
Sim-to-Real: Learning Agile Locomotion For
Quadruped Robots

Jie Tan1, Tingnan Zhang1, Erwin Coumans1, Atil Iscen1,
Yunfei Bai2, Danijar Hafner1, Steven Bohez3, and Vincent Vanhoucke1

1Google Brain
2X

3Google DeepMind

Abstract—Designing agile locomotion for quadruped robots
often requires extensive expertise and tedious manual tuning.
In this paper, we present a system to automate this process by
leveraging deep reinforcement learning techniques. Our system
can learn quadruped locomotion from scratch using simple
reward signals. In addition, users can provide an open loop
reference to guide the learning process when more control over
the learned gait is needed. The control policies are learned in a
physics simulator and then deployed on real robots. In robotics,
policies trained in simulation often do not transfer to the real
world. We narrow this reality gap by improving the physics
simulator and learning robust policies. We improve the simulation
using system identification, developing an accurate actuator
model and simulating latency. We learn robust controllers by
randomizing the physical environments, adding perturbations
and designing a compact observation space. We evaluate our
system on two agile locomotion gaits: trotting and galloping.
After learning in simulation, a quadruped robot can successfully
perform both gaits in the real world.

I. INTRODUCTION

Designing agile locomotion for quadruped robots is a long-
standing research problem [1]. This is because it is difficult to
control an under-actuated robot performing highly dynamic
motion that involve intricate balance. Classical approaches
often require extensive experience and tedious manual tuning
[2, 3]. Can we automate this process?

Recently, we have seen tremendous progress in deep rein-
forcement learning (deep RL) [4, 5, 6]. These algorithms can
solve locomotion problems from scratch without much human
intervention. However, most of these studies are conducted
in simulation, and a controller learned in simulation often
performs poorly in the real world. This reality gap [7, 8]
is caused by model discrepancies between the simulated and
the real physical system. Many factors, including unmodeled
dynamics, wrong simulation parameters, and numerical errors,
contribute to this gap. Even worse, this gap is greatly amplified
in locomotion tasks. When a robot performs agile motion with
frequent contact changes, the switches of contact situations
break the control space into fragmented pieces. Any small
model discrepancy can be magnified and generate bifurcated
consequences. Overcoming the reality gap is challenging.

An alternative is to learn the task directly on the physical
system. While this has been successfully demonstrated in
robotic grasping [9], it is challenging to apply this method

Fig. 1: The simulated and the real Minitaurs learned to gallop
using deep reinforcement learning.

to locomotion tasks due to the difficulties of automatically
resetting the experiments and continuously collecting data. In
addition, every falling during learning can potentially damage
the robot. Thus for locomotion tasks, learning in simulation is
more appealing because it is faster, cheaper and safer.

In this paper, we present a complete learning system for
agile locomotion, in which control policies are learned in
simulation and deployed on real robots. There are two main
challenges: 1) learning controllable locomotion policies; and
2) transferring the policies to the physical system.

While learning from scratch can lead to better policies than
incorporating human guidance [10], in robotics, having control
of the learned policy sometimes is preferred. Our learning
system provides users a full spectrum of controllability over
the learned policies. The user can choose from letting the
system learn completely by itself to specifying an open-loop
reference gait as human guidance. Our system will keep the
learned gait close to the reference while, at the same time,
maintain balance, increase speed and energy efficiency.

To narrow the reality gap, we perform system identification
to find the correct simulation parameters. Besides, we improve
the fidelity of the physics simulator by adding a faithful
actuator model and latency handling. To further narrow the
gap, we experiment with three approaches to increase the
robustness of the learned controllers: dynamics randomization,

perturbation forces, and compact design of observation space.
We evaluate our system on a quadruped robot with two

locomotion tasks, trotting and galloping, in Section VI. We
show that with deep RL, highly agile locomotion gaits can
emerge automatically. We also demonstrate how users can
easily specify the style of locomotion using our system. When
comparing with the gaits handcrafted by experts, we find
that our learned gaits are more energy efficient at the same
running speed. We demonstrate that with an accurate physics
simulator and robust control policies, we can successfully
deploy policies learned in simulation to the physical system.
The main contributions of this paper are:

1) We propose a complete learning system for agile lo-
comotion. It provides users a full spectrum (from fully
restricted to a user-specified gait to fully learned from
scratch) of controllability over the learned policies.

2) We show that the reality gap can be narrowed by
a variety of approaches and conduct comprehensive
evaluations on their effectiveness.

3) We demonstrate that agile locomotion gaits, such as
trotting and galloping, can be learned automatically and
these gaits can work on robots directly without further
training on the physical system.

II. RELATED WORK

A. Legged Locomotion Control

Optimizing controllers [11] automatically is an appealing
alternative to tedious manual tuning. Popular optimization
methods for locomotion control include black-box [12] and
Bayesian optimization [13]. Bayesian optimization is often
data efficient enough to be applied directly on real robots
[14, 15]. However, it is challenging to scale these methods
to high-dimensional control space. For this reason, feature
engineering and controller architecture design are needed.

On the other hand, recent advances in deep RL have
significantly reduced the requirement of human expertise [6].
We have witnessed intense competitions among deep RL
algorithms in the simulated benchmark environments [16, 17].
In this paper, we choose to use Proximal Policy Optimization
(PPO) [5] because it is a stable on-policy method and can be
easily parallelized [18].

