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Abstract—Planning locomotion trajectories for legged micro-
robots is challenging because of their complex morphology,
high frequency passive dynamics, and discontinuous contact
interactions with their environment. Consequently, such research
is often driven by time-consuming experimental methods. As an
alternative, we present a framework for systematically modeling,
planning, and controlling legged microrobots. We develop a three-
dimensional dynamic model of a 1.5 g quadrupedal microrobot
with complexity (e.g., number of degrees of freedom) similar to
larger-scale legged robots. We then adapt a recently developed
variational contact-implicit trajectory optimization method to
generate feasible whole-body locomotion plans for this micro-
robot, and we demonstrate that these plans can be tracked with
simple joint-space controllers. We plan and execute periodic gaits
at multiple stride frequencies and on various surfaces. These
gaits achieve high per-cycle velocities, including a maximum of
10.87 mm/cycle, which is 15% faster than previously measured
velocities for this microrobot. Furthermore, we plan and execute
a vertical jump of 9.96 mm, which is 78% of the microrobot’s
center-of-mass height. To the best of our knowledge, this is
the first end-to-end demonstration of planning and tracking
whole-body dynamic locomotion on a millimeter-scale legged
microrobot.

I. INTRODUCTION

A. Motivation

Laminate manufacturing processes, such as smart-composite
microstructures [40] and printed-circuit MEMS [37] enable
rapid and reliable assembly of flexure-based, millimeter-
scale devices. One major advantage of these manufacturing
techniques is the ability to realize mechanically complex
devices with many degrees-of-freedom (DOFs) at the mil-
limeter scale. This has enabled the development of small
scale legged microrobots that do not sacrifice dexterity. These
legged microrobots leverage favorable inertial scaling [36]
to demonstrate remarkable capabilities, including high-speed
running [12], jumping [13], and climbing [2]. However, these
results have largely been achieved using simplified models
[14] and time-consuming experimentation [10, 11] due to the
mechanical complexity of the robots and challenges associated
with modeling legged systems.

The ability to effectively model and control legged mi-
crorobots could augment these experimental approaches and
greatly benefit work in this area. We evaluate a model-
based optimization method for designing agile locomotion
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Figure 1. Still frames from the supplementary video (https://youtu.be/x
wbRQpKukg) of HAMR-VI executing a vertical jump.

behaviors involving contact that avoids the need for exhaustive
experimentation. These model-based tools are increasingly
important as microrobots move closer to envisioned appli-
cations, including inspection in confined environments [17],
search and rescue, and environmental monitoring. This work
is also broadly applicable to other systems that interact with
the environment through contact, including manipulators and
larger legged robots.

B. Related Work

A variety of sophisticated model-based methods have been
developed to design trajectories for legged robots, including
hybrid [7, 24, 29, 30, 31] and contact-implicit [22, 25, 28,
34] trajectory optimization methods. Contact-implicit methods
have the benefit of generating contact sequences as part of the
optimization, eliminating the need for a-priori contact mode
scheduling. This enables planning for a variety of periodic and
aperiodic behaviors. Most methods, however, are limited to
first-order integration accuracy, which creates a linear trade-off
between the size of the trajectory optimization problem and the
resulting trajectory accuracy. For high-dimensional robots with
multiple contacts, the generation of accurate motion plans can
lead to nonlinear programs with tens of thousands of variables
that push the limits of modern solvers. In practice, coarse time
discretizations are used to reduce program size, resulting in
inaccurate whole-body locomotion plans that are difficult or
impossible to realize on a physical robot.

In spite of this drawback, contact-implicit methods are often
used to plan for reduced systems, such as zero-moment point
or centroidal dynamics models. These low-dimensional trajec-
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tories are then stabilized using an inverse dynamics controller
that resolve whole-body motions online [32]. Such methods
have achieved success on the humanoid Atlas robot [20], and
the quadrupedal HyQ robot [38, 39]. Another approach, also
implemented on the HyQ robot, uses relaxed or spring-damper
contact models specifically calibrated for a given system [21].
Despite some successes, whole-body motion plans produced
using general physics-based models have yet to be realized on
a physical robot.

Recently, Manchester and Kuindersma [22] developed a
variational contact-implicit trajectory optimization scheme that
combines ideas from discrete variational mechanics with the
complementarity formulation of rigid-body contact to achieve
higher-order integration accuracy. Simulations from that work
demonstrate that this approach results in more accurate whole-
body locomotion plans that can be tracked with simple con-
trollers. In this paper, we extend and apply these methods to
plan and track locomotion trajectories on a physical micro-
robot.

