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Abstract—In this work, we present a spiking neural network
(SNN) based PID controller on a neuromorphic chip. On-chip
SNNs are currently being explored in low-power AI applications.
Due to potentially ultra-low power consumption, low latency,
and high processing speed, on-chip SNNs are a promising tool
for control of power-constrained platforms, such as Unmanned
Aerial Vehicles (UAV). To obtain highly efficient and fast end-to-
end neuromorphic controllers, the SNN-based AI architectures
must be seamlessly integrated with motor control. Towards this
goal, we present here the first implementation of a fully neu-
romorphic PID controller. We interfaced Intel’s neuromorphic
research chip Loihi to a UAV, constrained to a single degree
of freedom. We developed an SNN control architecture using
populations of spiking neurons, in which each spike carries
information about the measured, control, or error value, defined
by the identity of the spiking neuron. Using this sparse code,
we realize a precise PID controller. The P, I, and D gains of the
controller are implemented as synaptic weights that can adapt
according to an on-chip plasticity rule. In future work, these
plastic synapses can be used to tune and adapt the controller
autonomously.

I. INTRODUCTION

Artificial neural networks have transformed the field of
computer vision and are increasingly used in robotics to
support, e.g. perception [1]–[4], simultaneous localisation and
mapping [5]–[8], planning [9], [10], and end-to-end con-
trol [11]–[13]. To achieve good performance, large neural
networks are required that need to be deployed on special-
purpose hardware to meet the latency and power-consumption
constraints of autonomous robots. Neuromorphic hardware
offers a particularly favorable trade-off in latency and power,
due to its parallel, asynchronous, event-based (spiking) way
to compute [14]–[17]. In contrast to other neural network
accelerators, neuromorphic hardware features plasticity that
enables online on-chip learning in real-time, after deployment
of the network [14], [18].

Thus, neuromorphic hardware offers a computing substrate
for neuronal robot control architectures with adaptation and a
close link to advanced perception – e.g., object recognition,
segmentation, or shape estimation. In order to enable the
seamless integration of different components of the overall
architecture, we develop algorithms and computing primitives
to solve different robotic tasks using SNNs. Such a pervasively
neuronal approach is required to reduce computing bottlenecks

on the interface between neuromorphic and conventional,
sequential computing hardware. Conventional computing can
be reduced to the bare minimum to support configuration,
monitoring, and documentation during system development
and can become obsolete at deployment.

The SNNs that we develop are complimentary to the state of
the art deep neural networks (DNNs) and alleviate a number of
challenges of their use in robotics: (1) training a DNN relies
on a large amount of data that captures the task; since the
characteristics of a specific robot do not translate perfectly
well to another robot and are subject to fluctuations and drift,
online learning and adaptation are required to enable precise
neuronal control; (2) Robot control has stricter constraints
on latency, power budget, and size of computing hardware
than typical image processing applications, thus simple net-
works are preferable; (3) The relatively low (compared to
high-resolution images) dimensionality of input and output
space also lead to preference for smaller NN architectures in
motor control applications. Despite the expanding research in
applications of deep learning in motor control, most motor
controllers deployed today use computationally much lighter
conventional algorithms. Simple PID controllers are the most
basic and widely used controllers for many control tasks [19].

In this work, we demonstrate how a nested PID controller
can be realized in a spiking neuronal network (SNN) on-chip,
achieving comparable performance to a conventional digital
controller realized with floating-point arithmetic. Recent work
on motor control in an SNN on-chip [20] implemented a
neural network that learns to generate a corrective signal if
the controller starts to fail, e.g., due to wear. In our work,
the controller itself is realized as an SNN, making the whole
system neuromorphic and subject to optimal performance and
power consumption trade-off on neuromorphic hardware.

We implement our controller on Intel’s neuromorphic re-
search chip Loihi [14]. We demonstrate the controller per-
formance on two robotic systems – a bi-motor UAV and a
wheeled vehicle – in a closed-loop hardware setup with the
neuromorphic chip and robots. The on-chip plasticity creates
a possibility for autonomous tuning and adaptation of the
controller [21]–[23].