Much research has applied reinforcement learning to loco-
motion tasks [19, 20, 21, 22, 23]. More recently, Gay et al. [24]
learned a neural network that modified a Central Pattern Gen-
erator controller for stable quadruped locomotion. Levine et al.
[25] applied guided policy search to learn bipedal locomotion
in simulation. Peng et al. [26] developed a CACLA-inspired
algorithm to control a simulated dog to navigate complex 1D
terrains. It was further improved using a mixture of actor-critic
experts [27]. Peng et al. [28] learned a hierarchical controller
to direct a 3D biped to walk in a simulated environment. Heess
et al. [29] showed that complex locomotion behaviors, such as
running, jumping and crouching, can be learned directly from
simple reward signals in rich simulated environments. Sharma
and Kitani [30] exploited the cyclic nature of locomotion with

phase-parametric policies. Note that in most of these latest
work, learning and evaluation were exclusively performed in
simulation. It is not clear whether these learned policies can be
safely and successfully deployed on the robots. In this paper,
while we also train in simulation, more importantly, we test
the policies on the real robot and explore different approaches
to narrow the reality gap.

B. Overcoming the Reality Gap

Reality gap is the major obstacle to applying deep RL in
robotics. Neunert et al. [31] analyzed potential causes of the
reality gap, some of which can be solved by system identi-
fication [32]. Li et al. [33] showed that the transferability of
open loop locomotion could be increased if carefully measured
physical parameters were used in simulation. These physical
parameters can also be optimized by matching the robot
behaviors in the simulated and the real world [34, 35]. Bongard
et al. [36] used the actuation-sensation relationship to build
and refine a simulation through continuous self-modeling, and
later used this model to plan forward locomotion. Ha et al.
[37] used Gaussian Processes, a non-parametric model, to
minimize the error between simulation and real physics. Yu
et al. [38] performed online system identification explicitly on
physical parameters, while Peng et al. [39] embedded system
identification implicitly into a recurrent policy. In addition
to system identification, we identify that inaccurate actuator
models and lack of latency modeling are two major causes of
the reality gap. We improve our simulator with new models.

A robust controller is more likely to be transferred to the
real world. Robustness can be improved by injecting noise
[40], perturbing the simulated robot [41], leveraging multiple
simulators [8], using domain randomization [42] and dynamics
randomization [43, 44, 39]. Although not explicitly using
real-world data for training, these methods have been shown
effective to increase the success rate of sim-to-real transfer.

Another way to cross the reality gap is to learn from both
simulation and real-world data. A policy can be pre-trained
in simulation and then fine-tuned on robots [45]. Hanna and
Stone [46] adapted the policy using a learned action space
transformation from simulation to the real world. In visuo-
motor learning, domain adaptation were applied at feature
level [47, 48] or pixel level [49] to transfer the controller.
Bousmalis et al. [49] reduced the real world data requirement
by training a generator network that converts simulated images
to real images. While some of these methods were successfully
demonstrated in robotic grasping, it is challenging to apply
them to locomotion due to the difficulties to continuously and
safely collect enough real world data. Furthermore, we need
to narrow the reality gap of dynamics rather than perception.

III. ROBOT PLATFORM AND PHYSICS SIMULATION

Our robot platform is the Minitaur from Ghost Robotics
(Figure 1 bottom), a quadruped robot with eight direct-drive
actuators [50]. Each leg is controlled by two actuators that
allow it to move in the sagittal plane. The motors can be
actuated through position control or through a Pulse Width

Fig. 2: The customized hardware architecture enables the
Minitaur to perform deep neural network inference.

Modulation (PWM) signal. The Minitaur is equipped with
motor encoders that measure the motor angles and an IMU
that measures the orientation and the angular velocity of its
base. An STM32 ARM microcontroller sends commands to
actuators, receives sensor readings and can perform simple
computations. However, this microcontroller is not powerful
enough to execute neural network policies learned from deep
RL. For this reason, we installed an Nvidia Jetson TX2 to
perform neural network inference. The TX2 is interfaced with
the microcontroller through UART communication. At every
control step, the sensor measurements are collected at the
microcontroller and sent back to the TX2, where they are fed
into a neural network policy to decide the actions to take.
These actions are then transmitted to the microcontroller and
executed by the actuators (Figure 2). Since the TX2 does not
run a real time operating system, the control loop runs at
variable control frequencies of approximately 150-200Hz.

We build a physics simulation of the Minitaur (Figure 1 top)
using PyBullet [51], a Python module that extends the Bullet
Physics Engine with robotics and machine learning capabili-
ties. Bullet solves the equations of motion for articulated rigid
bodies in generalized coordinates while simultaneously satis-
fying physical constraints including contact, joint limits and
actuator models. Then the state of the system is numerically
integrated over time using a semi-implicit scheme.

IV. LEARNING LOCOMOTION CONTROLLERS

A. Background

We formulate locomotion control as a Partially Observable
Markov Decision Process (POMDP) and solve it using a policy
gradient method. An MDP is a tuple (S,A, r,D, Psas′ , γ),
where S is the state space; A is the action space; r is the
reward function; D is the distribution of initial states s0, Psas′
is the transition probability; and γ ∈ [0, 1] is the discount
factor. Our problem is partially observable because certain
states such as the position of the Minitaur’s base and the foot
contact forces are not accessible due to lack of corresponding
sensors. At every control step, a partial observation o ∈ O,
rather than a complete state s ∈ S, is observed. Reinforcement
learning optimizes a policy π : O 7→ A that maximizes the
expected return (accumulated rewards) R.

π∗ = argmaxπEs0∼D[Rπ(s0)] (1)

B. Observation and Action Space

In our problem, the observations include the roll, pitch, and
the angular velocities of the base along these two axes, and the

eight motor angles. Note that we do not include all available
sensor measurements in the observation space. For example,
the IMU also provides the yaw of the base. We exclude it
because the measurement drifts quickly. The motor velocities
can also be calculated but can be noisy. We find that our
observation space is sufficient to learn the tasks demonstrated
in this paper. More importantly, a compact observation space
helps to transfer the policy to the real robot. More analysis on
this is presented in Section VI.

