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Abstract—Autonomous underwater vehicles (AUVs) have long
lagged behind other types of robots in supporting natural
communication modes for human-robot interaction. Due to the
limitations of the environment, most AUVs use digital displays
or topside human-in-the-loop communications as their primary
or only communication vectors. Natural methods for robot-
to-human communication such as robot ‘gestures” have been
proposed, but never evaluated on non-simulated AUVs. In this
paper, we enhance, implement and evaluate a robot-to-human
communication system for AUVs called Robot Communication
Via Motion (RCVM), which utilizes explicit motion phrases
(kinemes) to communicate with a dive partner. We present a small
pilot study that shows our implementation to be reasonably effec-
tive in person followed by a large-population study, comparing
the communication effectiveness of our RCVM implementation
to three baseline systems. Our results establish RCVM as an
effective method of robot-to-human communication underwater
and reveal the differences with more traditional communication
vectors in how accurately communication is achieved at different
viewpoints and types of information payloads.

I. INTRODUCTION

Despite the challenges inherent in the underwater envi-
ronment, autonomous underwater vehicles (AUVs) have di-
versified both in form and applications over the last sixty
years. AUVs now explore shipwrecks [10], chart biological
habitats [30] and marine geology [31], observe the effects of
climate change underwater [23], destroy subsea mines [24],
inspect and repair undersea infrastructures such as pipelines
or cables [21], aide in local water resource management [9],
and help to control invasive species [1]. In many of these
applications, AUVs could be deployed to work alongside
humans, aiding them by carrying equipment, scanning the area
for points of interest, maintaining dive safety, and guiding
humans in their tasks underwater. To enable robots to work
in these teams, methods for efficient, stable, and effective
communication of information from robots to human partners
are required. However, in the underwater environments where
these diver-robot teams must work, standard robot-to-human
communication methods suffer from a variety of challenges.
Signals in the electromagnetic (EM) spectrum suffer from high
attenuation and can only travel extremely short distances, the
visual quality is often degraded due to turbidity, and spoken
audio can be nearly incomprehensible due to the dampening
effect of water.
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Figure 1: Clockwise from the top-left: An AUV from the
Aqua family in the open ocean, producing a Ky, kineme by
shaking its “head”.

The challenges of the underwater world limit the types of
communication that can be applied there. Additionally, it is
the opinion of the authors that methods of communication
underwater should be natural and device-less, requiring little
to no additional hardware, minimal training, and little mental
effort on the part of the interactant. The reason for this is
simple: diving is hazardous and mentally taxing. The diver
must be aware of their environment, aware of their remaining
oxygen, and remain focused on their task, all while carrying
any equipment they require. Divers are therefore often at
their physical and mental limits when underwater. If AUV
communication adds to the diver’s physical load by requiring
them to carry an interaction-specific device, or if it adds to
the diver’s mental load by requiring intense focus, this will
likely reduce the adoption of communicative AUV partners
in underwater work and limit the effectiveness of the AUVs
which are used. While the field of human-robot interaction
research (HRI) in general contains a wide variety of works
that propose methods of natural communication such as speech
synthesis, text displayed on screens, and other options, such
topics are less well explored underwater. Most AUVs tend to
communicate with humans in limited and highly structured
ways such as via small digital displays or wired controllers.
These communication methods, while useful, fall far from the
ease of use and simplicity of methods applied on terrestrial,
humanoid robots, such as gestures and gaze cues, which have



not been fully implemented for AUVs or tested rigorously.
Several ingenious methods for natural underwater human-
robot communication have been proposed, such as implicit
motion and light communication [7], which has only been
evaluated in a single-participant case study. A form of “robot
body language” [11] has also been proposed, but only eval-
uated in simulation. While the idea of using natural, human-
like communication modes for AUVs is attractive, the question
remains: can it be done?

To address this question, we implement an AUV “gesture”
communication system which was previously proposed and
evaluated in simulation [11], with modifications to the phrase-
book which improve its viability in real-world operations.
Called Robot Communication Via Motion (RCVM), this sys-
tem maps meanings to specific, explicit robot motion phrases
termed kinemes [19, 11] (noted in this paper as K4 for a
kineme with the meaning “A”). An example of one of these
kinemes is shown in Figure 1, where one can see the robot’s
back and forth yaw motions, which are mapped to the meaning
“No”, mimicing a human head-shake gesture.

