
I. ROBOT SYSTEM DETAILS

A. Hardware

In all of real-world experiments, we deploy our system on a
Rethink Sawyer Robot and the sensory data (point cloud) come
from an Azure Kinect depth camera. The robot’s end effector
is an official Saywer Pneumatic Suction Gripper with a suction
cup with a diameter of 3 cm. The air supply of the suction
gripper is provided by a California Air Tools compressor.

B. Workspace

We set up our workspace in a 1.08 m by 1.00 m space put
together using Vention beams. We set up the Azure Kinect
camera such that it points toward the center of workspace and
has minimal interference with the robot arm-reach trajectory.
Collision geometry are set up using MoveIt’s collision box
construction tool. We add a number of boxes representing the
camera and Vention beams that can potentially be blocking
the robot during motion planning.

C. Hand-Eye Calibration

For Hand-Eye Calibration, we are using the Easy-Hand-
Eye ROS package that calculates the transformation from the
camera frame to world frame using an ArUco marker fixed on
the robot’s end effector. The process requires about 30 samples
of the robot pose and ArUco marker pose combinations.

D. Foreground Segmentation

In simulated experiments, we have access to segmentation
masks that segment out tabletop and robot from the collected
point cloud. In real-world experiments, however, we need to
programatically segment out those points ourselves.

Tabletop. We segment out the tabletop plane by simply
subtracting the points with z values less than 0.015 m from
the collected point cloud after calibration because the table
top is placed 1.5 cm below the robot base.

Robot. The robot points are masked out in real-time by
rendering the robot 3D model using its URDF file. This is done
through a ROS package called Real Time URDF Filter. This
filter assumes a perfect calibration of the camera. When the
calibration is slightly off, some trailing points from the robot
might remain in scene. Thus, we also statistically remove the
outliers from the resulting point cloud because the remaining
robot points are sparser than the object’s points.

E. Contact Point Heuristic

In simulation, the suction contact is modeled by a kinematic
constraint between the gripper point and the contact point.
Therefore, in simulation, we have a perfect contact that can
almost always successfully grasp the desired part. In real-
world experiments, due to the complication of the physics
of the suction gripper and the geometry of the target part,
we can not always guarantee a successful grasp. Therefore,
we add an extra heuristic upon the max-flow selection when
selecting which point to grasp. Specifically, we add an interior
point selection procedure that calculates the curvature of the
points using PCA and we choose the point with curvature

value smaller than a threshold. If the max-flow point has a
curvature value higher than the threshold, we discard that point
and choose the nearest low-curvature point at least 2 cm away
from the max-flow point.

F. Grasp Selection Details

In the Grasp Selection phase of real-world experiments, we
predict and estimate the part’s 3D articulated flow vectors
using FlowNet. We then use the aforementioned contact point
heuristic to filter out points that have high curvature values. If
the max-flow point is within the remaining points, we keep
it and use it as the selected contact point. Otherwise, we
choose the nearest low-curvature point at least 2 cm away
from the max-flow point. Once we have selected the point, we
have also selected the end effector’s goal translation. For goal
orientation, we align the end effector with the flow vector. The
procedure is explained here: assume that the axis connecting
the suction gripper tip to the robot hand is called v1 and the
chosen flow vector is −v2, we aim to find a rotation that aligns
v1 to v2 (because the robot approach direction is opposite to
the flow direction). The difference of the rotation expressed in
quaternion is calculated as follows:

ϕ12 = cos−1(v1 · v2)

ω = v1 × v2 = [ωx, ωy, ωz]

qx = ωx · sin(ω/2)
qy = ωy · sin(ω/2)
qz = ωz · sin(ω/2)
qw = cos(ω/2)

q = [qx, qy, qz, qw]

qdiff =
q

||q||
.