When designing the action space, we choose to use the
position control mode of the actuators for safety and ease
of learning [52]. The actions consist of the desired pose of
each leg in the leg space [50, 12]. The pose of each leg
is decomposed into the swing and the extension components
(s, e) (Figure 3). They are mapped into the motor space as

θ1 = e+ s

θ2 = e− s

where θ1 and θ2 are the angles of the two motors controlling
the same leg; s and e are the swing and the extension
components in the leg space.

An alternative action space is the eight desired motor
angles. However, in this motor space, many configurations
are invalid due to self collisions between body parts. This
results in an action space where valid actions are scattered
nonconvex regions, which significantly increases the difficulty
of learning. In contrast, in the leg space, we can easily set a
rectangle bound that prunes out all the invalid actions while
still covering most of the valid configurations.

C. Reward Function

We design a reward function to encourage faster forward
running speed and penalize high energy consumption.

r = (pn − pn−1) · d− w∆t|τn · q̇n| (2)

where pn and pn−1 are the positions of the Minitaur’s base
at the current and the previous time step respectively; d is the
desired running direction; ∆t is the time step; τ are the motor
torques and q̇ are the motor velocities. The first term measures
the running distance towards the desired direction and the
second term measures the energy expenditure. w is the weight
that balances these two terms. Since the learning algorithm
is robust to a wide range of w, we do not tune it and use

Fig. 3: Representation of the leg pose in motor space and leg
space. Extension (e) sets the length of the leg by rotating both
motors in opposite directions while swing (s) sets the overall
rotation of the leg by rotating both motors in same direction.

w = 0.008 in all our experiments. During training, the rewards
are accumulated at each episode. An episode terminates after
1000 steps or when the simulated Minitaur loses balance: its
base tilts more than 0.5 radians.

D. Policy Representation

Although learning from scratch can eliminate the need of
human expertise, and sometimes achieve better performance,
having control of the learned policies is important for robotic
applications. For example, we may want to specify details
of a gait (e.g. style or ground clearance). For this reason,
we decouple the locomotion controller into two parts, an
open loop component that allows a user to provide reference
trajectories and a feedback component that adjusts the leg
poses on top of the reference based on the observations.

a(t,o) = ā(t) + π(o) (3)

where ā(t) is the open loop component, which is typically a
periodic signal, and π(o) is the feedback component. In this
way, users can easily express the desired gait using an open
loop signal and learning will figure out the rest, such as the
balance control, which is tedious to design manually.

This hybrid policy (eq. (3)) is a general formulation that
gives users a full spectrum of controllability. It can be varied
continuously from fully user-specified to entirely learned from
scratch. If we want to use a user-specified policy, we can set
both the lower and the upper bounds of π(o) to be zero. If we
want a policy that is learned from scratch, we can set ā(t) = 0
and give the feedback component π(o) a wide output range.
By varying the open loop signal and the output bound of the
feedback component, we can decide how much user control
is applied to the system. In Section VI, we will illustrate two
examples, learning to gallop from scratch and learning to trot
with a user provided reference.

We represent the feedback component π with a neural
network and solve the above POMDP using Proximal Policy
Optimization [5]. The neural network has two fully-connected
hidden layers. Its size is determined via hyperparameter
search. Refer to Section VI for more details.

V. NARROWING THE REALITY GAP

Due to the reality gap, robotic controllers learned in simu-
lation usually do not perform well in the real environments.
We propose two approaches to narrow the gap: improving
simulation fidelity and learning robust controllers.

A. Improving Simulation Fidelity

Since the reality gap is caused by model discrepancies
between the simulation and the real dynamics, a direct way
to narrow it is to improve the simulation. We first create
an accurate Unified Robot Description Format (URDF) [53]
file for the simulated Minitaur. We disassemble a Minitaur1,
measure the dimension, weigh the mass, find the center of
mass of each link and incorporate this information into the

1For robots that are difficult to dissemble, traditional system identification
methods could be applied.

URDF file. Measuring inertia is difficult. Instead, we estimate
it for each link given its shape and mass, assuming uniform
density. We also design experiments to measure motor frictions
[50]. In addition to system identification, we augment the
simulator with a more faithful actuator model and latency
handling.

a) Actuator Model: We use position control to actuate
the motors of the Minitaur. Bullet also provides position con-
trol for simulated motors. In its implementation, one constraint
en+1 = 0 is formulated for each motor where en+1 is an error
at the end of current time step. The error is defined as

en+1 = kp(q̄ − qn+1) + kd(¯̇q − q̇n+1) (4)

where q̄ and ¯̇q are the desired motor angle and velocity, qn+1

and q̇n+1 are the motor angle and velocity at the end of current
time step, kp is the proportional gain and kd is the derivative
gain. Despite its similarity to the Proportional-Derivative (PD)
servo, a key difference is that eq. (4) guarantees that the motor
angle and velocity at the end of the time step satisfy the
constraint while PD servo uses the current motor angle and
velocity to decide how to actuate the motors. As a result, if
large gains are used, the motors can remain stable in simulation
but oscillate in reality.

To eliminate the model discrepancy for actuators, we de-
velop an actuator model according to the dynamics of an ideal
DC motor. Given a PWM signal, the torque of the motor is

τ = KtI

I =
Vpwm − Vemf

R
(5)

Vemf = Ktq̇ (6)

where I is the armature current, Kt is the torque constant
or back electromotive force (EMF) constant, Vpwm is the
supplied voltage which is modulated by the PWM signal, Vemf
is the back EMF voltage, and R is the armature resistance. The
parameters Kt and R are provided in the actuator specification.