In order to validate our implementation’s effectiveness, we
conduct a small pilot study (N=8, where N is the population
size) which evaluates RCVM in a full-loop communication
context. Following this, we perform a wide-reaching online
study (N=121), comparing the RCVM system to three base-
line communication systems: an audio text-to-speech (TTS)
system, an LCD, and a system of blinking LEDs. In the
results from this study, we compare the communication ef-
fectiveness of the kineme system to others in terms of the
viewpoint from which the interaction takes places and the
content of the information communicated. The results of this
study demonstrate key strengths of RCVM over alternative
communication methods: kinemes are easier to understand at
challenging viewpoints and communicate simple concepts with
human gesture equivalents such as “nodding” for a “Yes”. In
this paper, we make the following contributions:

« An improved set of RCVM kinemes, adaptable to any

AUV with certain motion characteristics.

e The first implementation of RCVM, or any gestural
system for an AUV, as well as the first studies of this
implementation, including:

— Results and analysis from an in-person pilot study
testing kinemes in a full communication loop context.

— Results and analysis from a wide-reaching online study
comparing kinemes to three baseline systems.

II. RELATED WORK
A. Underwater Robot-to-Human Interaction

In this paper, we focus on the robot-to-human direction
of communication, which is not widely addressed in the
literature, leaving the study of the complementary human-
to-robot communication to other work [16, 6]. Underwater
robots have typically relied on digital displays [26, 6], purpose-
built interaction devices [27], and lights [7] for robot-to-
human communication. These methods all have drawbacks,
however. Digital displays are often hard to understand at

distance or at an angle; dedicated interaction devices add
complexity, failure points, and have limited range. Emitted
light is a promising method of communication which has
only been explored minimally for underwater HRI [7], but
flashing lights and color codes used may be difficult to learn
and remember [11]. Motion-based communication may be the
answer, as all robots have the capability to move; motion is
observable at challenging viewpoints, and is a natural method
of communication for humans. The original paper which
proposed the RCVM system [11] showed that motion might
be a viable method of communication through simulated trials,
but no implementation of motion-based communication for
AUVs has ever been produced or tested on physical robots.
Therefore, we must look to other sub-fields of human-robot
interaction to find examples of how motion can be used for
communication.

B. Motion-Based Human-Robot Interaction

The use of motion as a vector of communication for robots
has always been a topic of interest, as human communication
emphasizes motions (conscious and unconscious) as modal-
ities of communication secondary only to spoken language.
However, the majority of motion-based communication re-
search has been done on the use of motion for communication
of affect (not information) and has been focused on humanoid
and indoor robots rather than non-humanoid field robots. In
terms of non-humanoid motion interaction, Bethel’s seminal
thesis [3] is one of the most important works in the field,
using the angle and motion of non-humanoid search and rescue
robots to communicate affect from the robots to the humans
they are helping. This work (along with Bethel’s surveys of
non-facial, no-verbal affective communication [2, 4]) helped
to establish motion communication for field robots as a viable
option for displaying affect. Non-affective motion commu-
nication has also been explored, from the use of a pan-tilt
camera to simulate head nodding and other gestures [28] to
using a digitally displayed virtual “head” to generate gaze cues
in order to manage navigational conflicts with humans [13].
A large body of work by Dragan et al. has covered the
topics of legible pointing [14], nonverbal communication for
feedback in teaching by demonstration [15], the expressiveness
of timing in manipulation motion [32], and the effect of
different types of robot motion on human-robot collaboration
outcomes [8] for terrestrial robots, mostly in the realm of
manipulators. These works all have some similarity to our
study of RCVM, though we focus on informative communi-
cation (unlike Bethel [3]) via explicit motion gestures (unlike
Dragan [14]), and use the base motion of a non-humanoid
robot instead of adding human features (unlike Hart [13]).

