Note thatJ is sparse since only two nodes are involved ithe alternative optimization scheme ICM that fully avoids the
most cost functions. The size of vectorsolely depends on usage of huge matrices liké andr.

#f with
r e R#/ (10) A, The basic idea of ICM

The number of nodes#nodes) in a graph depends on |cm (iterated Conditional Modes) was proposed by Besag
the number of database imag&s and the number of query for the optimization of Markov Random Fields for image
imagesN with denoising[[6]. The basic idea of ICM is as follows: Instead of

#nodes= M - N (11)  minimizing an error functior®(Vs;; € S) (e.g., the sum over
Il factor's cost functions) to optimize all nodes at once, each
ode is optimized separately conditioned on all other nodes
by using their values from the previous iteration. This tremen-
N> (12) dously reduces the complexity of the error functibig-) and
2 simpli es its minimization. This procedure is repeated several
iterations until convergence or for a xed number of iterations.
Hloort i fsea S t# o’ # ot # The application of IC%/I for the optimization of the graph for

Operations for optimization over the potentially extremelplace recognition in Se§. VI{B below will clarify this idea.
high number of elements id andr cause a high computa-
tional effort. Moreover, due to the nonlinearity of many factorsy  1car-pased graph optimization for place recognition
J (like r) has to be updated after each optimization step. This
leads to long runtimes. In order to optimize the graph with its nodeg < S, the

The cubically increasing number of factors leads to a#fobal error functionE(-) has to be minimized with
extremely high memory usage even for smaller datasets. For
a relatively small dataset with000 database and000 query s;; € 8" = argmin E(Vs;; € S) (13)
images, the Jacobian matrix would have (2 - 10°) x 106 S €S
elements. Even ifJ is represented as a sparse matrix Wlt@j(_) is a function of theM - N nodess;; € S. It is the

approx. two entries per row and Bytes per entry, the gym over all quadratic cost functiorfg:) of all factors in the
memory usage would be14.9 GB; the corresponding vector graph:

of residualsr would require approx7.5 GB of memory.

There are optimization methods for non-linear least squares E(Vs;j € S) = Z 70 (14)
optimization that reduce the memory requirements by oper-
ating on a matrixJ7J and a vectorJTr ([27, p.255], cf.
Sec[I-0). But these would probably even increase the runtimewith ICM, we de ne E(-) to be a set of error functions
as a tradeoff, because the elementsJéf/ and JTr have Eij(sij | -). EachEy;(s;; | -) is a function of a single node
to be computed successively in order to keep the memayy conditioned on the other node&;;(s;; | -) is the sum
consumption low. A detailed investigation of this optimizatiopver all quadratic cost functions that depend om;:
approach is beyond the scope of this paper and part of future
work. To partially circumvent the high memory usage .bf Eij(sij | ) = Z f(sij | ) (15)
and r, we performed in[[32] a partial optimization &f on
approx.(500x500)-sized patches.

In Sec[V], we propose a much faster and memory ef cient Accordingly, each error functiod; (s;; | ) is a quadratic

optimization based on ICM. It fully avoids the allocation angh,csion of only a single nodes;;. This allows a conversion
processing of huge matrices liké and r. And as we will jnto the standard form

show in Sec. VIII-B, the ICM-based graph optimization for

According to the way the different factor types are used [3
the total number of factorg f can be quite high:

#f=2-M-N +2~N~<]\24)+2~M~(
——

VfeGraph

Vf(sij|-)EGraph

place recognition even outperforms the already good results E(siyj|-)=a- Sfj +b-sij+ec (16)
from [32] as it can optimize the fullS-matrix instead of
patches. with coef cients a, b and c¢. Given this standard form, the

VI. GRAPH OPTIMIZATION WITH ICM optimal values;; can be easily computed with

In the previous Sed. ]V, we gave an intuition why the N . b
non-linear least squares optimization (NLSQ) used_in [32] is si; = argmin(E(s;; | 1) = — 5~ a7
relatively slow and memory inef cient. We gured out two
main reasons: 1) the allocation and updating of the potentialycan be neglected for computational ef ciency. For fast
huge Jacobian matrix and the vector of residuaisand 2) the computation, alk;; should be computed synchronously based
operation onJ andr for optimization. For a much faster andon S from the previous iterationS;_;) as already proposed
memory ef cient graph optimization, we propose the usage of [6].