Using the above model, we observe that the real Minitaur
often sinks to its feet or cannot lift them while the same
controller works fine in simulation. This is because the linear
torque-current relation only holds for ideal motors. In reality,
the torque saturates as the current increases. For this reason,
we construct a piece-wise linear function to characterize this
nonlinear torque-current relation [54]. In simulation, once the
current is computed from PWM (eq. (5) and (6)), we use this
piece-wise function to look up the corresponding torque.

In position control, PWM is controlled by a PD servo.

Vpwm = V (kp(q̄ − qn) + kd(¯̇q − q̇n)) (7)

where V is the battery voltage. Note that we use the angle
and velocity at the current time step. In addition, we set the
target velocity ¯̇q = 0 after consulting Ghost Robotics’s PD
implementation on the microcontroller.

We performed an experiment to validate the new actuator
model. We actuated a motor with a desired trajectory of sine
curve. With this actuator model, the simulated trajectory agrees
with the ground truth (Figure 4).

3.0 3.2 3.4 3.6 3.8 4.0

Time (s)

1.6

2.0

2.4

M
o
to

r
A

n
g
le

 (r
ad

)

observed (real)
observed (sim)

desired

Fig. 4: Comparison of the simulated motor trajectory (red)
with the ground truth (blue).

b) Latency: Latency is one of the main causes of in-
stability for feedback control. It is the time delay between
when a motor command is sent that causes the state of the
robot to change and when the sensor measurement of this
change is reported back to the controller. In Bullet, the motor
commands take effect immediately and the sensors report back
the state instantaneously. This instantaneous feedback makes
the stability region of a feedback controller in simulation much
larger than its implementation on hardware. For this reason,
we often see a feedback policy learned in simulation starts to
oscillate, diverge and ultimately fail in the real world.

To model latency, we keep a history of observations and
their measurement time {(ti,Oi)i=0,1,...,n−1}, where ti = i∆t
and ∆t is the time step. At the current step n, when the
controller needs an observation, we search the history for
two adjacent observations Oi and Oi+1 where ti ≤ n∆t −
tlatency ≤ ti+1 and linearly interpolate them.

To measure the latency on the physical system, we send
a spike of PWM signal that lasts for one time step, which
causes a small movement of the motor. We measure the
time delay between when the spike is sent and when the
resultant motor movement is reported. Note that we have two
different latencies for the microcontroller and Nvidia Jetson
TX2. The PD servo running on the microcontroller has a
lower latency (3ms) while the locomotion controller executed
on TX2 has a higher latency (typically 15-19ms). We use these
measurements to set the correct latencies in simulation.

B. Learning Robust Controllers

Robust control aims at achieving robust performance in the
presence of model error. Thus, it is easier to transfer a robust
controller to the real world even if the simulated dynamics are
not identical to their real-world counterparts. In this paper,
we experiment with three different ways to learn a robust
controller: randomizing dynamic parameters, adding random
perturbations and using a compact observation space.

Prior studies showed that randomizing the dynamic param-
eters during training can increase the robustness of the learned
controller [39, 44]. At the beginning of each training episode,
we randomly sample a set of physical parameters and use them
in the simulation. The samples are drawn uniformly within

TABLE I: Randomized physical parameters and their ranges.

parameter lower bound upper bound
mass 80% 120%
motor friction 0Nm 0.05Nm
inertia 50% 150%
motor strength 80% 120%
control step 3ms 20ms
latency 0ms 40ms
battery voltage 14.0V 16.8V
contact friction 0.5 1.25
IMU bias -0.05 radian 0.05 radian
IMU noise (std) 0 radian 0.05 radian

certain ranges. The complete list of randomized parameters
and their ranges of randomization is summarized in Table I.

Since dynamics randomization trades optimality for robust-
ness [55], we choose the parameters and their ranges in Table
I carefully to prevent learning overly conservative running
gaits. Mass and motor friction are commonly randomized
parameters [44, 39]. While we give them conservative ranges
since we have measured them during system identification,
we are less certain about inertia because it is estimated based
on a uniform density assumption. Also some quantities can
change over time. For example, the motor strength can vary
due to wear and tear. The control step and latency can fluctuate
because of the non real-time system. The battery voltage can
change based on whether it is fully charged. For the reasons
stated above, we choose to randomize these parameters and
their ranges based on the actual measurements plus small
safety margins. Performing accurate identification for contact
parameters is challenging. While the Bullet physics library
uses an LCP-based contact model and provides a number of
tunable parameters, we choose to focus on the lateral friction
and leave others in their default values. We randomly sample
the friction coefficient between 0.5 and 1.25 because this is
the typical range of friction coefficient between the Minitaur’s
rubber feet and various carpet floors [56]. Since the real IMU
measurement often carries bias and noise, we also add a small
amount of Gaussian noise to the simulated IMU readings.

Another popular method to improve the robustness of a
learned controller is to add random perturbations [41]. During
training, we add a perturbation force to the base of the
simulated Minitaur every 200 steps of simulation (1.2s). The
perturbation force lasts for ten steps (0.06s), has a random
direction and a random magnitude ranging from 130N to
220N. The perturbations can knock the simulated Minitaur
out of balance so that it needs to learn how to recover balance
from different situations.

We find that the design of the observation space also plays
an important role to narrow the reality gap. If the observation
space is high dimensional, the learned policy can easily overfit
the simulated environment, which makes it difficult to transfer
to the real robots. In this paper, we use a compact observation
space (Section IV-B) that leaves less room for overfitting to
unimportant details of the simulation. A detailed analysis on
the choice of observation space is presented in Section VI-B.

0

1

2

re
tu

rn

trotting

0

4

8

0 2 4 6

0 2 4 6

simulation steps (millions)

galloping

re
tu

rn

Fig. 5: The learning curves of trotting and galloping.