III. ROBOT COMMUNICATION VIA MOTION

In order to facilitate robot-to-human communication for
AUVs, we present the first AUV implementation of the Robot
Communication Via Motion system. This implementation of
RCVM, previously proposed for a simulated AUV [11], refines
the language design and brings the system to fruition by



Interaction Phrase Meaning Type
Affirmative Yes Conversational
Attention Look at me Conversational
Danger Danger nearby Status

Follow Follow me Directional
Indicate Motion(L/R)  Move to the left/right Directional
Indicate Object(L/R) Object to the left/right Directional
Stay Remain where you are  Directional
Lost The robot is lost Status
Malfunction Something is wrong Status
Negative No Conversational
Repeat Last Repeat last instruction Conversational
Report Battery Battery level is...[level]  Status

Table I: The interaction phrases used in this paper.

providing physical AUV implementations. In this section, we
present a brief discussion of kineme design, our modifications
to the RCVM phrasebook, the implementation of RCVM,
and the three communication systems which will serve as
a baseline comparison to RCVM for our wide-reach study,
discussed in Section V.

A. Design of Kinemes

The design process for kinemes is currently relatively un-
structured. Once the set of phrases to be communicated is
chosen, the designer or design team selects those with a direct
human equivalent and attempts to mimic that motion with the
AUV. Following this, kinemes with a directional component
are designed, using the orientation and position of the AUV
as a key indicator of the information. Lastly, any remaining
kinemes are designed by appealing to emotional relations and
attempting to evoke those emotions. For instance, Kpanger
attempts to evoke a sense of fear, as fear in humans is related
to the concept of danger. During the process of updating the
RCVM phrasebook, we realized that the three types of kineme
designed (human-equivalent, directional, and emotional) had
strong groupings in terms of their content. We therefore began
to group them as such, giving rise to the groups shown in Table
I: Conversational, Directional, and Status.

B. Phrasebook Modifications

The library of phrases presented in the original RCVM
proposal contained a total of fifteen interaction phrases, the
content of which were drawn from the authors’ experience
with underwater robot operations. We modified the phrasebook
somewhat to remove unnecessary kinemes (such as Kpossibie),
clarify the meaning of others, and condense others into a single
kineme. Additionally, we modified the actual motion used for
various kinemes to be more achievable for a physical robot, as
the original phrasebook was designed for a simulated robot.
These modifications to the RCVM phrasebook streamline the
language and make it more appropriate for implementation on
a physical AUV. Our final phrasebook is technically comprised
of 12 kinemes (found in Table I), but for Kr,gicateObject
and KipdicateMotion W€ tested two versions (left and right)
in our studies, to ensure that the kinemes work in multiple
directions and to test for confusion between directions. It
would be beneficial to test these kinemes with a variety of

indicated directions/orientations, to ensure that all possible
3D orientations can be effectively communicated. However,
to allow direct comparison to other kinemes as well as
comparison to other communication modalities not as capable
of 3D orientation representation (such as the LED system in
Section III-D3), we only test a left and right version of the
KIndicateObject and KrndicateMotion Kinemes.

C. Implementation

The process of implementing RCVM for an AUV is chal-
lenging due to the difficult environments AUVs operate in.
The kinemes must satisfy three requirements:a) be performed
faithfully, regardless of environmentally created motion such
as currents, waves, or motion of other swimmers near the
robot, b) be sufficiently expressive without sacrificing AUV
stability, and ¢) not modify the robot’s overall position unnec-
essarily. The Aqua AUV (our implementation platform) uses
a Proportional-Integral-Derivative (PID) control [18, Chapter
9.3] controller for its motion planning system (referred to as
the “autopilot” system)[12]. The autopilot (which is imple-
mented using ROS [22]) uses PID controller feedback loop
based on local motion estimation which allows the kineme
designer to request movement to specific angles or at certain
velocities.

To address the first requirement, we made some small
modifications to the Aqua autopilot to allow some flexibility
in how precisely angles were targeted and added a timeout for
abandoning a motion request if it was attempted without suc-
cess for long enough. These modifications prioritize execution
of a “fuzzier” version of the kineme in a short period of time
rather than a higher fidelity execution over a longer duration.
The second requirement was dealt with by re-tuning the PID
controller slightly to prioritize a fast approach to the target
angles, allowing for some overshooting. Finally, our redesigns
for certain kinemes prioritized keeping the AUV closer to its
original position, to enable further communication more easily.
Once we had completed these three refinements to improve
robustness of field operations, we implemented RCVM as a
ROS node which provided a number of services, endpoints
which can be called by other nodes to trigger any of the
kinemes in our phrasebook. Whenever it receives a request
for a kineme execution, the RCVM node utilizes the modified
autopilot API to produce the requested motions in the AUV.
This modular design, somewhat decoupled from the autopilot
code and utilizing services, makes it easy for RCVM to be
ported to a new AUV (by updating the service callbacks)
without modifying any ROS nodes which request RCVM
services. The code comprising this implementation will be
released for public use (not currently released for double blind
review).