II. METHODS

A. Hardware & software components

1) Neuromorphic hardware (Loihi): In this project, Intel’s
neuromorphic research chip Loihi [14] realized in the inte-
grated device Kapoho Bay, was used to implement the SNN.
It contains two Loihi chips, each integrating 128 neuron-cores,
and three x86 cores. The x86 cores are used for monitoring
and spike I/O. Each neuron-core simulates 1024 neuronal
compartments and 4096 input and output “axons” (ports).
We use 27ms time-steps in our experiments to synchronize
neuronal processing with the overall handling of I/O between
different devices (timestep on Loihi can be as fast as 10µs).
The Kapoho Bay has a USB interface, which gives easy access
to the system via the NxSDK API provided by Intel.

2) Pushbot: The Pushbot [24] is a small differential drive
robot with two propulsion belts (Fig. 1). The Pushbot features:
an IMU to measure the angular velocity, one DC motor for
each belt, and a WiFi module to communicate with a host
computer, interfaced to the Kapoho Bay.

3) Constrained UAV: The UAV setup consists of a two-
motor UAV mounted on a test bench, constraining the UAV to
one degree of freedom. The torque around the horizontal axis
is generated by two BLDC motors, mounted 23cm away from
the rotational axis, with propellers facing upwards (Fig. 1). A
mapping between motor velocity and torque was derived from
the black box method, which enables direct torque control
of the axis. We mounted a DAVIS240C sensor [25] on the
UAV and used its integrated Inertial Measurement Unit (IMU)
to obtain estimates of the UAV’s pose and angular velocity.
The event-based camera itself was not used here, but can be
deployed for optic-flow based state estimation [26]. The IMU
and Electronic Speed Controllers (ESCs) were interfaced using
a Raspberri Pi communicating with the Kapoho Bay’s host
computer over the network.

Fig. 1: Top: A 3D model of the physical test bench for UAV
control. Bottom: The Pushbot robot and the complete UAV
setup.

4) Interfaces, system overview: For the interface to the
Kapoho Bay, we use an Intel UP2 board. The high-level
software components communicate using a light-weight peer-
to-peer communication library YARP [27]. This enables a
modular system design, in which we can easily swap a CPU-
based PID controller with our Loihi implementation and the
1-DoF UAV with the Pushbot (Fig. 2). The injection of input
spikes, extraction of SNN output, and configuration of the
SNN are implemented using NxSDK.

Fig. 2: Overview of the software-hardware setup: the IMU and
the Electronic Speed Controllers (ESC) of the UAV or the IMU
and the DC-motor encoders of the Pushbot communicate with
the host computer (UP2 board) over YARP. Communication
with the Loihi chip is managed through YARP and a C-
program running on the embedded x86 processor. The Loihi-
based PID can be exchanged with a conventional CPU-based
PID for comparison experiments.

B. Spiking Neural Network (SNN)

1) Neuronal representations: Our SNN consists of several
groups of neurons – neuronal populations – arranged, concep-
tually, in arrays of different dimensionality. We use 1D popu-
lations of neurons to represent scalar values. E.g., a measured
variable a ∈ [−lim, lim] can be represented by a population
of N neurons. Typically in population coding known from
computational neuroscience, each neuron ni, i ∈ [0, N − 1]
is responsive to a range of the a values with a bell-shaped
tuning curve: strongest response to a certain value and weaker
response to nearby values. Thus, for any measured value a,
several neurons in the population are active with different
firing rates. In the network developed here, we use one-hot
encoding: only one neuron is active at any time, representing
a range of values, the whole population linearly mapping the
interval [−lim, lim] to [0, N − 1]. The deterministic behavior
of artificial neurons on Loihi allows us to use this more
efficient code.

In our architecture, we also use 2D arrays of N×N neurons
to realize mathematical operations. These 2D arrays connect
two input 1D arrays and one 1D output. The operations
arrays can have different connectivity to their output array
to realize different computing functions. For instance, the
addition operation adds two numbers represented by two 1D
populations and passes the result to the third 1D population, as
shown in Fig. 3. The output population receives input along
the diagonals of the 2D operation array, and the output di-



mensionality, consequently, is 2N−1. Thus, if we concatenate
such operations, the size of the populations will grow, which is
undesirable for large, e.g., hierarchical controllers. Therefore,
we constrain the output of an operation array to have the same
size as its inputs, mapping several extreme diagonals to the
first and last neuron of the output population. This leads to
minor boundary effects, which, however, did not impact results
in our experiments. Using the same principle, a subtraction
operation can be implemented by connecting the opposite
diagonals of the 2D neuronal array to the output vector.