C. Contributions
Our primary contribution is the development and evalua-

tion of a framework for modeling, planning, and controlling
dynamic behaviors for legged microrobots. We develop a full
three-dimensional dynamic model of the Harvard Ambulatory
MicroRobot (HAMR-VI), a quadrupedal microrobot with eight
control inputs, 76 states, and 24 kinematic position constraints
[5]. We also adapt a state-of-the-art variational contact-implicit
trajectory optimization algorithm to generate physically ac-
curate locomotion plans. Finally, we develop a low-latency
estimator and joint-space controller that allow this microrobot
to track the generated plans.

Our methods are used to generate nine periodic gaits at
three frequencies (2 Hz, 10 Hz, and 30 Hz) on three different
surfaces (sandpaper, card-stock, and Teflon). Optimized gaits
are shown to move 17% faster per-cycle on average than
manually tuned gaits at the same operating conditions. We also
execute a gait with an average velocity of 10.87 mm/cycle, the
fastest recorded gait for this platform. Finally, we demonstrate
the first controlled vertical jump of 9.96 mm, which is 78%
of the microrobot’s center-of-mass (COM) height.

D. Paper Organization
The remainder of this paper is organized as follows: we

present an overview of the platform and a dynamic model of
the system in Sec. II. The trajectory optimization problem for
periodic and aperiodic behaviors is formalized in Sec. III. In
Sec. IV, we describe the hardware and software used for the
locomotion experiments, and we present and discuss the results
of these experiments in Sec. V and Sec. VI, respectively.
Finally, we draw conclusions and present directions for future
research in Sec. VII.

II. DYNAMIC MODEL

A. Platform Overview
HAMR-VI (Fig. 1) is a 4.51 cm long, 1.5 g quadrupedal

microrobot with eight independently actuated DOFs. Each
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Figure 2. Perspective view of the rear-right 2-DOF spherical five-bar (SFB)
transmission with components, flexural joints, and body-fixed axes labeled.
Circular and rectangular insets depict a detailed view of the SFB’s center
of rotation, and a simplified mechanical model of the piezoelectric bending
actuators, respectively.

leg has two DOFs that are driven by optimal energy density
piezoelectric bending actuators (henceforth actuators) [16].
These actuators are controlled with AC voltage signals using a
simultaneous drive configuration described by Karpelson et al.
[19]. A spherical-five-bar (SFB) transmission (Fig. 2) connects
the two actuators to a single leg in a nominally decoupled
manner: the swing actuator controls leg-x motion, and the lift
actuator controls the leg-z motion. Each SFB transmission has
11 carbon fiber linkages (QA-112, Tohotenax) connected by
nine compliant polyimide flexures (Kapton, Dupont) in three
parallel kinematic chains.

B. Robot Model

The dynamics of the SFB transmissions are assumed to
follow the pseudo-rigid body approximation [15], with the
flexures and carbon fiber linkages modeled as pin joints and
rigid bodies, respectively. Each flexure is assumed to deflect
only in pure bending with its mechanical properties described
by a torsional spring and damper that are sized according to the
procedure described by Doshi et al. [5]. Given these assump-
tions, each SFB transmission has two inputs (forces generated
by the actuators), and eight generalized coordinates. These
include two independent coordinates (actuator tip deflections)
and six dependent coordinates (a subset of flexure joint angles)
that represent the kinematics of the three parallel chains. Thus,
a complete model of the robot has eight inputs, 38 generalized
coordinates (76 states), and 24 position constraints.

A three-dimensional computer-aided-design model is de-
veloped using SolidWorks (Dassault Systèmes) to capture
the kinematics and inertial properties of the microrobot.
An open-source SolidWorks to Universal-Robot-Description-
Format (URDF) exporter is used to generate an initial
URDF model of the microrobot. Actuator forces, joint limits,
kinematic-loop constraints, and the mechanics (stiffness and
damping) of the flexural joints are then manually incorporated.
Furthermore, units are rescaled from SI (seconds, meters,
and kilograms) to milliseconds, millimeters, and grams for
improved numerical conditioning. The dynamics and control



toolbox Drake [35] computes the terms in the Euler-Lagrange
equation from this URDF description using the composite rigid
body algorithm [8],

d

dt
D2L(q, q̇)−D1L(q, q̇) + C(q)Tλ =

F b(q, q̇) + F act(q)
(1)

c(q) = 0. (2)

