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1 Bayesian Posterior Update Formula

As discussed in Section IV-B of the paper, we parametrize the object-level state probability distribu-
tion as the product of a Gaussian distribution for the geometric change, l , and a Beta distribution for the
stationarity score, v :

p pl , v | z1 . . .zT q :“ q pl , v |µT ,σT ,αT ,βT q

:“N pl |µT ,σ2
T qBetapv |αT ,βT q

(1)

where µT and σ2
T represent the mean and variance of l respectively, and αT and βT are the number of

observed inlier and outlier measurements with respect to the model. Moreover, tzt ut“1...T are the measure-
ment features extracted from the object and its associated observation for timestamp t . Each measurement,
zt , contains the magnitude of geometric change, ∆t , and the stationarity class, st , for the object:

zt “ t∆t PR, st P t0,1uu. (2)

Following Section IV-C of the paper, the full measurement likelihood distribution is the product of a
Gaussian-Uniform mixture and k Bernoulli distributions:

p pzT | l , v,z1 . . .zT ´1q9 p p∆T | l , vq p psT | vq

:“ pvN p∆T | l ,τ2q`p1 ´ vqUp∆T | ´∆max,∆maxqqBernoullipsT | vqk

“ pvN p∆T | l ,τ2q`p1 ´ vqUp∆T | ´∆max,∆maxqqvksT p1 ´ vqkp1´sT q

(3)

Where τ2 is the geometric measurement variance and ∆max is the maximum change valid. The factor k
is used to balance the relative importance between the geometric consistency likelihood p p∆T | l , vq and
the stationarity likelihood p psT | vq to adjust the model’s behaviour. The value of k can be adaptively se-
lected based on the semantic class of the object and whether an inlier or and outlier measurement has been
received. As we will show below, k acts as a weight in the Beta stationarity update rule for the posterior.

Assuming the prior has the parametrization qpl , v | µ,σ,α,βq, we would like to match the first and sec-
ond moments in l and v of the true posterior

ppl , v |∆T , sT ,µ,σ,α,βq9pp∆T | l , vqppsT | vqqpl , v |µ,σ,α,βq (4)

to those of our approximated posterior:

qpl , v |µ1,σ1,α1,β1q. (5)

Substituting the parametrized prior (1) and the measurement likelihood (3), the true posterior (4) be-
comes

ppl , v |∆T , sT ,µ,σ,α,βq9
ˆ

v 1?
2πτ

e´
p∆T ´lq2

2τ2 `p1 ´ vqUp∆T q

˙ˆ

1?
2πσ

e´
pl´µq2

2σ2 Γpα`βq

ΓpαqΓpβq
v a´1p1 ´ vqb´1vksT p1 ´ vqkp1´sT q

˙

,
(6)

which can be written as the sum of an inlier term and an outlier term :

ppl , v |∆T , sT ,µ,σ,α,βq9pin ` pout

where

pin “ v
1

?
2πτ

e´
p∆T ´lq2

2τ2
1

?
2πσ

e´
pl´µq2

2σ2
Γpα`βq

ΓpαqΓpβq
vα´1`ksT p1 ´ vqβ´1`kp1´sT q

pout “ p1 ´ vqUp∆T q
1

?
2πσ

e´
pl´µq2

2σ2
Γpα`βq

ΓpαqΓpβq
vα´1`ksT p1 ´ vqβ´1`kp1´sT q

(7)
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Collecting like terms,

pin “ η1N
`

l | m,γ2
˘

N
`

∆T |µ,τ2 `σ2
˘

Betapα` ksT ` 1,β` kp1 ´ sT qq

pout “ η2Up∆T qN
`

l |µ,σ2
˘

Betapα` ksT ,β` kp1 ´ sT q` 1q
(8)

where we define

γ2 “

´ 1

σ2 `
1

τ2

¯´1

m “ γ2p
µ

σ2 `
∆T

τ2 q

η1 “
Γpα`βqΓpα` ksT ` 1qΓpβ` kp1 ´ sT qq

ΓpαqΓpβqΓpα`β` k ` 1q

η2 “
Γpα`βqΓpα` ksT qΓpβ` kp1 ´ sT q` 1q

ΓpαqΓpβqΓpα`β` k ` 1q

(9)