D. Baseline Systems

To provide an understanding of the place which RCVM
occupies in underwater communication systems, we also de-
veloped three baseline systems for comparison. Demonstration



of each of the baseline systems, along with RCVM, can be
found in the complementary video submitted with this paper.

1) TTS System: The text-to-speech (TTS) based commu-
nication system is quite simple: for each interaction phrase,
a Bluetooth Speaker plays a short phrase that represents
the interaction phrase’s meaning, using English text-to-speech
audio retrieved from Google’s Text To Speech API. The
speaker is mounted pointing up or down, not directly towards
the interactant. We used a Kinps SoundCircular speaker, rated
IPXS for full immersion in water.

2) LCD System: The LCD communication system is sim-
ilar to the TTS system in that the design simply involves
expressing an English phrase on the designated device. In this
case for each interaction phrase, a short text which represents
the meaning is displayed for five seconds on a two-line,
sixteen character-per-line backlit liquid crystal display, driven
by an Arduino. The screen’s display is white text on a blue
background, which makes it particularly good for reading
underwater compared to other displays, but it has poor viewing
angles and is difficult to see from any distance.

3) LED System: The LED communication system was used
as a baseline for kinemes in the original RCVM study [11].
In that work, a set of nine LEDs was illuminated in different
ways to represent different interaction phrases. The set of
light colors and timings used for each interaction phrase is
termed a “light code” or “LED code”. We improved upon this
LED system by reducing the number of required LEDs to 3
and simplifying light codes. This system was implemented by
using an Arduino to drive a series of three RGB LEDs.

Interaction Phrases Described In Appendix

For brevity’s sake, full descriptions of each system’s in-
teraction phrases are omitted from this paper. The Appendix
provided with this article contains text descriptions of each
kineme, LED code, LCD display, and audio phrase, along with
URLSs for video playlists of each system’s interaction phrases.

IV. IN-PERSON PILOT STUDY

In order to validate this new physical implementation of
RCVM, we performed a small pilot study with 8 participants,
training them in the use of the RCVM system and then testing
their ability to complete full-loop interactions. Given the small
population size and complexity of the setup, this study was not
intended as a definitive quantitative measurement of kineme
effectiveness for communication. Rather, it serves as a confir-
mation that RCVM still works when translated to a physical
robot, as well as when embedded in a full communication loop.
While some quantitative measures are recorded, the study as a
whole is treated as preliminary to more definitive experiments
described in Section V. This study was determined to be Not
Human Research, exempting it from IRB oversight (reference
numbers: 00004699, 00004700).

A. Study Design

All participants were provided with educational material
before the study began, to be completed at their own pace.

— e — e
ot 507 —{— o |

— swy — swyee
v RereaTosaezone
—— Watncion — Teminate Speriment
—— e —  oonong

o — gt

(a) Flow chart depicting the interaction process.

(b) Key: Boxes are gestures (blue) or actions (green) of
the human, while the purple ovals are kinemes generated
by the robot.

Figure 2: A flow chart of the pilot study’s interaction loop,
as described in Section IV-A.

The educational material familiarized them with the study
layout and flow (using the image in Fig. 2), the gestures
they would use for input, and videos of the kinemes on a
simulated AUV (generated with the Gazebo simulator using
our implementation). Participants were told to ask the Aqua
AUV one of three questions, pay attention to the robot’s
response delivered via kineme, and take the appropriate action.
The question asked was communicated using a set of gestures
based on relevant American Sign Language signs for “What
should I do?’, “Where should I go?’, and ‘How are you?’,
with another sign for ‘Confirm’. The users were told that
Aqua would observe their gesture and automatically select
a kineme to display. However, the kinemes were actually
manually selected pseudo-randomly in secret by study staff.
This selection was done manually in order to easily balance
the number of each kineme shown throughout the study, and
because gesture recognition in underwater environment is a
challenging problem on its own. Therefore, the study is a
Wizard-of-Oz study, where the study staff operate some aspect
of the robot’s function without the knowledge of the user. Once
the robot displayed a kineme, the participant verbally identified
the action they would take, appropriate to the response they
received. If their selected action was correct, the interaction
was marked as completed correctly. If the participant forgot
the correct action, leading to them taking an incorrect action
or simply refusing to take an action, the interaction was
marked as a failure. Therefore, the recorded “Accuracy” of
each kineme is more appropriately considered the success rate