Therefore, when given the robot’s starting rotation quaternion
qstart, the goal orientation of the robot end-effector qgoal is
given by:

qgoal = qdiff · qstart

G. Robot Control Paradigm

In the Grasp Selection Phase of real-world experiments,
the robot is controlled using position control by inputting
the end-effector pose and solving for the trajectory using
an RRTConnect-based [3] IK solver. One caveat about the
Grasp Selection Phase in real world is that the robot does
not make contact with the select point directly. Instead, the
robot first aligns with the chosen flow vector and plans to
a point 10 cm in the chosen 3D articulated flow direction
away from the max-flow point. Then the robot switches the
control mode to velocity control and approaches the proposed
point in the aligned (negative selected flow) direction slowly
until the force sensor of the robot reports reading greater
than a threshold, meaning the robot makes contact with the
object. Then in the Articulation-Execution Phase, the velocity
controller takes as input the translational velocity represented
by the current time step’s normalized predicted articulation
flow vector multiplied by a constant to decrease the speed and

the rotational velocity as the aforementioned qdiff converted
to Euler angles multiplied by another constant to decrease the
angular speed.

II. TRAINING DETAILS

A. Network Architecture

ArtFlowNet is based on the PointNet++ [5] architecture. The
architecture largely remains similar to the original architecture
except for the output head. Instead of using a segmentation
output head, we use a regression head. The ArtFlowNet
architecture is implemented using Pytorch-Geometric [1], a
graph-learning framework based on PyTorch. Since we are
doing regression, we use standard L2 loss optimized by an
Adam optimizer [2].

B. Ground Truth 3DAF Generation

We implement efficient ground truth 3D Articulation Flow
generation. At each timestep, the system reads the current state
of the object of interest in simulation as an URDF file and
parses it to obtain a kinematic chain. Then the system uses the
kinematic chain to analytically calculate each point’s location
after a small, given amount of displacement. In simulation,
since we have access to part-specific masks, the calculated
points’ location will be masked out such that only the part of
interest will be articulated. Then we take difference between
the calculated new points and the current time step’s points to
obtain the ground truth 3D Articulation Flow.

C. Simulator Modifications

We heavily modify the ManiSkill [4] environment, which
is a high-level wrapper of the SAPIEN [6] simulator. Specif-
ically, we add in a variety of PartNet-Mobility objects to the
environment for more diverse training dataset. We obtain a list
of training and testing objects from the authors of UMPNet
[7]. We have filtered out some phone objects and door objects
due to the collision of meshes in the SAPIEN simulator
upon loading, but the dataset remains largely identical to the
one used in UMPNet. Furthermore, we implement efficient
online ground truth 3D articulation flow calculation in the
ManiSkill environment for generating training data online. We
also implement camera viewpoint sampling by randomizing
the azimuth and elevation for the VPA model training. Instead
of using a full robot arm, we only use a floating gripper
with 8 DoF (x, y, z for translation, r, p, y for rotation, and
speed parameter for each of the two fingers on the gripper)
controlled by a velocity controller. The two gripper fingers’
speed parameters are not learned in Behavioral Cloning as the
two fingers remain closed. To simulate suction, we create a
strong force between the gripper fingers and the target object
since kinematic constraints are not directly supported in the
SAPIEN simulator.

D. Hyperparameters

We use a batch size of 64 and a learning rate of 1e-4.
We use the standard set of hyperparameters from the original
PointNet++ paper.

III. SIMULATION EXPERIMENTS ILLUSTRATION

Here we briefly illustrate FlowBot3D system in simulation.
In simulation, the suction is implemented using a strong force
between the robot gripper and the target part.

IV. REAL-WORLD DATASET

As shown in Section IV-B, we use 14 different objects in
real world experiments. The objects labeled 1-14 in Fig. 5 are
described here in Table I.

Label ID Category Type
1 chest_1 Box Revolute
2 teapot_1 Kettle Prismatic
3 toilet_1 Toilet Revolute
4 fridge_1 Refrigerator Revolute
5 oven_1 Oven Revolute
6 drawer_1 Storage Prismatic
7 safe_1 Safe Revolute
8 microwave_1 Microwave Revolute
9 minifridge_1 Refrigerator Revolute

10 jar_1 Kitchen Pot Prismatic
11 jar_2 Kitchen Pot Prismatic
12 trash_1 Trash Can Revolute
13 laptop_1 Laptop Revolute
14 box_1 Box Revolute

TABLE I: Labels and their corresponding objects and the objects’
articulation types shown in Fig. 5 of the paper. Note that jar_1
and jar_2 are not technically kitchen pots but they do have lids
similar to kitchen pots in functionality and have identical ariculation
parameters.