Sij



TABLE |

PARTIAL COEFFICIENTSaf AND bg FOR EACH FACTOR WITH

Algorithm 1:

ICM-based graph optimization proce-

CORRESPONDING COST FUNCTION dure
RICHE ar | bs | Data: ;5 € S, 53° € SPB, 53 € S°
Sorior = (sij — 3ij)” DB

forior | 1prlor 4 ”\ 25 Input: parametersw,oop, weﬁ,ﬁ' , ,q\‘ygop, chl, Wseq

IO = 338 sy — 5g)%; fl?op: Aﬁ(sij ~on)? Result: sijj € S with S € R

DB :Q -
/0B mg‘% g 72;@}? ‘Psk DB /I normalize all similarities tcsij, 55, 3;5 € [0, 1]
00| nt i nt =i
Qp (= o = 1 .§‘ := norm(S) R
Jicop N3 8inj 51 N T sinj ${isil 2 SPB .= norm(SPB)
P8 = (1= 3RB)(sij-5ki)% Foag = (1= 55)(sij sun) 3 S9 :=norm(59)

whE (1 _ DBy . .2 // initialize nodessi; € S
Fpots M skni(1 = 8ic ) - 5 0 g & Y

Wex a 4 =
fexcl T 8Inj(175le)'Si2| 0 58 1:=5

fexc‘?j(Dl;éF&B)min(su,su)?, fexe=(1=570) min(sig, su)? I/ optimize S with ICM

ISE | W5 ks, <s, (1= 5R°) 0 6 for iteration = 1, ..., #iterations do

\
S REL - s sy (1= 55 0 /I compute allsi; € S with seqConv (Sed. VjI)

Fora= (o5 —55)° 7 Vi, 7 : 5ij = SeqCony{ij}; sk € St 1)

fseq ‘ Wseq ‘ —2 - Wwseq- 5ij /I optimize all vanables»u es

8
9

C. The computation of a and b 10

a andb depend on the used factors and their quadratic cdbt
functions, and in turn on the used structural knowledge. They

can be easily computed with 12

for Vi, j do

a:=Y g ar({i,j}|St 1,5,9°%,5°,9)

b= 3 s br ({1, 7}[St I,S,SDB,SQ,S)
b

L %= "2

/I check for divergence
if max St 1 — S| > 2 and wseq > 0 then
/I decrease sequence weighdeq

GZZaf, b= be 18) 13 Wseq = max(wseq— 0.1, 0)

vf vf /I initialize nodessij € S
ay and by are the partial coefcients of each factor type! S=5
The coef cients for the factors used in this paper are listeél L St1:=5

in Table[]. They were derived from the factor's quadratic
cost functions that were converted into the standard fonm
in Eq. (I6). Note that a normallzatlon temy(M 1) o
1/( ) was added foff@oﬁ' floop' f excl and fexcl

For example, if we want to use intra- database similarities
SPB together with themultiplicative cost functionf25, we
simply have to sum up the coef cients; and by for furior,
fo5 and fOF from Table| |, and insert them into EQ. (17) to

excl

17

18

19

/I check for convergence
if max |St 1 — S| < le — 4 then

/I stop optimization if converged
break

/I store optimization result for next iteration
St 1 = S

/I return optimized similarities;j € S
return §

obtain the equation for optlmal values;:

DB
* 874]—’_ |00P ka\l ik sk] . . i
5i= wh D5 B starts to divergewseq is simply reduced by0.1 and the
L+ 47 p vy Sin ex“' (L= 327) s, optimization is repeated.
(19)

D. The full ICM-based graph optimization procedure for place VII. THE SEQUENCE-BASED METHOD &QConv
recognition The quadratic cost function of factoffseqs;;) (cf.