Fig. 3: Left: Connectivity from two 1D input arrays to the
operation 2D array. Each neuron in the input array on the left
is connected to all neurons on the respective row of the 2D
array, and each neuron in the input array on top is connected
to all neurons in the respective column. Numbers in the circles
show the centers of the represented regions of the continuously
measured variables. Right: The output connectivity of the
same 2D operation array performing the addition operation.
The size of the output 1D array is constrained to the size of
the input arrays.

2) P-, I-, and D controller: Having realized the addition
and subtraction operations with spiking neurons, the algebra
of the PID controller can be implemented in the SNN network.
The PID controller is defined by Eqs. (1):

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
,

e(t) = r(t)− y(t),

(1)

where u(t) is the actuated command, y(t) is the feed-
back/sensor signal, r(t) is the control signal (desired value
of y(t)), e(t) is the error, and Kp, Ki, and Kd are the PID
gains.

We reformulate the PID equations in a time-discrete way
and define five values that will structure our SNN (et, pt, it,
dt, and ut) in Eqs. (2):

et = rt−2 − yt−2 (error),
pt = et−1 (proportional term),
it = it−2 + et−2∆t (integral term),

dt =
et−2 − et−3

∆t
(derivative term),

ut = Kppt +Kiit +Kddt (command).

(2)

Note, all computations on Loihi run in parallel, but the spike
exchange is synchronized within a time-step. Thus, at least
one time-step delay (∆t) is introduced by each connection
(the delay can be longer, it is a parameter of a synapse). For
simplicity, all connections in this network have a delay of one
time-step. The system variables et, pt, it and dt can thus be
defined with the exact delay in Eqs. (2). The architecture of
the neural PID controller is visualized in Fig. 4.

Fig. 4: The first part of the PID network consists of
three 2D operation arrays (matrices): EM calculates the er-
ror/proportional signal by subtracting the control signal from
the sensory feedback; IM calculates the integrated error signal
by adding the current error with the last integrated error, fed
back to the adder IM; and DM calculates the derivative of
the error by subtracting the one time-step delayed error signal
from the current error signal. Inset shows an overview of a
PID controller.

3) Spike-based operation of the network: We use a one-
spike approach in our SNN, in which only one neuron in
each population can fire at any time-step. This behavior is
achieved by setting the maximum voltage- and current decays
in neuronal compartments of all populations. This resets the
membrane potential of neurons to the resting state at every
time-step. Furthermore, the threshold of neurons in the 2D
arrays is set to value of 3, and all the input weights to the
2D arrays are set to 2. This means that a neuron in any
2D array can only fire if it receives two spikes within the
same time-step. At each time-step, at most one spike is output
in each of the two input populations (e.g., R and Y) of the
2D operation array, e.g. EM (Error Matrix). This forces one
neuron in the EM to fire. This, in turn, triggers firing of one
neuron in the output population, E (error). In this way, spikes
propagate through the network and maintain the one-spike
behavior throughout all neuronal populations. Which neuron
in each population fires determines the represented value at
that time-step.

4) Output network: rate-coded populations: To enable fu-
ture adaptive learning of the PID constants, two approaches
are possible. A gain constant can be implemented as weights
between two 1D neuronal arrays that represent values with



population encoding (e.g., one-hot sparse encoding in our
network). This gain representation will allow for an arbitrary
mapping between the pre-gain values and the post-gain values,
i.e., any non-linear scaling of P, I, and D terms can potentially
be realized. Being a more powerful representation, we antici-
pate that learning such a gain matrix will be more difficult.

Thus, although we realized the network following both
approaches, our results shown here are based on the second
approach, in which the gain is represented by the weights
between two rate-coded populations. A rate-coded population
is a population of neurons with a homogeneous distribution of
resting level membrane potentials. The overall firing rate of the
whole population represents the current value of the variable.
Note how this stays in contrast to the sparse population code,
in which the value is represented by the identity (index, or
address) of the firing neuron(s). Synaptic weights scale input to
a rate-coding population, increasing or decreasing the number
of neurons that get above threshold in response to input spikes
(remember, there is only one spike per time-step per neuron)
and thus controlling the overall firing rate. A simple learning
rule that increases or decreases the weights depending on the
controller’s behavior can adjust the P, I, and D gains.