TABLE II: Parameters of learning algorithm for each task.

Gait Observation Policy Net Value Net Learning
Dimension Size Size Time (Hour)

Trotting 4 (125, 89) (89, 55) 4.35
Galloping 12 (185, 95) (95, 85) 3.25

VI. EVALUATION AND DISCUSSION

We tested our system with two locomotion tasks: galloping
and trotting. Please watch the accompanying video2 for the
learned locomotion gaits. We first learned the locomotion con-
trollers in simulation. The simulated Minitaur environments
are open-sourced in Bullet physics library3. We represented
both the policy and the value functions as fully connected
neural networks, each of which had two hidden layers. Their
sizes were determined using hyperparameter search. At each it-
eration of policy update, we collected the simulated experience
by running 25 roll-outs (up to 1000 steps each) in parallel. The
training terminated after the maximum number of simulation
steps (7 million) had been reached. The learning curves of
trotting and galloping are shown in Figure 5, and the parameter
settings are summarized in Table II. After the policies were
learned, we deployed them on the real robot. The controllers
worked directly in the real world without additional fine tuning
on the physical system.

A. Locomotion Tasks

In the first experiment, we let the system learn from scratch:
We set the open loop component ā(t) = 0 and gave the
feedback component large output bounds: The bounds for
swing are [−0.5, 0.5] radians and the bounds for extension
are [π2 − 0.5, π2 + 0.5] radians. Initially, with the baseline

2https://www.youtube.com/watch?v=lUZUr7jxoqM
3https://git.io/vp0V3

simulation (no actuator model and latency), our system did
not come up with an agile gait. Instead, a slow walking
gait was learned in simulation. This might be caused by
the default constraint-based actuator model in Bullet, which
seems to be overdamped and limits the agility of the motion.
Moreover, the real Minitaur fell to the ground immediately
due to the reality gap. After we improved the simulation
(Section V-A), an agile galloping gait emerged automatically.
Galloping is the fastest gait for quadrupeds in nature. The
running speed of the Minitaur reaches roughly 1.34 m/s (2.48
body lengths per second) in simulation and 1.18 m/s (2.18
body lengths per second) in the real world. We repeated the
training with different hyperparameters and random seeds,
and found that the majority of the solutions converged to
galloping. We also observed a small number of other gaits,
including trotting, pacing, and gaits that are uncommon among
quadruped animals.

In the second experiment, we would like the Minitaur to
learn trotting, an intermediate-speed running gait commonly
adopted by horses (and many other quadrupeds) in which the
diagonally opposite legs move together. While it is unclear
how to use reward shaping to learn such a gait, we can directly
control the learned gait by providing an open loop signal (ā(t)
in eq. (3)). The signal consists of two sine curves.

s̄(t) = 0.3 sin(4πt)

ē(t) = 0.35 sin(4πt) + 2

where s̄(t) is the signal for the swing and the ē(t) is for
the extension. One diagonal pair of legs shares the same
curves and the other diagonal pair’s are 180 degree out of
phase. Note that while this open loop controller expresses
the user’s preference of the locomotion style, by itself, it
cannot produce any forward movement in the real world: The
Minitaur loses balance immediately and sits down on its rear
legs. To maintain balance and keep the learned gait similar to
the user-specified signal, we used small output bounds of the
feedback controller: [−0.25, 0.25] radians for both the swing
and the extension degrees of freedom. After training with the
improved simulator and random perturbations, the Minitaur is
able to trot stably in simulation. However, when the policies
were deployed on the robot, we had mixed results due to the
reality gap: Some policies can transfer while others cannot.
We further reduced the observation space to four dimensional,
keeping only the IMU readings (the roll, pitch and the angular
velocities of the base along these two axes) and retrained
in simulation. This time, we observed stable, comparable
movements in both simulation and on the real robot. The
trotting speed is roughly 0.50 m/s (0.93 body lengths per
second) in simulation and 0.60 m/s (1.11 body lengths per
second) in the real world.

We compared the learned gaits with the handcrafted ones
from Ghost Robotics [3]. Table III summarizes the speed and
the energy consumption of these gaits on the real robots. While
our learned gaits are as fast as the ones carefully tuned by
experts, they consume significantly less power (35% and 23%
reduction for galloping and trotting respectively).

B. Narrowing the Reality Gap

As discussed in Section V-B, we narrow the reality gap
by improving the simulation fidelity and learning robust
controllers. Using trotting as a test case, we performed
comprehensive evaluations to understand how each of these
techniques, improving simulation, adding randomization and
using compact observation space, can narrow the reality gap.

First, we defined a quantitative measure of the reality gap.
One common choice is the success rate [43]: The percentage of
the controllers that can balance in the real world for the entire
episode (1000 steps, about 6 seconds). However, the binary
outcome of success or failure does not capture the key char-
acteristics of locomotion, such as running speed and energy
consumption. For this reason, we adopt a continuous measure
used by Koos et al. [7]. We compute the expected return from
eq. (2), both in simulation and in the real experiments. Their
difference measures the reality gap.

We observed a large variance of the controller performance
in the real experiments due to the randomness of the learning
algorithm, the stochastic nature of the real world, and the
differences in robustness of the learned controllers. To increase
the confidence of our conclusions, we performed a large
number of learning trials and robot experiments before a
conclusion is reached. In each of the experiments below, we
trained 100 controllers with different hyperparameters and
random seeds. We deployed the top three controllers on the
Minitaur based on their returns in simulation. Each controller
was run three times. The average return of these nine runs was
reported as the expected return.