The full algorithmic approach of the ICM-based graptreC- !ll-C) with
optimization for place recognition is shown in Algorithrn 1. It
includes a matrix normalization (Line 1-3), node initialization
(Line 4), the application of a sequence-based method (sequires a sequence-based method, similar to those in
Sec.[VI]) in case of sequence exploitation (Line 7), th8ec.[Tl-G, which computes the maximum average similarity
ICM-based optimization itself (Lines 8-11) and a check fof;; of L similarities s;; arounds;;. This method 1) has to be
convergence (Lines 16-17). fast to not slow down the graph optimization process, 2) must

During our experiments, we noticed a possible divergenbe memory ef cient to not increase the memory requirements
of s;; in case of a too high weightingseq Of the sequence of the graph optimization and 3) should achieve as good
information. Therefore, we added a simple strategy to operformance as possible to boost the performance of the graph-
ICM-based optimization procedure (Line 12-15): If ary based approach for place recognition.

Fsed(8ij) = Wseq + (815 — 8i5)? (20)






TABLE I

AVERAGE PRECISION WITHNETVLAD FOR DIFFERENT CONFIGURATIONS AND GRAPH OPTIMIZATION APPROACHESCOLORED ARROWS INDICATE
LARGE (>25%BETTER/ WORSE) OR MEDIUM (2>10%)DEVIATION COMPARED TO THE RAW DESCRIPTOR PERFORMANCEBOLD TEXT INDICATES THE
BEST PERFORMANCE PER ROW AND PER INTRAATABASE SOURCE