Here L is the microrobot’s Lagrangian (including flexural
spring energy), q ∈ R38 is the vector of generalized coordi-
nates, C(q)T = (∂c/∂q)T is the Jacobian mapping constraint
forces, λ, into generalized coordinates, and the dot superscripts
represent time derivatives. F b is the vector of generalized
flexural damping forces, and F act is the vector of generalized
actuator forces. Equation (2) enforces the kinematic-loop con-
straints c(q). Finally, the slot derivative Di indicates partial
differentiation with respect to a function’s ith argument.

Each actuator is modeled as a force source in parallel with a
spring (Fig. 2, inset) to determine F act. The contribution of the
effective mass and damping of the actuator is negligible. An
affine approximation of the force source model, and a constant
approximation of the spring model developed by Jafferis et al.
[16] are used for simplicity. These approximations have been
experimentally verified for the range of expected operating
voltages (∼100-200 V) [5]. The generalized actuator force can
then be written as,

F act(u, q) = B(q)T (Fs(u, q)−Kq), (3)

where Fs is the piezoelectric force, K is the spring stiffness,
u is the AC drive voltage, and BT is the Jacobian mapping
actuator forces into generalized coordinates. Substituting (3)
into (1) and (2) gives a complete set of differential-algebraic
equations that capture the dynamics of the microrobot:

d

dt
D2L(q, q̇)−D1L(q, q̇) + C(q)Tλ =

F b(q, q̇) +B(q)T (Fs(u, q)−Kq)
c(q) = 0.

(4)

C. Surface Characterization

In addition to modeling the robot’s dynamics, the coeffi-
cients of static friction (µ) between microrobot’s feet and three
surfaces, PTFE (Teflon), card-stock, and 1200 grit sandpaper,
are measured. Experiments are conducted using a single leg
(Fig. 3a) to closely replicate conditions during locomotion.
Each surface is placed on an acrylic mounting plate and
fastened to a six-axis force sensor (ATI Nano17 Titanium).
The single leg is mounted on two micro-positioning stages and
centered above the force sensor. Eight trials are run on each
surface, and force data is recorded at 100 Hz using MATLAB’s
xPC environment (MathWorks, MATLAB R2015a). Force
traces for a representative trial are shown in Fig. 3b. The leg is
manually lowered to pre-load force sensor to 35%-200% of the
microrobot’s body weight (between 1 and 2 in Fig. 3b). The
swing DOF is then actuated, generating a force in the x − y
plane (3 in Fig. 3b) until the leg begins to slip (4 in Fig. 3b).
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Figure 3. (a) Labeled image of the friction-measurement experimental setup.
(b) Representative force data: Fz is the normal force, and Fx and Fy are the
tangential forces. (c) Raw data (n=8) and best-fit lines corresponding to the
estimated coefficients of static friction between the microrobot’s foot and the
Teflon, cardstock, and 1200 grit sandpaper surfaces.

Force data is filtered using an acasual low-pass Butterworth
filter with a cutoff frequency of 10 Hz. The normal, Fn, and
static frictional, Ff , forces are computed as:

Fn = ∆Fz (5)

Ff =
√

∆F 2
x + ∆F 2

y , (6)

where ∆Fx, ∆Fy , and ∆Fz are the net forces between stages
1 and 4 in Fig. 3b in the x, y, and z directions, respectively.
The friction force increases linearly with the normal force as
anticipated (Fig. 3c). The mean and standard deviation for
coefficients of friction averaged over the eight trials for Teflon,
card-stock, and 1200 grit sandpaper are: 0.29 ± 0.03, 0.51±
0.07, and 1.02 ± 0.20, respectively. Lines corresponding to
these average friction coefficients are shown in Fig. 3c.

