
Note thatJ is sparse since only two nodes are involved in
most cost functions. The size of vectorr solely depends on
#f with

r ∈ R#f (10)

The number of nodes (#nodes) in a graph depends on
the number of database imagesM and the number of query
imagesN with

#nodes= M ·N (11)

According to the way the different factor types are used [32],
the total number of factors#f can be quite high:

#f = 2 ·M ·N︸ ︷︷ ︸
#fprior+#fseq

+ 2 ·N ·
(
M

2

)
︸ ︷︷ ︸
#fDB

loop +#fDB
excl

+ 2 ·M ·
(
N

2

)
︸ ︷︷ ︸
#fQ

loop+#fQ
excl

(12)

Operations for optimization over the potentially extremely
high number of elements inJ and r cause a high computa-
tional effort. Moreover, due to the nonlinearity of many factors,
J (like r) has to be updated after each optimization step. This
leads to long runtimes.

The cubically increasing number of factors leads to an
extremely high memory usage even for smaller datasets. For
a relatively small dataset with1000 database and1000 query
images, the Jacobian matrixJ would have(2 · 109) × 106

elements. Even ifJ is represented as a sparse matrix with
approx. two entries per row and4 Bytes per entry, the
memory usage would be>14.9 GB; the corresponding vector
of residualsr would require approx.7.5 GB of memory.

There are optimization methods for non-linear least squares
optimization that reduce the memory requirements by oper-
ating on a matrixJTJ and a vectorJT r ([27, p.255], cf.
Sec. II-D). But these would probably even increase the runtime
as a tradeoff, because the elements ofJTJ and JT r have
to be computed successively in order to keep the memory
consumption low. A detailed investigation of this optimization
approach is beyond the scope of this paper and part of future
work. To partially circumvent the high memory usage ofJ
and r, we performed in [32] a partial optimization ofS on
approx.(500×500)-sized patches.

In Sec. VI, we propose a much faster and memory ef�cient
optimization based on ICM. It fully avoids the allocation and
processing of huge matrices likeJ and r. And as we will
show in Sec. VIII-B, the ICM-based graph optimization for
place recognition even outperforms the already good results
from [32] as it can optimize the fullS-matrix instead of
patches.

VI. GRAPH OPTIMIZATION WITH ICM

In the previous Sec. V, we gave an intuition why the
non-linear least squares optimization (NLSQ) used in [32] is
relatively slow and memory inef�cient. We �gured out two
main reasons: 1) the allocation and updating of the potentially
huge Jacobian matrixJ and the vector of residualsr and 2) the
operation onJ andr for optimization. For a much faster and
memory ef�cient graph optimization, we propose the usage of

the alternative optimization scheme ICM that fully avoids the
usage of huge matrices likeJ andr.

A. The basic idea of ICM

ICM (Iterated Conditional Modes) was proposed by Besag
for the optimization of Markov Random Fields for image
denoising [6]. The basic idea of ICM is as follows: Instead of
minimizing an error functionE(∀sij ∈ S) (e.g., the sum over
all factor's cost functions) to optimize all nodes at once, each
node is optimized separately conditioned on all other nodes
by using their values from the previous iteration. This tremen-
dously reduces the complexity of the error functionE(·) and
simpli�es its minimization. This procedure is repeated several
iterations until convergence or for a �xed number of iterations.
The application of ICM for the optimization of the graph for
place recognition in Sec. VI-B below will clarify this idea.

B. ICM-based graph optimization for place recognition

In order to optimize the graph with its nodessij ∈ S, the
global error functionE(·) has to be minimized with

s∗ij ∈ S∗ = arg min
sij∈S

E(∀sij ∈ S) (13)

E(·) is a function of theM · N nodessij ∈ S. It is the
sum over all quadratic cost functionsf(·) of all factors in the
graph:

E(∀sij ∈ S) =
∑

∀f∈Graph

f(·) (14)

With ICM, we de�ne E(·) to be a set of error functions
Eij(sij | ·). EachEij(sij | ·) is a function of a single node
sij conditioned on the other nodes.Eij(sij | ·) is the sum
over all quadratic cost functionsf that depend onsij :