To examine how improving the simulation can narrow the
reality gap, we trained three groups of controllers, all using
the four-dimensional observations space. In the first group, the
controllers were trained using the baseline simulation (no ac-
tuator model and latency handling). The second group used the
baseline simulation with random perturbations during training.
The last group was our method, which used the improved
simulation and random perturbations. The top three controllers
in each group all performed well in simulation. However, when
they were deployed on the robot, the controllers in group I
and II performed poorly. From the left and the center bars of
Figure 6, we can clearly see a large reality gap (the difference
between the blue and the red bars). In contrast, the controllers
in group III performed comparably in simulation and in the
real world (the right bars in Figure 6). This indicates that the
improvement of the simulation is essential to our system. If the
model discrepancy is too big, even a robust controller trained
with random perturbations cannot overcome the reality gap.

TABLE III: Comparisons between learned and handcrafted
gaits.

Gait Speed (m/s) Avg. Mech. Power (watt)
Trotting (handcrafted) 0.56 92.72
Trotting (learned) 0.60 71.78
Galloping (handcrafted) 1.21 290.00
Galloping (learned) 1.18 188.79

0

1

2

3

ex
p
ec

te
d
 r

et
u
rn

baseline sim our methodbaseline sim
perturbation

sim

real

Fig. 6: Controller performance in simulation (blue) and on the
robot (red). From left to right, the controllers are trained using
baseline simulation, using baseline simulation with random
perturbations, and using improved simulation with random
perturbations. Error bars indicate one standard error.

40% 80% 120% 160%
0

1

2

3

4

5

body inertia (% of default value)

ex
p
ec

te
d
 r

et
u
rn

no randomization
randomized

Fig. 7: Performance comparison of controllers that are trained
with (red) and without (blue) randomization and tested with
different body inertia.

We also found that both accurate actuator model and latency
simulation are important. Without either of them, the learned
controllers do not work on the real robot.

Next, we evaluated the impact of randomizing physical
parameters and adding random perturbations on the robustness
and transferability of controllers. Experiments showed that
these two approaches had similar effects. In fact, as pointed
out in the prior work [41], uncertainties of the physical
parameters can be viewed as extra forces/torques applied to the
system. For this reason, we grouped their results and reported
them under the common name of “randomization”. We first
evaluated the trade-off between robustness and optimality
using randomization. Given a trained controller, we computed
its expected return in a set of different test environments in
simulation: For each parameter in Table I, we evenly sampled
10 values within its range while keeping other parameters
unchanged. We used these samples to construct different test
environments. We computed the return of the controller in
each test environment and observed how the performance
changed across environments. For example, we tested two
controllers, trained with or without randomization, in the
environments that the inertia of the robot ranges from 50% to
150% of its default value. Figure 7 shows that the controller
trained with randomization (red) performs similarly across

0

2

4

6

small
observation

small
observation

randomization

large
observation

large
observation

randomization

ex
p
ec

te
d
 r

et
u
rn

Fig. 8: Performance of controllers when they are tested in
different simulation environments. Error bars indicate one
standard deviation.

0

2

4

6

small
observation

small
observation

randomization

large
observation

large
observation

randomization

e
x
p

e
ct

e
d

 r
e
tu

rn

sim

real

Fig. 9: Comparison of controllers trained with different obser-
vation spaces and randomization. The blue and red bars are the
performance in simulation and in the real world respectively.
Error bars indicate one standard error.

all these environments. In contrast, the performance of the
controller trained without randomization can drop significantly
if the actual inertia is different from what it was trained for.
However, it has a higher peak performance.

We aggregated these results and calculated the mean and the
standard deviation of the returns across all the test environ-
ments. It is obvious in Figure 8 that regardless of the choice
of observation space, the returns of the controllers trained
using randomization have a lower mean and a lower standard
deviation (Refer to the first two bars in Figure 8 for the case
of small observation space, and last two bars for the case
of large observation space). Lower mean indicates suboptimal
performance. The controllers learn to behave conservatively
in the stochastic environments. Lower standard deviation in-
dicates robustness. The performance varies less even when
the controllers are tested in different environments. These
results demonstrate a clear trade-off between robustness and
optimality when randomization is used. Since randomization
is not a free meal, we should use it only when necessary.

We then evaluated the impact of randomization on the

transferability of controllers. Figure 9 shows that regardless
of the choice of observations, randomization helps to narrow
the reality gap. When combining it with the small observation
space, we achieved the best results in the real world: All nine
runs of the top three controllers in this group can trot more
than three meters and balance for the entire episode.

Lastly, we examined the relation between the reality gap
and the choice of observations. In this experiment, we trained
controllers with two different observation space. The small
space (4D) only consists of the IMU information: the roll,
pitch, and the angular velocities of the base along these
two axes. The large space (12D) consists of both the IMU
information and the motor angles. We found that in simulation,
when the observation space is large, the performance of the
learned controllers is higher (Compare the blue bars between
1st and 3rd, and between 2nd and 4th in Figure 9). We
suspect that the tasks become easier to learn because the
policy can take advantage of the more information in the
large observation space. However, when these policies are
deployed on the robot, the result is the opposite. Controllers
with the large observation space perform worse in the real
world and the reality gap is wider (compare the red bars
between 1st and 3rd, and between 2nd and 4th in Figure 9). We
believe that this is caused by the mismatch of the observation
distributions between training in simulation and testing on the
physical system. When the space is large, the observations
encountered in training become relatively sparse. Encountering
similar observations in the real world is less likely, which can
cause the robot to fall. In contrast, when the observation space
is small, the observation distributions in training and testing
are more likely to overlap, which narrows the reality gap.

VII. CONCLUSION

We have shown that deep RL can be applied to learn agile
locomotion automatically for robots. We have presented a
complete system that applies deep RL in simulated environ-
ments, which can learn from scratch or can allow users to
guide the learning process. With an accurate physical model
and robust controllers, we have successfully deployed the
controllers learned in simulation on the real robots. Using this
system, we are able to develop two agile locomotion gaits,
trotting and galloping, for a quadruped robot.