Additional Structural Knowledge
§DB B4 §@ S§DB ; §Q + Seq
Raw NLSQ ICM i ICM i NLSQ ICM it ICMpim NLSQ ICM, i ICM i
Dataset Database Query 21 [32] (ours) (ours) [32] (ours) (ours) [32] (ours) (ours)
Nordland fall spring 0.39 0.501 0.5071 0.581 0.527 0.52% 0.6371 0.93%1 0.9871 1.00
fall winter 0.06 0.091 0.091 0.141 0.141 0.141 0.2171 0.421 0.837 0.98 1
spring winter 0.11 0.16 1 0.16 1 0.171 0.241 0.241 0.307 0.601 0.921 0.99 1
summer spring 0.32 0.451 0.451 0.541 0.481 0.481 0.591 0.921 0.971 1.00
summer fall 0.63 0.74 0.75 0.821 0.77 0.77 0.871 1.00 0.881 1.00
StlLucia 100909-0845 190809-0845 0.41 0.46 0.46 0.51 0.50 0.50 0.577 0.747 0.8071 0.87
100909-1000 210809-1000 0.47 0.52 0.52 0.56 0.55 0.55 0.6171 0.8071 0.8471 0.88 1
100909-1210 210809-1210 0.51 0.56 — 0.56 — 0.58 0.60 0.59 0.62 0.861 0.8771 0.89 1
100909-1410 190809-1410 0.38 0.46 0.46 0.491 0.491 0.491 0.541 0.7971 0.851 0.90
110909-1545 180809-1545 0.27 0.33 0.32 0.421 0.341 0.351 0.481 0.491 0.711 0.90
CMU 20110421 20100901 0.73 0.74 — 0.74 — 0.72— 0.75 — 0.73 — 0.74 — 0.81 0.85 0.83
20110421 20100915 0.77 0.78 — 0.78 — 0.76 — 0.77 — 0.77 — 0.77 — 0.85 0.85 0.84 —
20110421 20101221 0.56 0.58 — 0.58 — 0.53 — 0.59 — 0.58 — 0.54 — 0.65 0.64 0.64
20110421 20110202 0.61 0.67 — 0.67 — 0.63 — 0.69 0.67 — 0.66 — 0.8371 0.87 1 0.801
GardensPoint  day-right day-left 0.97 | 0.98 — 0.98 — 1.00 — 0.98 — 0.98 — 1.00 — 1.00 — 1.00 — 1.00 —
day-right night-right 046 | 050—  0.50— 0.53 0.56 0.56 0.74%1 0.821 0.981 1.00 1
day-left night-right 0.34 | 0.38 0.38 0.34— | 0.431 0.431 0.46 1 0.781 0.951 1.00 1
Oxford 2014-12-09-13-21-02  2015-05-19-14-06-880.78 0.92 0.87 0.85— 0.89 0.85— 0.88 0.92 0.95 0.91
2014-12-09-13-21-02  2015-08-28-09-50-2p 0.60 0.69 0.70 0.66 — 0.71 0.66 — 0.71 0.68 0.77 1 0.73
2014-12-09-13-21-02  2014-11-25-09-18-3R 0.87 0.89 — 0.90 — 0.90 — 0.90 — 0.90 — 0.89 — 0.88 — 0.87 — 0.85 —
2014-12-09-13-21-02  2014-12-16-18-44-24 0.55 0.54 — 0.58 — 0.46 0.65 0.62 0.54 — 0.771 0.85 1 0.701
worst 0.06 0.09 0.09 0.14 0.14 0.14 0.21 0.42 0.64 0.64
best 0.97 0.98 0.98 1.00 0.98 0.98 1.00 1.00 1.00 1.00
average 0.51 0.57 0.57 0.58 0.60 0.59 0.64 0.79 0.87 0.89
TABLE Il
AVERAGE PRECISION WITHNETVLAD FOR THE COMPARISON OF OURCM-BASED METHODS WITH SEQUENCEBASED METHODS FROM THE
LITERATURE.
Additional Structural Knowledge
§DB + §Q + seq Seq
Raw | ICM,,i  ICM,nin | SeqConv MCN ABLE VPR OPR SeqSLAM Delta
Dataset Database Query 2] (ours) (ours) (ours) [25] 3] 39 [38] 22] [17])
Nordland fall spring 039 | 0987 1.00 T 0951 0541 0957 06817 0907 0.89T 0.39—
fall winter 0.06 0.831 0.98 0.631 0.201 0.441 0.26 1 0.191 0.721 0.16 1
spring winter 011 | 0927 0.99 0.80+ 0.6 0661 039+  0.18% 0.83 0.237
summer spring 0.32 | 0977 1.00 ¢ 095+ 0431 0941 0641 0737 0.914 0.414
summer fall 0.63 | 0887 1.00 ¢ 1.00 ¢ 047) 1001 0891  0.97% 0.957 0.51
StLucia 100909-0845 190809-0845 0.41 0.801 0.87 1 0.76 1 0.561 0.51 0.47 0.5471 0.12] 0.7371
100909-1000 210809-1000 0.47 0.841 0.88 1 0.841 0.6071 0.601 0.48— 0.5 0.12] 0.741
100909-1210 210809-1210 0.51 0.871 0.89 0.831 0.651 0.61 0.47— 0.55— 0.14 | 0.741
100909-1410 190809-1410 0.38 0.851 0.90 1+ 0.811 0.511 0.571 0.42 0.5371 0.14 | 0.751
110909-1545 180809-1545 0.27 0.711 0.90 1 0.551 0.391 0.36 1 0.411 0.5271 0.13) 0.641
CMU 20110421 20100901 0.73 0.81 0.83 0.81 0.81 0.76 — 0.47] 0.49] 0.03] 0.36 ]
20110421 20100915 0.77 0.85 0.84 — 0.85 0.79— 077 — 0.47] 0.50) 0.07] 0.54 ]
20110421 20101221 0.56 0.64 0.64 0.64 061— 059— 043 0.47 0.05] 0.32]
20110421 20110202 0.61 0.87 1 0.801 0.75 0.801 0.65— 0.47 0.45] 0.13] 0.51
GardensPoint  day-right day-left 0.97 1.00 — 1.00 — 100 - 098— 1.00 - 0.69] 0.69] 0.42] 1.00 —
day-right night-right 0.46 | 09871 1.00 1 0.741 0.47— 0.681 0.52 0.641 0.34] 0.801
day-left night-right 0.34 | 0.951 1.00 1 0.741 0.36— 0.631 0.35— 0.491 0.13] 0.641
Oxford 2014-12-09-13-21-02  2015-05-19-14-06-380.78 0.95 0.91 0.79 — 0.92 0.64 054 0.01] 0.06 ] 0.37]
2014-12-09-13-21-02  2015-08-28-09-50-220.60 0.77 1 0.73 0.56 - 0.49 0.38] 0.37] 0.01) 0.05.) 0.29]
2014-12-09-13-21-02  2014-11-25-09-18-320.87 0.87 — 0.85 — 081— 0.75 0.65] 0.60] 0.02) 0.07 044
2014-12-09-13-21-02  2014-12-16-18-44-240.55 0.85 1 0.701 0.68 051— 0.56— 0.17 ] 0.09 ] 0.01] 0.24 |
worst 0.06 0.64 0.64 0.55 0.20 0.36 0.17 0.01 0.01 0.16
best 0.97 1.00 1.00 1.00 0.98 1.00 0.89 0.97 0.95 1.00
average 0.51 0.87 0.89 0.79 0.58 0.66 0.49 0.45 0.30 0.51