Eij(sij | ·) =
∑

∀f(sij |·)∈Graph

f(sij | ·) (15)

Accordingly, each error functionEij(sij | ·) is a quadratic
function of only a single nodesij . This allows a conversion
into the standard form

E(sij | ·) = a · s2ij + b · sij + c (16)

with coef�cients a, b and c. Given this standard form, the
optimal values∗ij can be easily computed with

s∗ij = arg min
sij

(E(sij | ·)) = − b

2a
(17)

c can be neglected for computational ef�ciency. For fast
computation, alls∗ij should be computed synchronously based
on S from the previous iteration (St−1) as already proposed
in [6].
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TABLE I
PARTIAL COEFFICIENTSaf AND bf FOR EACH FACTOR WITH

CORRESPONDING COST FUNCTION.
f (sij ) af bf

fprior = (sij − ŝij)2

fprior 1 −2 · ŝij

fDB
loop = ŝDB

ik (sij − skj)2; fQ
loop = ŝQ

jl(sij − sil)
2

fDB
loop

wDB
loop

M � 1
·
P

8 kni ŝ
DB
ik −

2�wDB
loop

M � 1
·
P

8 kni ŝ
DB
ik skj

fQ
loop

w
Q
loop

N � 1
·
P

8 lnj ŝ
Q
jl −

2�wQ
loop

N � 1
·
P

8 lnj ŝ
Q
jlsil

fDB
excl = (1− ŝDB

ik )(sij ·skj)2; fQ
excl = (1− ŝQ

jl)(sij ·sil)
2

fDB
excl

wDB
excl

M � 1
·
P

8 kni(1− ŝDB
ik ) · s2kj 0

fQ
excl

w
Q
excl

N � 1
·
P

8 lnj(1− ŝQ
jl) · s

2
il 0

fDB
excl =(1−ŝDB

ik ) min(sij , skj)2, fQ
excl=(1−ŝQ

jl) min(sij , sil)
2

fDB
excl

wDB
excl

M � 1
·
P

8 kj sij<skj
(1− ŝDB

ik ) 0

fQ
excl

w
Q
excl

N � 1
·
P

8 lj sij<sil
(1− ŝQ

jl) 0

fseq = (sij − s̄ij)2

fseq wseq −2 · wseq · s̄ij

C. The computation of a and b

a andb depend on the used factors and their quadratic cost
functions, and in turn on the used structural knowledge. They
can be easily computed with

a =
∑
∀f

af , b =
∑
∀f

bf (18)

af and bf are the partial coef�cients of each factor type.
The coef�cients for the factors used in this paper are listed
in Table I. They were derived from the factor's quadratic
cost functions that were converted into the standard form
in Eq. (16). Note that a normalization term1/(M−1) or
1/(N−1) was added forfDB

loop , fQloop, f
DB
excl andfQexcl.

For example, if we want to use intra-database similarities
ŜDB together with themultiplicative cost functionfDB

excl, we
simply have to sum up the coef�cientsaf and bf for fprior,
fDB
loop andfDB

excl from Table I, and insert them into Eq. (17) to
obtain the equation for optimal valuess∗ij :

s∗ij=
ŝij +

wDB
loop

M−1 ·
∑
∀k\i ŝ

DB
ik skj

1 +
wDB

loop

M−1 ·
∑
∀k\i ŝ

DB
ik +

wDB
excl

M−1 ·
∑
∀k\i(1− ŝDB

ik ) · s2kj
(19)

D. The full ICM-based graph optimization procedure for place
recognition

The full algorithmic approach of the ICM-based graph
optimization for place recognition is shown in Algorithm 1. It
includes a matrix normalization (Line 1-3), node initialization
(Line 4), the application of a sequence-based method (see
Sec. VII) in case of sequence exploitation (Line 7), the
ICM-based optimization itself (Lines 8-11) and a check for
convergence (Lines 16-17).