Thus, in our architecture, we convert the sparse coded P/I/D
representations to population-rate code before the three values
go through weights that encode the P, I, and D gains and
are summed up in the control output population, U. In the
sparse-coding P/I/D arrays, the represented values are in the
range a ∈ [−lim, lim], with a = 0 at the central neuron. Each
neuron in the P/I/D 1D arrays is connected to either P/I/D+ or
P/I/D- rate-coding populations, depending on the sign of the
represented value. The weight that connects each neuron in the
sparse-coded populations is proportional to the magnitude of
the encoded value (i.e., its index in the array, counted from the
center). This connectivity produces high activity in the P/I/D+
or P/I/D- neurons when edge neurons in the P/I/D arrays are
active, and, respectively, low activity if a neuron close to the
center of the P/I/D arrays is active (see Fig. 5).

It is important that neurons in the population-rate coded
populations fire asynchronously: if all neurons fire syn-
chronously, the overall firing rate will not depend on input
strength in our single-spike network. Thus, small bias and
noise currents are injected into the P+ and P- neurons to
ensure uniformly distributed voltage potentials that enable
asynchronous behavior of the neurons. Both P+ and P- are
connected to the summing-up population A with the weight
of respectively Kp and −Kp. Note that the transfer function
of weights between two rate-coded populations may have a
non-linear form; this requires further investigation and will be
alleviated if weight adaptation is used to tune the gains.

The same steps as for P populations are made for I and
D arrays (Fig. 6). A small bias is injected into the summing
population A to ensure a firing activity of A as an offset. From
this offset P-, I-, and D- lower the activity and P+, I+, and
D+ raise the activity.

The population-rate coded sum of control signals, repre-
sented in A, is converted back into sparse code in B by

introducing linearly distributed thresholds of the neurons in
B. A and B are connected in an all-to-all manner. The neuron
of B representing the lowest value (−lim) spikes in response
to a single input spike and the neuron representing the highest
value (lim) spikes only, when the activity of A is the highest.
Every level of activity between [−lim, lim] is linearly mapped
along the B population. To get back to the one-spike encoding,
each neuron in B is connected in a one-to-one manner to
neurons in U with a positive weight, and to all neurons of
U with lower indices with negative weights (Fig. 5).

Fig. 5: Conversion from the sparse place-coded array (one-hot
coding) (P) to the rate-coded neuronal populations (P+, P-).
The same structure is used for I and D pathways. Adaptive gain
can be applied to the weights from P+ and P- to the summing
population A (weights +/-Kp). The rate-coded values are
transferred back to the space-coded control output population
U through an auxiliary population B. The space-code in the
U population simplifies connection to the motors in our setup
(the address of the firing neuron can easily be accessed in an
embedded snip, alleviating the need to calculate firing rates).

Fig. 6: Overview of the full PID controller and the output
network with the space-to-rate code conversion, required to
simplify learning of the controller gains.



C. Implementation on robots

1) Pushbot: For simplicity, a single PID controller was
initially tested with the Pushbot1. The Pushbot’s angular
velocity was controlled to the target angular velocity (R)
using angular velocity (Y ), measured with an IMU or wheel
encoders.

2) 1-DoF UAV: In order to control the angular position
of the 1-DoF UAV, two nested PID controllers are needed.
The outer PID outputs the target angular velocity based on
the target angular position and the current angular position.
The inner PID computes the target torque based on the target
angular velocity obtained from the outer PID and the current
angular velocity.

D. Constraints of neuromorphic hardware and network size

Each neuronal core on Loihi can simulate up to 1024
neurons, which enables 2D populations of size 32×32 neurons.
To increase population size, we divide the 2D populations into
multiple segments and distribute them across multiple neuronal
cores, increasing the size of available 2D operation arrays.
Each connection in our network is initialized with its own
input- and output axon (weight sharing is not supported in
the current version of the API, NxSDK 0.9). The number of
axons per core is limited to 4K. For each 2D-population’s
segment, 2n2 input- and n2 output-axons are needed, where
n2 is the size of the 2D array’s segment. To initialize two
(nested) PID controllers for the UAV on Loihi, we need six
2D arrays. Thus, 6m2 neuro-cores are used for simulation of
the 2D populations, where m2 is the number of segments,
in which each 2D array is divided. Since 128 neuro-cores are
available on one chip, arrays of size 632 can be used (each 2D
array consists of 32 segments of size 212). These populations
use 54 neuro-cores and leave 74 neuro-cores for the rest of
the network.