Here, m is the updated mean of l after fusing in ∆T , and γ2 is the updated variance of l after fusing in ∆T .
We can further write the true posterior (6) as a weighted mixture of two Gaussian-Beta distributions

ppl , v |∆T , sT ,µ,σ,α,βq

9C1N pl | m,γ2qBetapv |α` ksT ` 1,β` kp1 ´ sT qq

`C2N pl |µ,σ2qBetapv |α` ksT ,β` kp1 ´ sT q` 1q

(10)

by defining

C1 “ η1N
`

∆T |µ,τ2 `σ2
˘

C2 “ η2Up∆T q.
(11)

Intuitively, the weights, C1 and C2, are the probability of the measurement, zT , being an inlier and out-
lier, respectively. The first Gaussian-Beta distribution models the effect of fusing an inlier measurement,
where the geometric change, l , is updated with a new mean, m, and variance, γ2. The positive proba-
bilistic counter, α, in the Beta stationarity distribution first gains 1 for the consistent geometric measure-
ment. Then, both counters, α and β, are adjusted by the k-weighted stationarity measurement. The second
Gaussian-Beta distribution models the effect of fusing an outlier measurement, where we discard the out-
lying geometric change measurement, ∆T , and only update the Beta stationarity distribution. In practice,
we limit the Beta probabilistic counters, α and β, to a maximum threshold to ensure fast response when
changes occur.

Finally, we match the first and second moments with respect to l of the true posterior (10) to the ap-
proximated posterior (5):

µ1 “ C1m `C2µ, (12)

and

σ12 `µ12 “ C1
`

m2 `γ2
˘

`C2
`

µ2 `σ2
˘

. (13)

Similarly, we match the first and second moments with respect to v of the true posterior (10) to the
approximated posterior (5):

α1

α1 `β1
“ C1

α` ksT ` 1

α`β` k ` 1
`C2

α` ksT

α`β` k ` 1
, (14)
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and

pα1 ` 1qα1

pα1 `β1 ` 1qpα1 `β1q
“ C1

ˆ

pα` ksT ` 2qpα` ksT ` 1q

pα`β` k ` 2qpα`β` k ` 1q

˙

`C2

ˆ

pα` ksT ` 1qpα` ksT q

pα`β` k ` 2qpα`β` k ` 1q

˙

(15)

Solving the system of equations (12)-(15), we obtain the parameters for the approximated posterior
qpl , v |µ1,σ1, a1,b1q:

µ1 “ C1m `C2µ

σ1 “
“

C1
`

m2 `γ2
˘

`C2
`

µ2 `σ2
˘

´µ12
‰

1
2

α1 “
pC1θφ`C2θψ´θ2q

pθ2 ´C1φ´C2ψq

β1 “
pC1θφ`C2θψ´θ2qpC1κ`C2ζ´ 1q

pC1φ`C2ψ´θ2qpC1κ`C2ζq

(16)

where

κ“
α` ksT ` 1

α`β` k ` 1

ζ“
pα` ksT q

pα`β` k ` 1q

θ“ C1κ`C2ζ

φ“
pα` ksT ` 2qpα` ksT ` 1q

pα`β` k ` 1qpα`β` k ` 2q

ψ“
pα` ksT ` 1qpα` ksT q

pα`β` k ` 1qpα`β` k ` 2q

(17)
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2 TorWIC_9-2 Results

We further evaluate our framework, POCD, on another route from the TorWIC dataset. The groundtruth
schematics of the route is shown in Figure 1. Qualitative map reconstruction results are shown in Figure 2
and quantitative results are listed in Table 1. Again, POCD produces the most accurate map comparing to
the baseline methods.

Warehouse_9-2

5m

Figure 1: The TorWIC_9-2 ground truth schematic. Green box: fixed AprilTag for drift reference; black: stationary box
or fence; orange: additional boxes; dotted grey: original position of shifted boxes.

Kimera MaskFusion

Fehr et al.  Panoptic Multi-TSDFs Ours

Reference

FP

TP

FN

Figure 2: Bird’s-eye-view qualitative 3D reconstruction results of the TorWIC_9-2 route. The reconstruction produced
by POCD is compared against that of Kimera, MaskFusion, Fehr et al., and Panoptic Multi-TSDFs. The green sections
represent true positives, the yellow sections represent false negatives, and the red sections represent false positives.
The first image is the reference map of the routes’ final configurations. We use a voxel size of 20 cm for the TorWIC
routes.