During our experiments, we noticed a possible divergence
of sij in case of a too high weightingwseq of the sequence
information. Therefore, we added a simple strategy to our
ICM-based optimization procedure (Line 12-15): If anysij

Algorithm 1: ICM-based graph optimization proce-
dure

Data: ŝij ∈ Ŝ, ŝDB
ij ∈ ŜDB , ŝQ

ij ∈ ŜQ

Input: parameterswDB
loop , wDB

excl , w
Q
loop, w

Q
excl, wseq

Result: sij ∈ S with S ∈ RM � N

// normalize all similarities tôsij , ŝ
DB
ij , ŝQ

ij ∈ [0, 1]

1 Ŝ := norm(Ŝ)

2 ŜDB := norm(ŜDB)

3 ŜQ := norm(ŜQ)

// initialize nodessij ∈ S

4 S := Ŝ

5 St� 1 := Ŝ

// optimizeS with ICM
6 for iteration = 1, . . . ,#iterations do

// compute alls̄ij ∈ S̄ with seqConv (Sec. VII)
7 ∀i, j : s̄ij = SeqConv({ij}; skl ∈ St� 1)

// optimize all variablessij ∈ S
8 for ∀i, j do
9 a :=

∑
8 f af ({i, j}|St� 1, Ŝ, Ŝ

DB , ŜQ, S̄)

10 b :=
∑

8 f bf ({i, j}|St� 1, Ŝ, Ŝ
DB , ŜQ, S̄)

11 sij := − b
2a

// check for divergence
12 if max |St� 1 − S| > 2 and wseq > 0 then

// decrease sequence weightwseq

13 wseq = max(wseq− 0.1, 0)

// initialize nodessij ∈ S

14 S := Ŝ

15 St� 1 := Ŝ

// check for convergence
16 if max |St� 1 − S| < 1e− 4 then

// stop optimization if converged
17 break

// store optimization result for next iteration
18 St� 1 := S

// return optimized similaritiessij ∈ S
19 returnS

starts to diverge,wseq is simply reduced by0.1 and the
optimization is repeated.

VII. THE SEQUENCE-BASED METHOD SEQCONV

The quadratic cost function of factorfseq(sij) (cf.
Sec. III-C) with

fseq(sij) = wseq · (sij − s̄ij)2 (20)

requires a sequence-based method, similar to those in
Sec. II-C, which computes the maximum average similarity
s̄ij of L similaritiesskl aroundsij . This method 1) has to be
fast to not slow down the graph optimization process, 2) must
be memory ef�cient to not increase the memory requirements
of the graph optimization and 3) should achieve as good
performance as possible to boost the performance of the graph-
based approach for place recognition.
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TABLE II
AVERAGE PRECISION WITHNETVLAD FOR DIFFERENT CONFIGURATIONS AND GRAPH OPTIMIZATION APPROACHES. COLORED ARROWS INDICATE

LARGE (≥25% BETTER/ WORSE) OR MEDIUM (≥10%) DEVIATION COMPARED TO THE RAW DESCRIPTOR PERFORMANCE. BOLD TEXT INDICATES THE
BEST PERFORMANCE PER ROW AND PER INTRA-DATABASE SOURCE.

Additional Structural Knowledge
ŜDB ŜDB + ŜQ ŜDB + ŜQ + Seq

Raw NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin

Dataset Database Query [2] [32] (ours) (ours) [32] (ours) (ours) [32] (ours) (ours)

Nordland fall spring 0.39 0.50↑ 0.50↑ 0.58↑ 0.52↑ 0.52↑ 0.63↑ 0.93↑ 0.98↑ 1.00 ↑
fall winter 0.06 0.09↑ 0.09↑ 0.14↑ 0.14↑ 0.14↑ 0.21↑ 0.42↑ 0.83↑ 0.98 ↑
spring winter 0.11 0.16↑ 0.16↑ 0.17↑ 0.24↑ 0.24↑ 0.30↑ 0.60↑ 0.92↑ 0.99 ↑
summer spring 0.32 0.45↑ 0.45↑ 0.54↑ 0.48↑ 0.48↑ 0.59↑ 0.92↑ 0.97↑ 1.00 ↑
summer fall 0.63 0.74↗ 0.75↗ 0.82↑ 0.77↗ 0.77↗ 0.87↑ 1.00 ↑ 0.88↑ 1.00 ↑