In Fig. 2, we show the 14 objects individually for more
clarity.

V. RESULTS IN THE UMPNET ENVIRONMENT

We perform a direct evaluation of FlowBot3D in the UMP-
Net simulation environment, which was only made public after
this manuscript was accepted for publication. There are several
major differences between our main simulation environment
and the UMPNet evaluation environment:

• The UMPNet environment uses the PyBullet physics
simulator, whereas we use the SAPIEN environemnt
(backed by PhysX).

• The UMPNet environment disables collisions between the
gripper geometry and the rest of the object (except for
the part where contact is made). We leave full contact
enabled.

• The UMPNet environment has a hard contact constraint
between the object and the gripper, whereas our contact
is softer, acting more like a spring.

We use the UMPNet evaluation script without modification,
with the exception that the chosen action is selected based on
FlowBot3D instead. In Tables II and III, we present the results
for the following methods:

• UMPNet: We run a pre-trained UMPNet model with
the official UMPNet code following the exact same
evaluation procedure listed in [7]. The numbers here are
consistent with those in the UMPNet paper.

Start (Pre-Contact) Make Contact Execution (Post-Contact) Done

Laptop

Storage Furniture

Dishwasher

Fig. 1: Simulated rollout examples

Novel Instances in Train Categories Test Categories

AVG. AVG.
Baselines
UMPNet 0.18 0.18 0.17 0.32 0.32 0.05 0.06 0.12 0.24 0.23 0.18 0.08 0.15 0.23 0.14 0.04 0.00 0.25 0.27 0.09 0.21 0.13 0.19

Ours
FlowBot3D in UMPNet 0.17 0.42 0.22 0.16 0.17 0.03 0.00 0.20 0.51 0.07 0.00 0.08 0.21 0.17 0.29 0.00 0.06 0.21 0.10 0.06 0.16 0.29 0.73

TABLE II: Normalized Distance Metric Results: Normalized distances evaluated in the official UMPNet environment to the target articulation
joint angle after a full rollout across different methods. The lower the better.

• FlowBot3D in UMPNet Environment: FlowBot3D
trained and evaluated with the camera parameters and ob-
jects’ placement randomization from UMPNet’s PyBullet
environment. Note that in test time, UMPNet takes as
input a goal of the articulated object in its fully closed
or fully open state, so we use the ground-truth goal to
decide if we need to invert the output 3DAF directions
(i.e. if the ground-truth goal is a fully closed state, we
invert the output direction).

Overall, the two methods perform similarly on the task.
However, while the ArtFlowNet was retrained on point clouds
generated in PyBullet, the performance was not significantly
tuned on the different task distribution in the UMPNet dataset.

VI. FULL TRIALS RESULTS

In Table IV and V, we show the full trials results, which
contains the metrics averaged over all 5 trials for each object.

Novel Instances in Train Categories Test Categories

AVG. AVG.
Baselines
UMPNet 0.73 0.73 0.71 0.60 0.49 0.89 0.90 0.79 0.60 0.64 0.78 0.86 0.75 0.55 0.80 0.89 1.00 0.66 0.64 0.77 0.64 0.75 0.76

Ours
FlowBot3D in UMPNet 0.81 0.53 0.74 0.81 0.82 0.96 0.99 0.79 0.44 0.90 1.00 0.89 0.70 0.69 0.63 1.00 0.94 0.67 0.89 0.75 0.66 0.69 0.14

TABLE III: Success Rate Metric Results: Fraction of success trials (normalized distance less than 0.1) of different objects’ categories after
a full rollout across different methods evaluated in the official UMPNet environment. The higher the better.