the superiority of ICM, we compared it with the six sequencee deal with loops and stops. Nevertheless, all methods from
based approaches MCN _[25], ABLE [3], VPR [39], OPR [38]the literature fail to beat the performance of both ICM-based
SeqSLAM [22] and Delta (Descriptors) [11]. In addition, weapproaches on a single dataset, even on datasets without loops
also evaluate our proposed method SeqConv (Set. VII) whiahd stops (Nordland, GardensPoint).
is used in the factorgseq(-).

Table[IT] shows the corresponding results. Both ICM-based SeqConv as an algorithmic part of ICM contributes to ICM's
approaches achieve best performance on most datasets. performance. The results in Taljle] Ill demonstrate that Seg-

ticularly on average, our ICM-methods perfoff2% to 190%

Conv alone already outperforms on average all methods from

better than the sequence-based approaches from the literatilve.literature. However, ICM even exceeds the performance
While VPR, OPR and SegSLAM potentially fail by design irof SeqConv. This demonstrates the superiority of fusing and
case of loops and stops in the database but could bene t in #eloiting all available structural knowledge at once in a single
absence of loops and stops, MCN, ABLE and Delta are aldeaph with ICM.



E. Runtime and memory usage sequence exploitation achieves superior performance com-

For all evaluated methods in Talilé Il apd I, we measure‘lf"red to six state-of-the-art sequence-based methods from the
the maximum runtime per query and the maximum memof{erature: It outperformed them on NetVLAD byr least
usage. Results are shown in Taplg IV. Note that NLSQ co 370 on average oveel datasets with comparable runtime
not be applied to full graphs but only to subgraphs due gnd memory consumption. No sequence-ba_sed method could
memory limitations, while ICM optimized full graphs — theoutperform both ICM.-based methods.(.)n a §|ngle datasgt.
memory usage of NLSQ on full graphs would be much higher.,'CM was also appllgd on three adQ|t|0.naI image descriptors

A target of this paper is the design of a fast and memoW thout parameter adjustment and signi cantly outperformed
ef cient graph optimization for place recognition. The run- I pther methods. Adapted parameters that bette_r t the
times and memory usages of NLSQ, ICM and ICM,.; statistics of each descriptor would presumably further improve

in Table IV demonstrate that we could actually tremendousﬁpe performance.

speed up the graph optimization and clearly reduce the re/An interesting question for future work is the application

quired memory. With$P5, ICM, ., was almose800x faster of the grgp_h o_ptimiza_tiorl with ICM for place recognition.on
than NLSQ and required appro2s0x less memory. In case SParse S|m|Iar|ty matriceS that arc.-:‘.returned by methods like
of the full setup with sequence exploitation §cq), ICM, . [33, 3§;] for ef C|en't plqce recognltlon on large datasets. An-
was approx385x faster than NLSQ and required more thar?ther interesting d!r_ect|0n is the extension of the graph-based
60 less memory. The current implementation of IGM is framework for additional structural knowledge I|ke_odometr_y.
much slower than ICM,,;, but still 2.5x to 10x faster than Odo_metry for examp.le 90”'0‘ he m°de'?d either dlrectly with
NLSQ and60x to 235x more memory ef cient. addmon_al fa}ctors or indirectly by replacing SeqConv W|th_an
Compared to the sequence-based methods, ,JGM alternative like SMART [[2D] that leverages odometry during

achieves a comparable runtime and memory usage. In suravence search.