D. Contact Model

The robot’s four feet are modeled as point contacts. The
contact forces are decomposed into directions normal and
tangential to the running substrate. In the normal direction,
collisions must obey a non-penetration constraint:

φ(q) ≥ 0, (7)

where φ(q) is a function that returns the signed distance
between the four feet and the running substrate. Tangential
forces are modeled using Coulomb fricton, and they must sat-
isfy the Maximum Dissipation Principle [26]. This states that
the friction force instantaneously maximizes the dissipation of
kinetic energy, and is a generalization of the 2D concept of
friction opposing the direction of motion. Mathematically, this



can be formulated as the following optimization problem:

minimize
b

q̇TD(q)T b

subject to ||b|| ≤ µγ,
(8)

where b is the friction force, γ is the normal force, µ is
the coefficient of friction, and DT is the Jacobian mapping
tangential contact forces into generalized coordinates. The
norm constraint on b ensures that the friction force lies within
the Coulomb friction cone.

Instead of using the linear complimentarity formulation
described by Stewart and Trinkle [33] to combine the normal
(7) and tangential (8) contact constraints with the microrobot
dynamics (4), we adapt the variational framework recently de-
veloped by Manchester and Kuindersma [22]. The variational
framework requires approximating the Lagrange-D’Alembert
principle with a quadrature rule before taking variational
derivatives [23]. The order of the resulting discrete equations-
of-motion depends on the choice on quadrature rule, and we
use the midpoint rule for second-order accuracy.

The normal contact constraints (7) and the microrobot’s
kinematic constraints (2) are added to the discrete Lagrange-
D’Alembert principle with the appropriate Lagrange multi-
pliers, γ (the normal force) and λ (the constraint force),
respectively. Taking variations with respect to the generalized
coordinates qk then leads to the discrete Euler-Lagrange equa-
tions for our system:

D2Ld(h, qk−1, qk) +D1Ld(h, qk, qk+1)

+
1

2
F ext
d (h, qk−1, qk, uk−1) +

1

2
F ext
d (h, qk, qk+1, uk)

+
1

2
(C(h, qk−1, qk) + C(h, qk, qk+1))Tλk

+N(qk+1)T γk = 0.

(9)

Here Ld is the discrete Lagrangian, defined as the midpoint
approximation of the integral of the continuous Lagrangian
over a single time step. F ext

d is an analogous discretization
of the generalized external force (3). Note that, in general,
Ld and F ext

d depend on the choice of quadrature rule, and
expressions for both are derived for a general system using
the midpoint rule in [22]. Finally, N(q)T = (∂φ/∂q)T is
the Jacobian mapping normal contact forces into generalized
coordinates.

In addition to (9), solutions must satisfy the following
constraints, known as Karush-Kuhn-Tucker (KKT) conditions
[3]:

cd(qk, qk+1) = 0 (10)
γk ≥ 0

φ(qk+1) ≥ 0

γTk φ(qk+1) = 0,

(11)

where (10) ensures that kinematic constraints are enforced, and
cd is the midpoint approximation of c. The three conditions
in (11), collectively known as a complementarity constraint,
prevent interpenetration and ensure that contact forces act only
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s

Figure 4. Relaxed (blue) and true (orange) feasibility regions for a
complimentarity constraint of the form 0 ≤ a ⊥ b ≥ 0. Note that we recover
the true feasible region when s = 0.

when bodies are in contact to push them apart. Such con-
straints are commonly denoted using the following shorthand
notation:

0 ≤ γk ⊥ φ(qk+1) ≥ 0. (12)

The KKT optimality conditions for an approximation of the
Maximum Dissipation Principle (8) are derived and discretized
using the midpoint rule in a similar manner. This results in
three additional constraints: one equality constraint and two
complementarity constraints,

g1(h, qk, qk+1, ψk, ηk) = 0

0 ≤ ψk ⊥ g2(γk, βk) ≥ 0

0 ≤ βk ⊥ ηk ≥ 0,

(13)

where ψ and η are Lagrange multipliers and the exact forms
of g1 and g2 are derived in [22]. The tangential force and cor-
responding constraints are added to (9) and (11) to complete
the dynamics model,

r(h, qk−1, qk, qk+1, uk−1, uk, λk, γk) + P (qk+1)Tβk = 0

g1(h, qk, qk+1, ψk, ηk) = 0

c(qk, qk+1) = 0

0 ≤ γk ⊥ φ(qk+1) ≥ 0.

0 ≤ ψk ⊥ g2(γk, βk) ≥ 0

0 ≤ βk ⊥ ηk ≥ 0.
(14)

Here, r is the LHS of (9), and β and P are defined in [22]
based on b and D. Given qk−1, qk, uk−1, and uk, (14) can be
solved to find γk, λk, βk, ψk, ηk, and qk+1.