E. Experiments

We tested the SNN-based PID controller running on Loihi
with both robotic systems and compared the performance
against a conventional PID controller implemented on a CPU
(the UP2 board2). Furthermore, for the UAV, we implemented
a constrained-PID (CPID) on the CPU that uses the same
numeric precision as the SNN on Loihi (63 different values).
This shows the impact of lowering the resolution of value
representation without introducing the probabilistic behavior
of the rate-coded populations. All connections in the SNNs
were static, the PID gains of both systems were tuned by hand.
3

F. Pushbot

The IMU integrated in the eDVS sensor of the Pushbot robot
outputs the angular velocity, measured by a combination of a

1http://inilabs.com/products/pushbot/
2Intel Pentium N4200: 1.1/2.5GHz w/4GB LPDDR4 RAM; Ubuntu 16.04
3All performance results are based on testing as of February 2020 and may

not reflect all publicly available security updates. No product can be absolutely
secure.

3-axis gyroscope and the linear accelerometer. The velocity
values were sampled at 20Hz (note, Loihi can support input
at > 10kHz). The IMU-measured values were sent to the
embedded program on Loihi and used to generate input spikes
to the Y population. The two input spikes – to the Y and
R populations – generate a cascade of spikes in the SNN
architecture, eventually leading to a single spike in the output
U population 12 time-steps later. The index of the firing
neuron of the U population is recorded in the embedded
program and is interpreted as the angular-velocity command
sent to the robot. This command is directly translated into
motor commands making the robot turn with the set velocity.

G. 1-DoF UAV

To control the angular position of the UAV in one degree
of freedom, two nested PID controllers were used. The first
PID receives the control signal (rt) and the current angular
position (yt), measured by the IMU. The PID computes the
target angular velocity ut. ut is passed-on into the second
PID controller that also receives the current angular velocity
(ẏt) from IMU as a 1D input and computes the target angular
acceleration u̇t.

III. RESULTS

To visually show the performance of the controller, for
exemplary tests, we show a plot comparing the SNN imple-
mentation against CPU based- and constrained CPU based PID
controllers. We also show tables with measures of overshoot,
rise time, and settling time of the systems for quantitative
comparison. A video of one of the test runs, along with the
measured controller outputs, can be found in Supplementary.

A. Pushbot control

Fig. 7 shows the results of an exemplary run of the SNN
controller on Loihi controlling the angular velocity of the
Pushbot robot. The set value (blue line in the plot) was gener-
ated on the host computer and sent to the Loihi chip as input
to the R population. The numerical values were interpreted in
an embedded program on an x86 core, and a single spike
per time-step was sent to one neuron in the R population
as input. The full range of available speed (±150deg/s) was
mapped onto 63 neurons of the 1D population. In Fig. 7, the
red curve shows the angular velocity of the robot measured
by IMU when the Pushbot is controlled by spikes from the U
population in the SNN on Loihi. The green curve shows the
performance of the software PID controller.

http://inilabs.com/products/pushbot/


Fig. 7: Output of PID controllers for the Pushbot robot. Blue:
the control signal for the PID (target angular velocity). Red:
the angular velocity measured by IMU when UAV is controlled
by the SNN-based PID running on Loihi. Green: the angular
velocity measured by IMU when UAV is controlled by the
software PID controller running on a CPU.

Table I shows the overshoot, rise time, and settling time
of the SNN PID controller throughout four trails. Compared
to the CPU-based PID values (Table II), it can be seen that
there is no overshoot in the CPU PID compared to the mean
5.89deg/s overshoot in the SNN PID. The rise time is shorter
in the SSN PID and the settle time is longer. This is a sign that
the D gain has a stronger effect in the CPU implementation.
However, both controllers work well despite the delay in the
system.