(a) box 1 (b) chest 1 (c) drawer 1

(d) fridge 1 (e) jar 1 (f) jar 2

(g) laptop 1 (h) microwave 1 (i) minifridge 1

(j) oven 1 (k) safe 1 (l) teapot 1

(m) toilet 1 (n) trashcan 1

Fig. 2: Objects in the dataset for real world experiments

Object ID Object Category Success/Total Success % Contact Success/Total Distance Motion-Only Success/Total
chest_1 Box 3/5 60% 4/5 0.22 3/4
teapot_1 Kettle 5/5 100% 5/5 0.00 5/5
toilet_1 Toilet 4/5 80% 5/5 0.02 4/5
fridge_1 Refrigerator 3/5 60% 3/5 0.11 5/5
oven_1 Oven 0/5 0% 5/5 1.00 0/5
drawer_1 Storage 3/5 60% 3/5 0.40 3/3
safe_1 Safe 1/5 20% 2/5 0.73 1/2

microwave_1 Microwave 3/5 60% 5/5 0.11 3/5
minifridge_1 Refrigerator 2/5 40% 5/5 0.155 2/5

jar_1 Kitchen Pot 5/5 100% 5/5 0.00 5/5
jar_2 Kitchen Pot 5/5 100% 5/5 0.00 5/5
trash_1 Trash Can 5/5 100% 5/5 0.02 5/5
laptop_1 Laptop 4/5 100% 5/5 0.07 4/5
box_1 Box 2/5 40% 5/5 0.28 2/5

SUMMARY - 45/70 64.3% 64/70 0.22 45/64

TABLE IV: Real-World Trials for FlowNet

Object ID Object Category Success/Total Success % Contact Success/Total Distance Motion-Only Success/Total
chest_1 Box 1/5 20% 5/5 0.80 1/5
teapot_1 Kettle 2/5 40% 5/5 0.60 2/5
toilet_1 Toilet 0/5 0% 5/5 0.78 0/5
fridge_1 Refrigerator 0/5 0% 5/5 1.00 0/5
oven_1 Oven 0/5 0% 5/5 1.00 0/5
drawer_1 Storage 1/5 20% 5/5 0.72 1/5
safe_1 Safe 1/5 20% 3/5 0.70 1/3

microwave_1 Microwave 0/5 0% 5/5 1.00 0/5
minifridge_1 Refrigerator 0/5 0% 5/5 1.00 0/5

jar_1 Kitchen Pot 3/5 60% 5/5 0.40 3/5
jar_2 Kitchen Pot 1/5 20% 5/5 0.80 1/5
trash_1 Trash Can 0/5 0% 5/5 1.00 0/5
laptop_1 Laptop 1/5 20% 5/5 0.81 1/5
box_1 Box 1/5 20% 5/5 0.80 1/5

SUMMARY - 10/70 14.3% 68/70 0.73 10/68

TABLE V: Real-World Trials for DAgger Oracle

REFERENCES

[1] Matthias Fey and Jan E. Lenssen. Fast graph representa-
tion learning with PyTorch Geometric. In ICLR Workshop
on Representation Learning on Graphs and Manifolds,
2019.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[3] James J Kuffner and Steven M LaValle. Rrt-connect:
An efficient approach to single-query path planning. In
Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), volume 2,
pages 995–1001. IEEE, 2000.

[4] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang,
Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao
Su. ManiSkill: Learning-from-Demonstrations benchmark
for generalizable manipulation skills. arXiv e-prints, pages
arXiv–2107, 2021.

[5] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas.
PointNet++: Deep hierarchical feature learning on point
sets in a metric space. June 2017.

[6] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, and Others. Sapien: A simulated part-
based interactive environment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11097–11107, 2020.

[7] Zhenjia Xu, He Zhanpeng, and Shuran Song. Umpnet:
Universal manipulation policy network for articulated ob-
jects. IEEE Robotics and Automation Letters, 2022.

	Robot System Details
	Hardware
	Workspace
	Hand-Eye Calibration
	Foreground Segmentation
	Contact Point Heuristic
	Grasp Selection Details
	Robot Control Paradigm

	Training Details
	Network Architecture
	Ground Truth 3DAF Generation
	Simulator Modifications
	Hyperparameters

	Simulation Experiments Illustration
	Real-World Dataset
	Results in the UMPNet Environment
	Full Trials Results