III. TRAJECTORY OPTIMIZATION

The dynamics expressed in (14) are used as constraints
in a direct trajectory optimization scheme. The trajectory
optimization problem is posed as a standard nonlinear program
(NLP) and solved using the constrained optimization solver
SNOPT. To ease the numerical difficulties associated with
complementarity constraints, we apply a smoothing scheme
similar to that used in [9]. For a complimentarity constraint
of the form ≤ a ⊥ b ≥ 0, this smoothing scheme replaces
the equality constraint aT b = 0 with the inequality constraint
aT b − s ≤ 0. Here, s is a non-negative slack variable that
alters the feasible region as shown in Fig. 4. We use a single
slack variable, sk, to smooth all complimentarity constraints
at each knot point. To encourage convergence of solutions
towards satisfaction of the true complementarity constraints,
we augment the cost function with a term that penalizes



sk. The complete formulation of the trajectory optimization
problem is stated as the following NLP:

minimize
h,Q,U, C

J(h,Q,U) + α

N−1∑
k=1

sk

subject to f(h, χ) = 0

g(qk+1, λk, βk, ψk, ηk, sk) ≥ 0

umin ≤ uk ≤ umax

qmin ≤ q ≤ qmax,

(15)

where J is a cost function, α is a positive scalar weighting
parameter, f and g are the equality and inequality constraints
in the relaxed version of (14) found in [22], and χ =
{qk−1, qk, qk+1, uk−1, uk, λk, γk, βk, ψk, ηk}. Furthermore, Q
is the set of robot configurations at the knot points, qk, U
is the set of control voltages, uk, and C is the set of all
constraint-related variables, λk, γk, βk, ψk, ηk, and sk. The
input voltages, uk, are bounded by umin = 0 V and umax =
225 V to increase actuator lifetime [16]. The flexure joint
angles, a subset of qk, are bounded between qmin = −π/4
and qmax = π/4, which are conservative estimates of the
maximum mechanical bend angles. The penalty on the slack
variables in the cost function of (15) is an “exact penalty”
that has theoretical convergence guarantees with finite values
of α [1]. In practice, we find good convergence with values
of α on the order of 102.

A. Gait Optimization

We search for gaits near stride frequencies of 2 Hz, 10 Hz,
and 30 Hz on three different surfaces: Teflon, card-stock,
and 1200 grit sandpaper. The selected frequencies represent
different operational regimes for the microrobot as discussed
by Goldberg et al. [11]: quasi-static (2 Hz), near the z-natural
frequency (10 Hz), and near the roll natural frequency (30 Hz).
In addition, the 2 Hz gaits represent a long time horizon for
this microrobot as the body natural frequencies are between
10–30 Hz. Finally, these nine gaits cover a wide-range of
(ground) contact conditions (µ ∈ [0.29, 1.02]), showcasing the
versatility of our approach.

The NLP presented in (15) is modified to search for periodic
state and input trajectories by enforcing periodicity constraints
on all position and velocity decision variables except the x-
position of the floating base. The algorithm minimizes the
following cost function that encourages the robot to achieve
its maximum theoretical stride length:

J = (xN − xg)TQ(xN − xg)

+

N−1∑
i=2

c1
2

∆q̇Ti ∆q̇i +
1

2
∆uTi ∆ui,

(16)

where xg is a goal state, Q is a diagonal matrix with
Q11 ∈ [10, 50] and the remaining diagonal entries equal to
one, c1 ∈ [10, 50] scales the velocity difference penalty, and
∆q̇i = q̇i − q̇i−1 and ∆ui = ui − ui−1 are the difference be-
tween subsequent generalized velocities and control voltages,

respectively. To reduce sensitivity to local minima, the opti-
mization is initialized with a heuristic trot gait that achieves
roughly periodic locomotion assuming cardstock friction. The
goal state is then defined as xg = [10, xp]

T , where the first
entry corresponds to translating the body forward slightly less
than twice the maximum swing displacement in a gait cycle.
The periodic subset of the goal state, xp ∈ R75, is set to the
periodic subset of the final state on the initial trajectory. The
difference penalties are applied to discourage chatter in the
state and inputs trajectory.