System Accuracy Avg. Time Avg. Conf.
Affirmative 95.00% 21.25 9.00
Negative 80.00% 20.85 8.10
Follow Me 50.00% 30.66 6.62
Indicate Motion (Left) 88.46% 24.77 7.54
Indicate Motion (Right) 86.36% 23.18 8.10
Indicate Object (Left) 57.89% 28.21 7.48
Indicate Object (Right) 52.63% 35.42 6.32
Indicate Stay 91.30% 23.78 8.60
Danger 64.29% 32.18 6.42
Malfunction 77.27% 29.09 7.00
Repeat Previous 25.00% 29.00 5.58
Total Avg. (Ours) 60.00% 34.75 7.34
Avg.@Highest Edu. Level ([11]) 85.00% 11.00 8.00

Table II: Per-kineme results from the pilot study, along with
the total average results compared to the two most appropriate
education groups from [11].

of interactions including that kineme. After each interaction
loop, users were asked for a confidence between one and ten
(ten being high) on how accurately they had conducted their
interaction. This confidence was recorded, along with the total
time of the interaction loop and the sequence of question
to kineme to action. For each robot, participants completed
an interaction session composed of between ten and fifteen
interactions. Two kinemes (K75t and KgeportBattery) Were
not tested in this study, as they were under consideration for
elimination at the time of the study.

B. Results

The results from our pilot study (Table II) show that RCVM
continues to function relatively well when implemented on
a physical AUV and placed in a full-loop context. While
our overall accuracy is less than that of the best-trained
participants from [11], we see several high accuracies on
certain kinemes, particularly K¢ firmative> KNegativer KStay
and KppdicateMotion- We note that average times increased,
but since our measurement of duration included the entire
interaction loop, this is of less significance. Given the small
sample size, it is difficult to draw any statistically significant
results from this data, but it serves to validate the in-person
performance of our kineme system: kinemes implemented for
the Aqua robot achieved similar levels of accuracy to the
original simulated kineme system that we are implementing.
In addition, RCVM operated effectively as a part of a full
interaction loop. Further evaluation of RCVM in a full commu-
nication loop, including analysis of the cognitive load placed
on interactants, would be interesting to explore. However, such
an evaluation would be premature, without an understanding of
how RCVM operates in comparison to other communication
modalities, purely in terms of recognition accuracy.

V. WIDE-REACHING ONLINE STUDY

With the kineme pilot study completed, validating the base-
line performance of physically implemented AUV kinemes,
we turn our attention to the task comparing RCVM to other
viable underwater communication systems. Understanding the
comparative performance of RCVM to other robot-to-human

communication options is critical in determining how to utilize
RCVM in actual interaction loop designs, for both further
research and field applications. To achieve this understand-
ing of RCVM’s performance compared to other options, we
designed a study comparing RCVM to the baseline systems
described in Section III-D in terms of their efficacy from
a variety of viewpoints and when communicating different
types of information. Our participants, recruited using Amazon
Mechanical Turk, were trained to use a randomly selected
communication system, then tested on that system from a
randomly selected viewpoint. This study design was submitted
to the relevant Institutional Review Board for review and was
determined to be Not Human Research, exempting it from IRB
oversight (reference number: 00004695).