Table 1: Quantitative map reconstruction results on the TorWIC_9-2 dataset.

TorWIC_9-2 Precision Ò Recall (TPR) Ò FPR Ó

Kimera 53.6 76.3 7.9
MaskFusion 24.8 6.9 1.1

Fehr et al. 72.5 80.3 3.8
Panoptic Multi-TSDFs 72.2 83.7 4.3

POCD(ours) 83.0 78.8 1.9
Improvement 10.5 -4.9 -0.8
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3 List of Parameters in POCD

We list the parameters used in POCD for the TorWIC and ToyCar dataset in Table 3. Symbols, descrip-
tions and values are provided.

Table 2: Parameters used in the POCD framework for the TorWIC and ToyCar datasets.

Parameter Description TorWIC Dataset ToyCar Dataset
ν voxel size 5 cm 2 cm
s stationarity class 0: box, 1: fence 0: toy cars, 1: cubes/airplane
λ1 association weight for position difference 1 1
λ2 association weight for orientation difference 1 1
λ3 association s for semantic consistency 1000 1000
λdiff scaling factor for geometric change estimation 1.6 1.8
θdist maximum centroid-distance for association 0.9 m 0.9 m
θsim percent of outliers from ICP during association 10% 10%
θcutoff cutoff cost for feasible association 3.6 3.6

θvis
threshold of points within camera FOV to

label an unassociated object as unobserved
20% 20%

θstat stationarity threshold for object pruning 0.4 0.45
θdepth cutoff threshold for depth information 3 m 4 m

v initial stationarity expectation semi-static: 0.67, dynamic: 0.67 semi-static: 0.67, dynamic: 0.67
vmax max stationarity expectation 0.9999 0.9999
µ initial geometric change expectation 0 cm 0 cm
σ initial geometric change expectation 0.5 m 0.5 m

∆max maximum geometric change cutoff 4 m 0.6 m
τ measurement standard deviation 20 cm 3 cm

k weights for stationarity class measurements

outlier measurements, dynamic-class: 3
inlier measurements, dynamic-class: 0

outlier measurements, static-class: 0
inlier measurements, static-class: 3

outlier measurements, dynamic-class: 3
inlier measurements, dynamic-class: 0

outlier measurements, static-class: 0
inlier measurements, static-class: 3
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4 Dataset Information

In this section, we provide additional information on the released TorWIC dataset1.

4.1 Robot and Sensors

The dataset was collected on the OTTO 100 Autonomous Mobile Robot2, remote controlled by a human
operator at walking speed. We record sensor measurements from an Intel RealSense D435i RGB-D camera,
a wheel encoder, an IMU unit, and a Hokuyo UAM501 2D laser scanner, all rigidly mounted on the platform.
Figure 3 shows the robot platform and the sensor frames, and Table 3 lists the specifications and formats of
the sensor measurements.

Figure 3: An image of the Otto 100 platform with the sensors used to collect the dataset.

4.1.1 List of Available Data

Table 3: Available Sensor Data and Specifications

Sensor Data FPS Resolution FOV Format
Intel RealSense D435i colour 15 640x360 H:87 V:58 D:95 RGB image
Intel RealSense D435i depth 15 640x360 H:87 V:58 D:95 16-bit image

2D Hokuyo LiDAR laser scan 15 1080 270˝ PCD point cloud file

Base pose 15 - -
text file

id sec nsec px py pz qx qy qz qw

Base odometry 24 - -
text file

id sec nsec px py pz qx qy qz qw

vx vy vz ωx ωy ωz

IMU accel & gyro 50 - -
text file

id sec nsec ax ay az ωx ωy ωz

4.1.2 Sensor Calibration

The RealSense camera was calibrated with the Intel’s OEM calibration tool. The extrinsics for the sen-
sors are factory calibrated. It is assumed that the calibrations remain intact for all trajectories. The sensor
calibrations are provided in the data Google Drive link3 in the text file. Sensor extrinsics are also provided
in the ROS bags under the tf_static topic.