B. Aperiodic Behaviors

We also used this variational trajectory optimization method
to find state and input trajectories for a vertical jump. The
following cost function, which encourages the microrobot to
jump to a specific height, is minimized:

J = (xN − xg)TQ(xN − xg) +

N−1∑
i=1

1

2
uTi Rui. (17)

Here xg = [02×1, 24, 073×1]T is a goal state that specifies
the desired apex height of the jump (a little less than twice
the COM height) with no body rotation or horizontal motion.
The quadratic input cost penalizes swing actuator voltages
as fore/aft forces do not contribute significantly to a vertical
jump. To improve convergence time and avoid poor local
optima, the optimization is initialized with a heuristically
designed vertical jump trajectory.

IV. LOCOMOTION EXPERIMENTS

The microrobot’s performance for trajectories found in Sec.
III is evaluated in a controlled 20 cm × 20 cm locomotion
arena (Fig 5a). A proportional-derivative (PD) controller is
implemented to track the desired positions of the microrobot’s
four legs in the body-fixed frame, and an estimator is devel-
oped to provide low latency estimates of the leg positions (Fig.
5b).

A. Locomotion Arena

Input signals are generated at 2.5 kHz using a MATLAB
xPC environment (MathWorks, MATLAB R2015a), and are
supplied to the microrobot through a ten-wire tether. Five
motion capture cameras (Vicon T040) track the position and
orientation of the robot body and the position of the feet at
500 Hz with a latency of 11 ms. In addition, eight piezoelectric
encoders (described below) provide low-latency estimates of
actuator tip velocities at 2.5 kHz [18]. Finally, a high speed
camera (Phantom v7.3) orthogonal to the sagittal plane records
the motion of the robot at 500 Hz.

B. Piezoelectric Encoder Dynamics

Each piezoelectric encoder (Fig. 6) provides an estimate
of the corresponding actuator’s tip velocity by computing
the “mechanical” current (proportional to tip velocity [4])
produced in that actuator. This current, im, can be computed
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Figure 6. Schematic of lumped parameter electrical model of a single actuator
(green) and associated piezoeletric encoder measurement circuit [18].

by applying Kirchoff’s law (18) to the measurement circuit in
series with a lumped-parameter electrical model of an actuator:

im =
usig − uact

Rs
− ζCu̇act −

uact

R
. (18)

The first term on the RHS is the total current drawn by
an actuator, which is computed on the xPC target from
measurements of the voltages before, usig, and after, uact, a
shunt resistor, Rs. The actuator is modeled as a capacitor, C,
resistor, R, and current source, im, in parallel. The voltage and
frequency dependent values of R and C, and the value of the
blocking factor ζ have been computed by Jayaram et al. [18].

C. Controller and Estimator Design

Since the motion capture measurement latency is a signif-
icant percentage of the gait period (∼30% at 30 Hz), a filter
is developed to provide low-latency leg position estimates
in the body-fixed frame by using the current measurements
from the piezoelectric encoders. These currents are scaled
by an empirically determined proportionality constant, X , to
estimate actuator velocities. For a particular leg, the SFB
transmission kinematics are used to define a transformation,
H ∈ R3×2, from lift and swing actuator velocities to Cartesian
leg velocities in the body-fixed frame. This map is used to
estimate Cartesian leg velocity in the body-fixed frame, which
is integrated over the duration of the latency to achieve low-
latency leg position measurements.

The map (19) is indexed by achievable leg-x and leg-z
positions (instead of lift and swing actuator positions) as they

are directly estimated,

H(x, z) =
∂f

∂qi
− ∂f

∂qd

[
∂c

∂qd

]−1
∂c

∂qi
. (19)

Here, qi are the independent generalized coordinates (actuator
positions), qd are the dependent generalized coordinates (flex-
ure joint angles), c is the vector of kinematic loop constraints,
and f is the kinematic mapping from lift and swing actua-
tor positions to Cartesian leg position. We solve an inverse
kinematics problem, posed as a NLP, to find values of qi and
qd that result in desired leg-x and leg-z values. Twenty-one
samples are used in each direction, and H(x, z) is defined for
each leg as a 3× 2 look-up table stored on the xPC target.