StLucia 100909-0845 190809-0845 0.41 0.46↗ 0.46↗ 0.51↗ 0.50↗ 0.50↗ 0.57↑ 0.74↑ 0.80↑ 0.87 ↑
100909-1000 210809-1000 0.47 0.52↗ 0.52↗ 0.56↗ 0.55↗ 0.55↗ 0.61↑ 0.80↑ 0.84↑ 0.88 ↑
100909-1210 210809-1210 0.51 0.56→ 0.56→ 0.58↗ 0.60↗ 0.59↗ 0.62↗ 0.86↑ 0.87↑ 0.89 ↑
100909-1410 190809-1410 0.38 0.46↗ 0.46↗ 0.49↑ 0.49↑ 0.49↑ 0.54↑ 0.79↑ 0.85↑ 0.90 ↑
110909-1545 180809-1545 0.27 0.33↗ 0.32↗ 0.42↑ 0.34↑ 0.35↑ 0.48↑ 0.49↑ 0.71↑ 0.90 ↑

CMU 20110421 20100901 0.73 0.74→ 0.74→ 0.72→ 0.75→ 0.73→ 0.74→ 0.81↗ 0.85↗ 0.83↗
20110421 20100915 0.77 0.78→ 0.78→ 0.76→ 0.77→ 0.77→ 0.77→ 0.85↗ 0.85↗ 0.84→
20110421 20101221 0.56 0.58→ 0.58→ 0.53→ 0.59→ 0.58→ 0.54→ 0.65↗ 0.64↗ 0.64↗
20110421 20110202 0.61 0.67→ 0.67→ 0.63→ 0.69↗ 0.67→ 0.66→ 0.83↑ 0.87 ↑ 0.80↑

GardensPoint day-right day-left 0.97 0.98→ 0.98→ 1.00→ 0.98→ 0.98→ 1.00→ 1.00→ 1.00→ 1.00→
day-right night-right 0.46 0.50→ 0.50→ 0.53↗ 0.56↗ 0.56↗ 0.74↑ 0.82↑ 0.98↑ 1.00 ↑
day-left night-right 0.34 0.38↗ 0.38↗ 0.34→ 0.43↑ 0.43↑ 0.46↑ 0.78↑ 0.95↑ 1.00 ↑

Oxford 2014-12-09-13-21-02 2015-05-19-14-06-38 0.78 0.92↗ 0.87↗ 0.85→ 0.89↗ 0.85→ 0.88↗ 0.92↗ 0.95↗ 0.91↗
2014-12-09-13-21-02 2015-08-28-09-50-22 0.60 0.69↗ 0.70↗ 0.66→ 0.71↗ 0.66→ 0.71↗ 0.68↗ 0.77 ↑ 0.73↗
2014-12-09-13-21-02 2014-11-25-09-18-32 0.87 0.89→ 0.90→ 0.90→ 0.90→ 0.90→ 0.89→ 0.88→ 0.87→ 0.85→
2014-12-09-13-21-02 2014-12-16-18-44-24 0.55 0.54→ 0.58→ 0.46↘ 0.65↗ 0.62↗ 0.54→ 0.77↑ 0.85 ↑ 0.70↑

worst 0.06 0.09 0.09 0.14 0.14 0.14 0.21 0.42 0.64 0.64
best 0.97 0.98 0.98 1.00 0.98 0.98 1.00 1.00 1.00 1.00
average 0.51 0.57 0.57 0.58 0.60 0.59 0.64 0.79 0.87 0.89

TABLE III
AVERAGE PRECISION WITHNETVLAD FOR THE COMPARISON OF OURICM-BASED METHODS WITH SEQUENCE-BASED METHODS FROM THE

LITERATURE.
Additional Structural Knowledge

ŜDB + ŜQ + Seq Seq
Raw ICMmul ICMmin SeqConv MCN ABLE VPR OPR SeqSLAM Delta

Dataset Database Query [2] (ours) (ours) (ours) [25] [3] [39] [38] [22] [11]