mary, a maximum runtime dd.1 msec and memory usage of REEFERENCES
490MB with ICM,,,,; is perfectly suited for many real-time
applications.

The results in Tablg¢ TV also show that SeqConv as an
algorithmic part of ICM is extremely fast and very memory
ef cient. It required only 95 usec per query, which is faster
than most of the evaluated approaches.1i®MB memory
usage is comparable to the other sequence-based methods from
the literature.
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TABLE IV
RUNTIMES AND MEMORY USAGES WITHNETVLAD FOR ALL GRAPH-BASED METHODS COMPARED TO THE SEQUENGBBASED METHODS FROM THE
LITERATURE. THE MAXIMUM RUNTIME PER QUERY ON THE BIGGEST DATASET IS SHOWNDATASET OXFORD 2014-12-09-13-21-02 —
2014-11-25-09-18-3%WITH M = 2133 DATABASE IMAGES AND N = 2253 QUERY IMAGES). ALL RUNTIMES WERE MEASURED WITH ANINTEL
17-7700K CPUWITH 64GB RAM. ( MEMORY USAGE FOR THE OPTIMIZATION OF A SUBGRAPH ACCORDING TSEC.[VITT-AS)

Graph-based methods
§DB §DB ;. &Q &DB . 8Q 4+ seq

Method NLSQ ICMi,ui  ICMinin | NLSQ  ICMynui  ICMinmin NLSQ ICMywi  ICMpmin

[32] (ours) (ours) [32] (ours) (ours) [32] (ours) (ours)
(rqnuzgyruntlme per 5.3sec 1.9msec 521mse¢ 2.4sec 1.5msec 1sec 3.5sec 9.1msec 1.1sec
ums""‘;;;”emory 60.5GB  220MB  262MB | 30.4GB  292MB 300MB | 30.5GB  490MB 512MB

Sequence-based methods

Method SeqConv MCN ABLE VPR OPR SeqSLAM Delta

(ours) [25] [3] [39] [38] [22] [11]
anuz;untlme per 95 sec 247msec 43sec 3.8msec 3.4msec 6.3msec 48@c
umggg"emory 170MB  586MB 114MB  162MB  125MB 234MB 140MB

TABLE V

AVERAGE PRECISION WITH FOUR DIFFERENT DESCRIPTORHE RESULTS SHOW THE CONCLUSION OF EXPERIMENTS OVER THEL DATASETS THAT
WERE ALSO USED INTABLE [[T]AND [[IT]

Additional Structural Knowledge
&§DB + §Q + Seq Seq

Raw | ICM,1 ICM,nin | SeqConv. MCN  ABLE VPR  OPR  SeqSLAM  Delta

Descriptor Case (ours) (ours) (ours) [25] [3] [39] [38] [22] [11]
worst 0.06 0.64 0.64 0.55 0.20 0.36 0.17 0.01 0.01 0.16

NetVLAD [2] best 0.97 1.00 1.00 1.00 0.98 1.00 0.89 0.97 0.95 1.00
average|| 0.51 0.87 0.89 0.79 0.58 0.66 0.49 0.45 0.30 0.51
worst 0.07 0.12 0.19 0.06 0.21 0.05 0.17 0.01 0.03 0.02]

AlexNet [35] best 0.94 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.97 0.82
average|| 0.50 0.72 0.72 0.63 0.66 0.54 0.55 0.53 0.31 0.48
worst 0.09 0.64 0.33 0.16 0.14 0.12 0.15 0.01 0.03 0.12
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