This look-up table is then used in the following estimator:

q̂[k]leg =q[k − ε]leg + Ts

k∑
κ=k−ε

1

2
( ˙̂q[κ]leg − ˙̂q[κ− 1]leg) (20)

˙̂q[k]leg =H(x[k − 1], z[k − 1])

[
Xs 0
0 X l

](
ism[k]
ilm[k]

)
. (21)

In (20), q̂[k]leg is the estimated leg position, q[k − ε]leg is
leg position measured by the motion capture system with ε
latency, Ts is the sample rate of the xPC Target, and the
summation is a trapezoidal integration of the estimated leg
velocity over the duration of the latency. In (21), H is indexed
by the previous estimate of the leg-x and leg-z positions, and
i[k]sm and i[k]lm are the mechanical currents for the swing and
lift actuators, respectively. Finally, Xs (∼140) and X l (∼120)
are experimentally determined proportionality constants for the
swing and lift actuators, respectively,

These estimated leg positions are used in a simple controller
since the swing and lift DOFs are nominally decoupled at pre-
resonant drive frequencies [6]. This feedback controller simply
alters the feed-forward lift and swing input voltages based on
the following control law:

u =

[
Ks
f 0

0 Kl
f

]
u0 +

[
Ks
p 0

0 Kl
p

]
e+

[
Ks
d 0

0 Kl
d

]
de

dt
. (22)

Here u = [us, ul]
′ are the input signals provided to the

swing and lift actuators, u0 = [u0s, u
0
l ]
′ are the feed-forward

input voltages determined by the trajectory optimization (Sec.
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III), and e = [ex, ez]
′ is the error between the desired and

estimated leg-x and leg-z positions. Note that the desired leg
positions are pre-computed from the optimized state trajectory
using the model kinematics. Finally, Kp, Kd, and Kf , are
the proportional, derivative and feed-forward control gains,
respectively, and the superscripts s and l represent the swing
and lift DOF, respectively.

V. RESULTS

We demonstrate a physical implementation of the generated
trajectories for nine periodic gaits and a dynamic jumping
behavior. In addition, we show that our simple joint-space
controller maintains gait timing and tracks the desired leg
trajectories in the body-fixed frame for a range of frequencies
on a wide variety of surfaces.

A. Gait Optimization

Each gait is executed for 15 cycles with an initial voltage
ramp, and the control gains are manually tuned. The feed-
forward vary from 0.9 to 1.1, reflecting the utility of the
optimized inputs. The mean per-cycle forward velocity for the
closed-loop experimental trials (blue) is compared with the
optimized trajectory (orange) and a manually tuned gait with
the same frequency and average input power (gray) in Fig. 7a.

The 2 Hz closed-loop experimental trajectories achieve an
average velocity of 9.77 mm/cycle, which is within 5% of the
goal speed of 10 mm/cycle. These gaits also perform 26%
better than the manually tuned gaits, which achieve an average
velocity of 7.71 mm/cycle. In addition, the planned body pose
closely matches that which is executed by the robot (card-stock
trial shown in Fig. 8), demonstrating that the model captures
most of the microrobot’s salient dynamic properties. The robot
also maintains the desired gait timing (front legs depicted in
Fig. 7b), and the closed-loop leg trajectories (front left leg
depicted in Fig. 7c) closely match the optimized trajectories in
air (z > 0). However, the robot is unable to push as forcefully
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Figure 8. Per-cycle trajectories for the robot body during a 2Hz gait on
card-stock. A best-fit line is subtracted from the y and yaw trajectories. The
blue shaded region represents one standard deviation (n=15).

into the ground as planned, most likely because of unmodeled
serial compliance in the transmissions [27]. Note that the
matching of gait timing and acceptable leg-tracking is also
consistent for all 10 Hz trajectories and all 30 Hz trajectories,
except on Teflon.

At 10 Hz, the closed-loop experimental trajectories achieve
an average velocity of 8.98 mm/cycle, which is close to the
desired velocity and 10% faster than the manually tuned gaits.
The card-stock gait at this frequency achieves the fastest per-
cycle velocity recorded for this robot, at 10.87 mm/cycle.
However, the other two gaits perform slightly worse than
expected. This is most likely due to discrepancies between
the planned and executed floating base trajectories (see sup-
plementary video). Finally, the average velocity for the 30 Hz
closed-loop gaits is slower at 4.24 mm/cycle. The closed-
loop experiments on sandpaper and card-stock are still 20%
percent faster than the manually tuned gaits and within 20%
of the predicted optimized velocities; however, the robot’s
performance is poor on Teflon. This frequency (near the roll
resonance) is particularly challenging for locomotion using the
laterally asymmetric trot gait, and the optimizer has difficulty
finding gaits that move at 10 mm/cycle.