1https://github.com/Viky397/TorWICDataset
2https://ottomotors.com/100#stats
3https://drive.google.com/drive/folders/12-h2OPmlmxLk0Y9C3Hr5glkalUp66oEJ?usp=sharing
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4.1.3 Sensor Synchronization

The sensors on the OTTO 100 platform are not synchronized with each other. For our dataset, we use
the RealSense image timestamps as the reference, and take the measurements with the closest timestamp
from the LiDAR and the poses. The provided odometry and IMU data is not sub-sampled. Please contact us
if you need the unprocessed, raw data (as ROS bags).

4.2 Dataset Scenarios

The dataset provides 18 trajectories in 18 scenarios, including the baseline setup. Each trajectory con-
tains the robot traversing through a static configuration of the environment, starting and finishing at the
fixed April-Tag. Users can stitch the trajectory together with the provided script1 to create routes with struc-
tural changes in the scene. A high level overview of the scenarios and trajectories is listed in Table 4, and
more details can be found in the scenario setup document 4. Two sample frames are shown in Figure 4.

Table 4: Dataset Trajectory Breakdown

Changes Number of trajectories Total Number of Frames Description

Baseline 1 2377
Default configuration with all box walls

and fences forming a square.

Box shifts
and rotations

9 37746 Various box walls are rotated and shifted.

Removing
boxes

4 14457 Sections of the box walls are removed.

Moving
fences

3 12148
Fences are shifted outwards and inwards, along with

the box walls.

Adding
new boxes

1 3979 The four fences are covered with stacks of boxes.

Schematic RGB Depth Semantics 2D LiDAR

Figure 4: An example of two frames captures by the robot at the AprilTag in two scenarios (Scenario_2-2 and
Scenario_4-1). Changes include 3 stacks of boxes added in front of the fence, and an additional box wall to the right of
the fence. Note that the fence in the distance is labelled as a Miscellaneous Static Feature: purple in the top row, and
Wall/Fence/Pillar: hot pink in the bottom row due to semantic aliasing in our trained segmentation network.

4.3 Robot Global Poses

The poses of the robot were obtained offline using a proprietary LiDAR-based SLAM solution based on
the Hokuyo laser scans.

4https://github.com/Viky397/TorWICDataset/blob/main/TorWIC_Dataset.pdf
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4.4 Depth Images

The depth images from RealSense D435i RGB-D camera have been aligned to the colour images for per-
pixel correspondence. The measurements are in millimeters. The uint16 values can be converted into
float values and multiplied by 0.001 to get depth in meters.

4.5 Ground-truth Segmentation for Fine-tuning

The provided semantic segmentation masks are not perfect. A semantic segmentation model was trained
to produce the semantic masks for the dataset. Unfortunately, the full training data is proprietary and can-
not be released. However, we release a subset of this data5 such that users can fine-tune their models, if
needed. Within the training set, there are 79 folders with unique ID’s. Within each folder, there are 3 sets
of images, each within its own sub-folder. Each image folder contains an image of the individual semantic
mask, the source RGB image, the combined semantic mask image, the combined semantic indexed image,
and an annotation .json file. For training purposes, the combined indexed image should be used (named
combined_indexedImage.png). Each pixel holds the class ID of the semantic class corresponding to
Table 5. The provided ROS bags of the dataset contain colourized masks that correspond to the Class ID
column in Table 5.

Table 5: Semantic Class Lookup Table

Semantic Class uint16 Class ID Colour RGB
Background 0 black [0,0,0]

Driveable Ground 1 white [255,255,255]
Ceiling 2 baby blue [0,191,255]

Ego Vehicle 3 bright green [0,255,0]
Wall/Fence/Pillar 4 hot pink [255,0,102]

Miscellaneous Static Feature 5 purple [153,0,204]
Shelf/Rack 6 dark blue [51, 51, 204]

Goods Materials 7 teal [0, 153, 153]
Fixed Machinery 8 baby pink [255, 204, 255]
Cart/Pallet Jack 9 orange [255,153,0]

Pylons 10 yellow [255,255,0]
Text Region 11 bright red [255,0,0]

Miscellaneous Non-Static Feature 12 baby purple [204, 102, 255]
Person 13 watermelon [255, 77, 77]

Forklift/Truck 14 dark green [0, 153, 51]
Miscellaneous Dynamic Feature 15 grey [191, 191, 191]

5https://drive.google.com/file/d/1ovm4ycVrQfpuseI2Kc8TofS-LI0Nly_I/view?usp=sharing
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