Nordland fall spring 0.39 0.98↑ 1.00 ↑ 0.95↑ 0.54↑ 0.95↑ 0.68↑ 0.90↑ 0.89↑ 0.39→
fall winter 0.06 0.83↑ 0.98 ↑ 0.63↑ 0.20↑ 0.44↑ 0.26↑ 0.19↑ 0.72↑ 0.16↑
spring winter 0.11 0.92↑ 0.99 ↑ 0.80↑ 0.26↑ 0.66↑ 0.39↑ 0.18↑ 0.83↑ 0.23↑
summer spring 0.32 0.97↑ 1.00 ↑ 0.95↑ 0.43↑ 0.94↑ 0.64↑ 0.73↑ 0.91↑ 0.41↑
summer fall 0.63 0.88↑ 1.00 ↑ 1.00 ↑ 0.47↓ 1.00 ↑ 0.89↑ 0.97↑ 0.95↑ 0.51↘

StLucia 100909-0845 190809-0845 0.41 0.80↑ 0.87 ↑ 0.76↑ 0.56↑ 0.51↗ 0.47↗ 0.54↑ 0.12↓ 0.73↑
100909-1000 210809-1000 0.47 0.84↑ 0.88 ↑ 0.84↑ 0.60↑ 0.60↑ 0.48→ 0.55↗ 0.12↓ 0.74↑
100909-1210 210809-1210 0.51 0.87↑ 0.89 ↑ 0.83↑ 0.65↑ 0.61↗ 0.47→ 0.55→ 0.14↓ 0.74↑
100909-1410 190809-1410 0.38 0.85↑ 0.90 ↑ 0.81↑ 0.51↑ 0.57↑ 0.42↗ 0.53↑ 0.14↓ 0.75↑
110909-1545 180809-1545 0.27 0.71↑ 0.90 ↑ 0.55↑ 0.39↑ 0.36↑ 0.41↑ 0.52↑ 0.13↓ 0.64↑

CMU 20110421 20100901 0.73 0.81↗ 0.83↗ 0.81↗ 0.81↗ 0.76→ 0.47↓ 0.49↓ 0.03↓ 0.36↓
20110421 20100915 0.77 0.85↗ 0.84→ 0.85↗ 0.79→ 0.77→ 0.47↓ 0.50↓ 0.07↓ 0.54↓
20110421 20101221 0.56 0.64↗ 0.64↗ 0.64↗ 0.61→ 0.59→ 0.43↘ 0.47↘ 0.05↓ 0.32↓
20110421 20110202 0.61 0.87 ↑ 0.80↑ 0.75↗ 0.80↑ 0.65→ 0.47↘ 0.45↓ 0.13↓ 0.51↘

GardensPoint day-right day-left 0.97 1.00→ 1.00→ 1.00→ 0.98→ 1.00→ 0.69↓ 0.69↓ 0.42↓ 1.00→
day-right night-right 0.46 0.98↑ 1.00 ↑ 0.74↑ 0.47→ 0.68↑ 0.52↗ 0.64↑ 0.34↓ 0.80↑
day-left night-right 0.34 0.95↑ 1.00 ↑ 0.74↑ 0.36→ 0.63↑ 0.35→ 0.49↑ 0.13↓ 0.64↑

Oxford 2014-12-09-13-21-02 2015-05-19-14-06-380.78 0.95↗ 0.91↗ 0.79→ 0.92↗ 0.64↘ 0.54↓ 0.01↓ 0.06↓ 0.37↓
2014-12-09-13-21-02 2015-08-28-09-50-220.60 0.77 ↑ 0.73↗ 0.56→ 0.49↘ 0.38↓ 0.37↓ 0.01↓ 0.05↓ 0.29↓
2014-12-09-13-21-02 2014-11-25-09-18-320.87 0.87→ 0.85→ 0.81→ 0.75↘ 0.65↓ 0.60↓ 0.02↓ 0.07↓ 0.44↓
2014-12-09-13-21-02 2014-12-16-18-44-240.55 0.85 ↑ 0.70↑ 0.68↗ 0.51→ 0.56→ 0.17↓ 0.09↓ 0.01↓ 0.24↓

worst 0.06 0.64 0.64 0.55 0.20 0.36 0.17 0.01 0.01 0.16
best 0.97 1.00 1.00 1.00 0.98 1.00 0.89 0.97 0.95 1.00
average 0.51 0.87 0.89 0.79 0.58 0.66 0.49 0.45 0.30 0.51

the superiority of ICM, we compared it with the six sequence-
based approaches MCN [25], ABLE [3], VPR [39], OPR [38],
SeqSLAM [22] and Delta (Descriptors) [11]. In addition, we
also evaluate our proposed method SeqConv (Sec. VII) which
is used in the factorsfseq(·).

