, operating on policy activations
from multiple time steps.

Since temporal convolutions have been shown to be effec-
tive at processing temporal and sequential data [55], we choose
to adopt a convolutional network to represent the adaptation
objectiveL  , using multiple layers of 1D convolutions over
time. We choose to use temporal convolutions over a more
traditional recurrent neural network like an LSTM, since they
are simpler and usually more parameter ef�cient [55]. See
Figure 2 for a visualization.

Prior work introduced a two-head architecture for one-shot
imitation, with one head used for the pre-update demonstration
and one head used for the post-update policy [15]. The two-
head architecture can be interpreted as a learned linear loss
function operating on the last hidden layer of the policy
network for a particular timestep. The loss and the gradient
are then computed by averaging over all timesteps in the
demonstration. As discussed previously, a single timestep of an
observed video is often not suf�cient for learning from video
demonstrations without actions. Thus, this simple averaging
scheme is not effective at integrating temporal information.
In Section VI, we show that our learned temporal loss can
enable effective learning from demonstrations without actions,
substantially outperforming this single-timestep linear loss.

D. Probabilistic Interpretation
One way to interpret meta-learning with learned adaptation

objectives is by casting it into the framework of probabilistic
graphical models. We can accomplish this by building on a
derivation proposed in prior work [17], which frames MAML
as approximately inferring a posterior over policy parameters
� given the evidenceD tr

T = dh
T (the data for a new taskT )

and a prior over the parameters, given by� . This prior work
shows that a few steps of gradient descent on the likelihood
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