The focus of our paper is on learning transferable loco-
motion policies. For this purpose, we used a simple reward
function and a simple environment: maximizing the running
speed on a flat ground. In real-world scenarios, robots need
to see the environment, adjust its speed and turn agilely to
navigate the complex physical world. This points us to two
interesting avenues for future work. First, we would like to
learn locomotion policies that can dynamically change running
speed and direction. Second, it would be interesting to extend
this work to handle complex terrain structures by integrating
vision as part of sensory input.

REFERENCES

[1] Marc H. Raibert. Legged Robots That Balance. Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, 1986. ISBN 0-262-18117-7.

[2] Jerry Pratt and Gill Pratt. Intuitive control of a planar
bipedal walking robot. In Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conference
on, volume 3, pages 2014–2021. IEEE, 1998.

[3] Avik De. Modular hopping and running via parallel
composition, 2017.

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. arXiv preprint arXiv:1509.02971, 2015.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[6] Yan Duan, Xi Chen, Rein Houthooft, John Schulman,
and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the
33rd International Conference on International Confer-
ence on Machine Learning - Volume 48, ICML’16, pages
1329–1338. JMLR.org, 2016.

[7] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Don-
cieux. Crossing the reality gap in evolutionary robotics
by promoting transferable controllers. In Proceedings of
the 12th annual conference on Genetic and evolutionary
computation, pages 119–126. ACM, 2010.

[8] Adrian Boeing and Thomas Bräunl. Leveraging multiple
simulators for crossing the reality gap. In Control
Automation Robotics & Vision (ICARCV), 2012 12th
International Conference on, pages 1113–1119. IEEE,
2012.

[9] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian
Ibarz, and Deirdre Quillen. Learning hand-eye coor-
dination for robotic grasping with deep learning and
large-scale data collection. The International Journal of
Robotics Research.

[10] David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of Go without human knowledge.
Nature, 550(7676):354, 2017.

[11] Jens Kober and Jan Peters. Reinforcement learning in
robotics: A survey. In Reinforcement Learning, pages
579–610. Springer, 2012.

[12] Krzysztof Choromanski, Atil Iscen, Vikas Sindhwani, Jie
Tan, and Erwin Coumans. Optimizing simulations with
noise-tolerant structured exploration. In Robotics and
Automation (ICRA), 2018 IEEE International Conference
on. IEEE, 2018.

[13] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-
Baptiste Mouret. Robots that can adapt like animals.
Nature, 521(7553):503, 2015.

[14] Roberto Calandra, André Seyfarth, Jan Peters, and

Marc Peter Deisenroth. Bayesian optimization for learn-
ing gaits under uncertainty. Annals of Mathematics and
Artificial Intelligence, 76(1-2):5–23, 2016.

[15] Rika Antonova, Akshara Rai, and Christopher G. Atke-
son. Deep kernels for optimizing locomotion controllers.
In 1st Annual Conference on Robot Learning, CoRL,
pages 47–56, 2017.

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym, 2016.

[17] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deep-
Mind control suite. arXiv preprint arXiv:1801.00690,
2018.

[18] Danijar Hafner, James Davidson, and Vincent Van-
houcke. TensorFlow agents: Efficient batched rein-
forcement learning in TensorFlow. arXiv preprint
arXiv:1709.02878, 2017.

[19] Hamid Benbrahim and Judy A Franklin. Biped dynamic
walking using reinforcement learning. Robotics and
Autonomous Systems, 22(3-4):283–302, 1997.

[20] Russ Tedrake, Teresa Weirui Zhang, and H Sebastian
Seung. Stochastic policy gradient reinforcement learning
on a simple 3d biped. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on, volume 3, pages 2849–2854. IEEE.

[21] Gen Endo, Jun Morimoto, Takamitsu Matsubara, Jun
Nakanishi, and Gordon Cheng. Learning CPG sensory
feedback with policy gradient for biped locomotion for
a full-body humanoid. In Proceedings of the 20th
national conference on Artificial intelligence-Volume 3,
pages 1267–1273. AAAI Press, 2005.

[22] Nate Kohl and Peter Stone. Policy gradient reinforcement
learning for fast quadrupedal locomotion. In Proceedings
of the IEEE International Conference on Robotics and
Automation, 2004.

[23] Masaki Ogino, Yutaka Katoh, Masahiro Aono, Minoru
Asada, and Koh Hosoda. Reinforcement learning of
humanoid rhythmic walking parameters based on visual
information. Advanced Robotics, 18(7):677–697, 2004.

[24] Sébastien Gay, José Santos-Victor, and Auke Ijspeert.
Learning robot gait stability using neural networks as
sensory feedback function for central pattern genera-
tors. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pages 194–201.
IEEE, 2013.

[25] Sergey Levine and Vladlen Koltun. Learning complex
neural network policies with trajectory optimization. In
ICML ’14: Proceedings of the 31st International Confer-
ence on Machine Learning, 2014.

[26] Xue Bin Peng, Glen Berseth, and Michiel van de Panne.
Dynamic terrain traversal skills using reinforcement
learning. ACM Trans. Graph., 34(4):80:1–80:11, 2015.
ISSN 0730-0301. doi: 10.1145/2766910.

[27] Xue Bin Peng, Glen Berseth, and Michiel van de Panne.

Terrain-adaptive locomotion skills using deep reinforce-
ment learning. ACM Transactions on Graphics (Proc.
SIGGRAPH 2016), 35(4), 2016.

[28] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel
van de Panne. DeepLoco: Dynamic locomotion skills
using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (Proc. SIGGRAPH 2017), 36
(4), 2017.