Table III shows the corresponding results. Both ICM-based
approaches achieve best performance on most datasets. Par-
ticularly on average, our ICM-methods perform32% to 190%
better than the sequence-based approaches from the literature.
While VPR, OPR and SeqSLAM potentially fail by design in
case of loops and stops in the database but could bene�t in the
absence of loops and stops, MCN, ABLE and Delta are able

to deal with loops and stops. Nevertheless, all methods from
the literature fail to beat the performance of both ICM-based
approaches on a single dataset, even on datasets without loops
and stops (Nordland, GardensPoint).

SeqConv as an algorithmic part of ICM contributes to ICM's
performance. The results in Table III demonstrate that Seq-
Conv alone already outperforms on average all methods from
the literature. However, ICM even exceeds the performance
of SeqConv. This demonstrates the superiority of fusing and
exploiting all available structural knowledge at once in a single
graph with ICM.
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E. Runtime and memory usage

For all evaluated methods in Table II and III, we measured
the maximum runtime per query and the maximum memory
usage. Results are shown in Table IV. Note that NLSQ could
not be applied to full graphs but only to subgraphs due to
memory limitations, while ICM optimized full graphs – the
memory usage of NLSQ on full graphs would be much higher.

A target of this paper is the design of a fast and memory
ef�cient graph optimization for place recognition. The run-
times and memory usages of NLSQ, ICMmul and ICMmin

in Table IV demonstrate that we could actually tremendously
speed up the graph optimization and clearly reduce the re-
quired memory. WithŜDB , ICMmul was almost2800× faster
than NLSQ and required approx.280× less memory. In case
of the full setup with sequence exploitation (+Seq), ICMmul

was approx.385× faster than NLSQ and required more than
60× less memory. The current implementation of ICMmin is
much slower than ICMmul, but still 2.5× to 10× faster than
NLSQ and60× to 235× more memory ef�cient.

Compared to the sequence-based methods, ICMmul

achieves a comparable runtime and memory usage. In sum-
mary, a maximum runtime of9.1 msec and memory usage of
490MB with ICMmul is perfectly suited for many real-time
applications.

The results in Table IV also show that SeqConv as an
algorithmic part of ICM is extremely fast and very memory
ef�cient. It required only 95µsec per query, which is faster
than most of the evaluated approaches. Its170MB memory
usage is comparable to the other sequence-based methods from
the literature.

F. Performance with three additional descriptors

In a �nal experiment, we want to show the versatility of our
ICM-based graph optimization approach for place recognition.
Therefore, we repeated the experiments from Sec. VIII-D on
the 21 datasets with three additional image descriptors. The
same parameters as before were used. Table V shows the
obtained performances.

Both ICM-based methods again clearly outperform on av-
erage all other approaches over all descriptors. The results
show that our proposed methods perform well no matter which
descriptor is used, because the optimization operates only on
the descriptor similarities but not directly on the descriptors.

IX. CONCLUSION

In this paper, we presented a novel approach for fast and
memory ef�cient place recognition that achieves superior per-
formance compared to [32] and six state-of-the-art sequence-
based methods from the literature.

Our graph optimization with ICM could increase the max-
imum performance of [32] with NLSQ on average by10%
while being 385× faster and60× more memory ef�cient.
Speci�cally, the maximum runtime with ICM on our largest
dataset was9.1msec per query which is totally suited for
real-time applications. Further, we could show that ICM with

sequence exploitation achieves superior performance com-
pared to six state-of-the-art sequence-based methods from the
literature: It outperformed them on NetVLAD byat least
32% on average over21 datasets with comparable runtime
and memory consumption. No sequence-based method could
outperform both ICM-based methods on a single dataset.