B. Aperiodic Behaviors

We also use this method to execute a vertical jump on a
card-stock surface. The average jump height is 9.65 ± 0.21
mm, which is ∼80% of the goal height of 12 mm (Fig. 9).
Manufacturing imperfections lead to asymmetries that cause
the robot to roll during the jump, but it stays near the initial
position, with final x, y and yaw values of −3.25±0.57 mm,
of −0.15± 1.98 mm, and of 11.12± 8.56 deg, respectively.

VI. DISCUSSION

A. Performance Improvements

Our model-based approach yields improvements over pre-
vious experimental results collected in [10, 11]. Specifically,
an average velocity of 9.21 ± 1.31 mm/cycle achieved across
the six gaits at 2 and 10 Hz is comparable to the highest
previously measured experimental velocity of 9.5 mm/cycle
achieved using careful tuning on card-stock surface [10]. Even
the three slower 30 Hz gaits move on average 30% faster than
previously recorded trots at similar frequencies on a card-
stock surface. Additionally, the robot is able to achieve a new
highest velocity of 10.87 mm/cycle, and demonstrate the first
controlled vertical jump of 9.96 mm (78% of COM height).
Importantly, these performance improvements were achieved
without exhaustive experimentation: tens of experiments were
conducted as opposed to hundreds.

B. Quality of Optimized Trajectories

We evaluated the quality of the periodic trajectories by
measuring the normalized average slip, s̄ defined as:

s̄ =
1

4
∫ tf
t0
vx(t)dt

4∑
i=1

∫
ξ

|vix(t)|dt. (23)

Here, vix is the x-velocity of the ith leg in the world-fixed
frame, and vx is the x-velocity of the center of mass in the
world-fixed frame as measured by the motion capture system.
The time interval of interest is bounded by t0 and tf , and
ξ is the set of times for which vix < 0. Normalized slip
is the total distance a single leg travels backwards in the
world frame divided by the forward distance traveled by the
body. We present an average value for all four legs. Higher
values of s̄ indicate increased backwards motion of the legs,
decreased propulsion, and reduced performance. The average
value of s̄ is 0.10±0.06 (n = 9) for the optimized trajectories,
which is expected since we demand high performance from
the robot. The closed-loop experimental trajectories slipped
slightly more, with an average s̄ of 0.24± 0.14 (n = 9), and
is one of the factors that could have resulted in decreased
performance. In addition, the optimizer also finds an intuitive
jumping trajectory where all four legs first build spring poten-
tial energy, and then simultaneously push into the ground.

C. Limitations

Due to the nonconvexity of the trajectory optimization
problem, the optimizer can get stuck in poor local optima
depending on the initial values of the decision variables.
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Figure 9. Experimental (blue) and optimized (orange) floating base pose
during a vertical jump. The blue shaded region is one standard deviation (n=4).

This is most clear at 30 Hz stride frequencies, where laterally
symmetric gaits have achieved higher per cycle velocities [11].
Furthermore, our MATLAB implementation requires several
minutes to compute the optimized plans, and significant speed
improvements could be made with a C++ implementation.
Finally, unmodeled serial compliance alters the transmission
kinematics at higher frequencies, decreasing the utility of the
optimized trajectories and the robot’s performance.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we develop and evaluate a framework for
modeling, planning, and controlling dynamic behaviors for
legged microrobots. We develop a complete dynamic model
of a complex microrobot, and adapt a state-of-the-art contact-
implicit trajectory optimization algorithm to generate physi-
cally accurate whole-body locomotion plans for a variety of
operating conditions. These locomotion plans are executed on
the robot and result in improved performance.

Future work can improve upon both the existing optimiza-
tion framework and the realization of optimized trajectories
on the robot. For microrobots with high frequency passive
dynamics, the contact mode trajectory often changes over
longer timescales than the state and input trajectories. Encod-
ing this into the NLP formulation by using higher order time-
stepping methods could aid convergence and avoid unneces-
sary contacts without sacrificing richness in the contact force
trajectories. This would allow for planning over longer hori-
zons and enable optimization of a broader class of aperiodic
behaviors. Furthermore, implementing whole-body locomotion
controllers and/or learning-based methods to compensate for
unmodeled effects would improve translation to the physical
system, resulting in increasingly dynamic behaviors.
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