[29] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lem-
mon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and
David Silver. Emergence of locomotion behaviours in
rich environments. CoRR, abs/1707.02286, 2017.

[30] Arjun Sharma and Kris M. Kitani. Phase-parametric poli-
cies for reinforcement learning in cyclic environments.
In AAAI Conference on Artificial Intelligence, Pittsburgh,
PA, 2018.

[31] Michael Neunert, Thiago Boaventura, and Jonas Buchli.
Why off-the-shelf physics simulators fail in evaluat-
ing feedback controller performance-a case study for
quadrupedal robots. In Advances in Cooperative
Robotics, pages 464–472. World Scientific, 2017.

[32] Shaojun Zhu, Andrew Kimmel, Kostas E. Bekris,
and Abdeslam Boularias. Model identification via
physics engines for improved policy search. CoRR,
abs/1710.08893, 2017.

[33] Chen Li, Tingnan Zhang, and Daniel I Goldman. A
terradynamics of legged locomotion on granular media.
Science, 339(6126):1408–1412, 2013.

[34] Jie Tan, Zhaoming Xie, Byron Boots, and C. Karen
Liu. Simulation-based design of dynamic controllers for
humanoid balancing. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on,
pages 2729–2736. IEEE, 2016.

[35] Rico Möckel, N. Perov Yura, Anh The Nguyen, Massimo
Vespignani, Stephane Bonardi, Soha Pouya, Alexander
Spröwitz, Jesse van den Kieboom, Frederic Wilhelm,
and Auke Jan Ijspeert. Gait optimization for roombots
modular robots - matching simulation and reality. In
Proceedings of the 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3265–
3272, Tokyo, 2013. IEEE.

[36] Josh Bongard, Victor Zykov, and Hod Lipson. Resilient
machines through continuous self-modeling. Science,
314:1118–21, 2006.

[37] Sehoon Ha and Katsu Yamane. Reducing hardware
experiments for model learning and policy optimization.
In Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on, pages 2620–2626. IEEE, 2015.

[38] Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk.
Preparing for the unknown: Learning a universal policy
with online system identification. CoRR, abs/1702.02453,
2017.

[39] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. arXiv

preprint arXiv:1710.06537, 2017.
[40] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise

and the reality gap: The use of simulation in evolutionary
robotics. Advances in artificial life, pages 704–720, 1995.

[41] Lerrel Pinto, James Davidson, Rahul Sukthankar, and
Abhinav Gupta. Robust adversarial reinforcement learn-
ing. arXiv preprint arXiv:1703.02702, 2017.

[42] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain random-
ization for transferring deep neural networks from simu-
lation to the real world. arXiv preprint arXiv:1703.06907,
2017.

[43] Igor Mordatch, Kendall Lowrey, and Emanuel Todorov.
Ensemble-CIO: Full-body dynamic motion planning that
transfers to physical humanoids. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Con-
ference on, pages 5307–5314. IEEE, 2015.

[44] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravin-
dran, and Sergey Levine. EPOpt: Learning robust neural
network policies using model ensembles. arXiv preprint
arXiv:1610.01283, 2016.

[45] Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas
Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real
robot learning from pixels with progressive nets. CoRR,
abs/1610.04286, 2016.

[46] Josiah Hanna and Peter Stone. Grounded action transfor-
mation for robot learning in simulation. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence
(AAAI), 2017.

[47] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn,
Xingchao Peng, Sergey Levine, Kate Saenko, and Trevor
Darrell. Towards adapting deep visuomotor represen-
tations from simulated to real environments. CoRR,
abs/1511.07111, 2015.

[48] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, and Mrinal
Kalakrishnan. Multi-task domain adaptation for deep
learning of instance grasping from simulation. CoRR,
abs/1710.06422, 2017.

[49] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart,
Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura
Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey
Levine, and Vincent Vanhoucke. Using simulation and
domain adaptation to improve efficiency of deep robotic
grasping. CoRR, abs/1709.07857, 2017.

[50] Gavin Kenneally, Avik De, and Daniel E Koditschek.
Design principles for a family of direct-drive legged
robots. IEEE Robotics and Automation Letters, 1(2):900–
907, 2016.

[51] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation in robotics, games and
machine learning. http://pybullet.org, 2016–2017.

[52] Xue Bin Peng, Michiel van de Panne, and KangKang
Yin. Learning locomotion skills using DeepRL: Does
the choice of action space matter? In Proc. ACM
SIGGRAPH / Eurographics Symposium on Computer
Animation, 2017.

http://pybullet.org

[53] URDF - ROS wiki. http://wiki.ros.org/urdf.
[54] Avik De and Daniel E. Koditschek. The Penn Jerboa: A

platform for exploring parallel composition of templates.
CoRR, abs/1502.05347, 2015.

[55] Jingru Luo and Kris Hauser. Robust trajectory opti-
mization under frictional contact with iterative learning.
Autonomous Robots, 41(6):1447–1461, 2017.

[56] Ikuko Hirai and Toshihiro Gunji. Slipperiness and coef-
ficient of friction on the carpets. Sen’i Kikai Gakkaishi
(Journal of the Textile Machinery Society of Japan), 53:
T140–T146, 2000.

http://wiki.ros.org/urdf

	Introduction
	Related Work
	Legged Locomotion Control
	Overcoming the Reality Gap

	Robot Platform and Physics Simulation
	Learning Locomotion Controllers
	Background
	Observation and Action Space
	Reward Function
	Policy Representation

	Narrowing the Reality Gap
	Improving Simulation Fidelity
	Learning Robust Controllers

	Evaluation and Discussion
	Locomotion Tasks
	Narrowing the Reality Gap

	Conclusion