TABLE I: Performance of the SNN PID controller (Pushbot)

SNN PID Overshoot [deg/s] Rise time [s] Settling time [s]
Trial 1 5.753 0.105 4.95
Trial 2 5.997 0.101 3.80
Trial 3 5.972 0.094 5.08
Trial 4 5.844 0.104 4.30
Mean 5.892 0.101 4.531
Std. 0.988 0.004 0.519

TABLE II: Performance of the CPU PID controller ( Pushbot)

CPU PID Overshoot [deg/s] Rise time [s] Settling time [s]
Trial 1 0 0.745 2.265
Trial 2 0 0.798 2.457
Trial 3 0 0.800 2.356
Trial 4 0 0.698 2.246
Mean 0 0.760 2.331
Std. 0 0.042 0.084

B. 1-DoF UAV

Fig. 8 shows the behavior of the SNN PID and software
PIDs for the UAV, in an exemplary run.

Table III shows the average overshoot, rise time, and settling
time for three PID controllers on the UAV, computed based
on four trials. It can be noticed that the SNN PID overshoots
more than the other controllers and has a faster rise time. This
indicates again that the D gain has more effect in the CPU
implementation than in the SNN implementation. Adaptation

of gains in a learning process should be able to find a better
parametrization of the SNN-based PID controller.

Fig. 8: Blue: control signal for the outer PID (target angle).
Red: performance of the SNN-PID running on Loihi (mea-
sured UAV angle). Green: performance of a conventional PID
controller on CPU. Magenta: performance of the CPU-PID
constrained to the same value representations as the SNN-PID.

TABLE III: Performance of PID controllers for UAV

Overshoot [deg] Rise time [s] Settling time [s]
SNN PID 8.319 3.419 21.781
CPU PID 4.128 4.173 21.772
CPID 4.876 3.872 21.764

IV. DISCUSSION

Before implementing adaptation of the control gains using
on-chip plasticity, several challenges of our setup must be
addressed. Thus, the Pushbot followed the control signal with
approx 450ms response latency. This response time is partly
due to the delay from the sensor to the host program and back
to the robot and the sensors through the physical system. This
accounts for approximately 100ms of delay and affects the
results for both the Loihi- and the CPU PID. The larger part
of the delay is introduced by the long time-step on Loihi. It
takes 12 time-steps of 27ms for the data to flow through the
PID controller (this is approx. 323ms). By optimizing I/O, the
timestep duration could be reduced down to 10µs in a future
implementation, considerably improving the results.

The performance of the Pushbot and the UAV differ since
the two control problems are different. The Pushbot’s con-
troller is controlling the first derivative of the position, which
is damped by the motors and gears, making the system easier
to control and to tune since the D term becomes obsolete. The
UAV controller is controlling the second derivative of a non-
linear system, which is a harder control problem. Furthermore,
the UAV was unbalanced in our test bench due to cable pulling.
As can be observed in Fig. 8, there is more overshoot in the
negative direction than in the positive direction.

V. CONCLUSION

We implemented a PID controller fully in a Spiking Neural
Network on Intel’s neuromorphic research chip Loihi. The



SNN was tested on two robotic platforms and was able to
control both. The results show that the behavior of the con-
trollers matches the behavior of conventional PID controllers,
but the performance was worse due to long time-steps causing
delays. A more direct low-level interface to Loihi cores will
enable fast, responsive, and reliable communication between
the chip and the robot as the hardware matures, significantly
reducing the response time.

To our knowledge, this is the first attempt to implement a
PID controller fully in neuromorphic hardware. Having access
to an SNN implementation of a PID controller will lead to
new applications of neuromorphic technology. Implemented
in the concurrent neuromorphic hardware, the SNN controller
can be scaled-up to control multiple degrees of freedoms and
allows us to build nested and hierarchical controllers. The
PID controller can be combined with SNN-based forward and
inverse models with online learning and adaptation [28] and
can be seamlessly integrated with SNN-based vision systems
on chip [29]–[35]. A complete SNN-based robotic solutions
without the need for conventional sequential hardware in the
loop will reduce bottlenecks on the interface between the
neuronal and conventional computing systems.

No learning was applied in this work. However, the output
network in our SNN was designed to be compatible with
online learning in order to enable autonomous adaptation of
the controller gains, which is the subject of our further work.
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