ICM was also applied on three additional image descriptors
without parameter adjustment and signi�cantly outperformed
all other methods. Adapted parameters that better �t the
statistics of each descriptor would presumably further improve
the performance.

An interesting question for future work is the application
of the graph optimization with ICM for place recognition on
sparse similarity matriceŝS that are returned by methods like
[33, 38] for ef�cient place recognition on large datasets. An-
other interesting direction is the extension of the graph-based
framework for additional structural knowledge like odometry.
Odometry for example could be modeled either directly with
additional factors or indirectly by replacing SeqConv with an
alternative like SMART [29] that leverages odometry during
sequence search.
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TABLE IV
RUNTIMES AND MEMORY USAGES WITHNETVLAD FOR ALL GRAPH-BASED METHODS COMPARED TO THE SEQUENCE-BASED METHODS FROM THE

LITERATURE. THE MAXIMUM RUNTIME PER QUERY ON THE BIGGEST DATASET IS SHOWN(DATASET OXFORD 2014-12-09-13-21-02 –
2014-11-25-09-18-32WITH M = 2133 DATABASE IMAGES AND N = 2253 QUERY IMAGES). ALL RUNTIMES WERE MEASURED WITH AN INTEL

I7-7700K CPUWITH 64GB RAM. (� MEMORY USAGE FOR THE OPTIMIZATION OF A SUBGRAPH ACCORDING TOSEC. VIII-A5)

Graph-based methods
ŜDB ŜDB + ŜQ ŜDB + ŜQ + Seq

Method NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin

[32] (ours) (ours) [32] (ours) (ours) [32] (ours) (ours)

max runtime per
query 5.3sec 1.9msec 521msec 2.4sec 1.5msec 1sec 3.5sec 9.1msec 1.1sec

max memory
usage 60.5GB� 220MB 262MB 30.4GB� 292MB 300MB 30.5GB� 490MB 512MB

Sequence-based methods
Method SeqConv MCN ABLE VPR OPR SeqSLAM Delta

(ours) [25] [3] [39] [38] [22] [11]

max runtime per
query 95�sec 247msec 43�sec 3.8msec 3.4msec 6.3msec 431�sec

max memory
usage 170MB 586MB 114MB 162MB 125MB 234MB 140MB

TABLE V
AVERAGE PRECISION WITH FOUR DIFFERENT DESCRIPTORS. THE RESULTS SHOW THE CONCLUSION OF EXPERIMENTS OVER THE21 DATASETS THAT

WERE ALSO USED INTABLE II AND III.
Additional Structural Knowledge

ŜDB + ŜQ + Seq Seq
Raw ICMmul ICMmin SeqConv MCN ABLE VPR OPR SeqSLAM Delta

Descriptor Case (ours) (ours) (ours) [25] [3] [39] [38] [22] [11]

worst 0.06 0.64 0.64 0.55 0.20 0.36 0.17 0.01 0.01 0.16
NetVLAD [2] best 0.97 1.00 1.00 1.00 0.98 1.00 0.89 0.97 0.95 1.00

average 0.51 0.87 0.89 0.79 0.58 0.66 0.49 0.45 0.30 0.51

worst 0.07 0.12 0.19 0.06 0.21 0.05 0.17 0.01 0.03 0.02
AlexNet [35] best 0.94 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.97 0.82

average 0.50 0.72 0.72 0.63 0.66 0.54 0.55 0.53 0.31 0.48

worst 0.09 0.64 0.33 0.16 0.14 0.12 0.15 0.01 0.03 0.12
DenseVLAD [36] best 0.96 1.00 1.00 1.00 0.91 1.00 0.95 0.98 0.95 1.00

average 0.57 0.87 0.88 0.76 0.62 0.66 0.49 0.34 0.31 0.53

worst 0.08 0.15 0.17 0.09 0.22 0.05 0.19 0.01 0.03 0.07
HybridNet [7] best 0.94 1.00 1.00 1.00 0.98 1.00 0.98 1.00 0.97 0.90

average 0.54 0.76 0.79 0.68 0.69 0.59 0.56 0.56 0.31 0.56
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