A. Viewpoints

To prepare videos for our survey, each communication
system was recorded from a variety of viewpoints. These
viewpoints (illustrated in Fig. 3) were 3 meters, 8 meters,
3 meters at an angle of 45 °, and 3 meters at an angle of
90 °. In addition, an ideal viewpoint for each communication
system was recorded to be used for the training, as well
as being a possible viewpoint condition for testing. This
viewpoint, referred to as the EDU viewpoint, is defined
as the closest distance to the robot at which all portions of
every interaction phrase are visible, minimum of 1 meter.
Therefore, the EDU viewpoint is a distance of 1 meter for
all of the baseline systems, but a 5 meter distance for the
kineme system, because some kinemes must be viewed from
a slight distance in order to see all of the movement. As
each viewpoint is not viable for all systems, some were not
tested; e.g., the LCD screen cannot be seen at all from a 90-
° angle for instance, so accuracy should be close to 7%, as
all attempts to identify the fourteen interaction phrases will
essentially be random guesses. Additionally, the TTS systems
should return similar results at the 3m viewpoints as the
45° and 90° viewpoints, as those viewpoints are also at a
three meter distance and audio propagates evenly regardless
of angle, given the position of our speaker. The viewpoint
and robot/domain combinations which we tested can be seen
in Table III along with the number of participants in each
condition.

The viewpoints selected for this study represent a good
sample of the possible distances and orientations viable for
visual communication between an AUV and a diver. The
orientations were selected by the assumption that divers and
AUVs attempting to communicate with one another will be
at least within a 90 degree orientation from one another.
Distances were selected by considering the possible ranges
of communication in the field. Visibility varies by levels
of particulate matter, algae blooms, ambient light level, and
depth. While visibility distances in the field range both higher
and lower than the 1m-8m range tested in this study, this set
of distances allows us to observe the effect of distance on
communication, at distances that are realistic for a deployment
(assuming that visibility is greater than 8m). Lower visibility



(a) One meter.

(d) Diagram of viewpoints

(c) Ninety degrees.

Figure 3: The viewpoints captured for this study, illustrated
in a three examples(a-c) and a diagram(d).

distances than 8m would obviously reduce the effectiveness of
all but the TTS system to nearly nothing past the distance of
visibility, but diver-to-diver communication via hand signals
would experience the same effect.

B. Video Recording

To capture videos of the systems at every viewpoint, sev-
eral recording sessions were completed, using two GoPro™
HEROS Black cameras, using a 1080p resolution in the linear
aspect ratio at 24 frames per second. Due to scheduling
constraints, the TTS system had to be recorded in a different
pool than the rest of the Aqua systems. However, visual clips
from the original pool were layered over the audio from the
other pool to maintain a visual similarity. Due to this, the
speaker is not visible in the video clips depicting the TTS
system, but as the TTS system’s communication is done over
audio, this is not expected to impact results.

C. Population Recruitment and Statistics

The participants recruited on Mechanical Turk were re-
quired to be in the United States, have never taken the
survey before, and have completed more than 5000 Human
Intelligence Tasks (HITs) with an approval rating of 97%
or greater. The HIT posted on Mechanical Turk paid par-
ticipants $1.50 and was estimated to take an average of 12-
15 minutes, meaning that users would be paid approximately
minimum wage. Submissions were typically approved within
24-48 hours of completion. The only criteria for accepting
Mechanical Turk work and paying the worker was that users
spend an amount of time on the educational page equal to
at least 25% of the duration of the education video. Users
who spent less than a quarter of the video’s duration before

continuing were considered to have made a bad-faith effort and
were rejected. They were, however, paid $0.75 (half-pay) for
their time. The line for inclusion in the dataset was set higher:
only users who spent at least 75% of the video duration on
the page were included in the analyses.

Viewpoint
System EDU 3m 8m 45° 90° Total
KINEME 7 8 7 7 7 36
TTS 8 10 10 0 0 28
LCD 7 8 0 6 0 21
LED 7 8 7 7 7 36
TOTAL 29 34 24 20 14 121

Table III: Study conditions marked by whether (green) or not
(red) they are tested, with participant numbers for each.

The resultant population was relatively diverse. We surveyed
130 participants, with 9 of them being excluded from all
analysis due to short education video watch times. The final
population of 121 participants was 62% male, 38% female,
middle-aged (M = 37, SD = 21), had a variety of education
levels (42.1% had a bachelor’s degree), came from 35 of the
50 states of the US, and were mostly employed (93.4%).

This study population is a decent sample of the US pop-
ulation, which was the target sample. Participants were not
explicitly asked if they had diving experience. While divers
are most likely to use the RCVM system and evaluation on
a sample drawn specifically from experienced divers would
be useful, all of the communication systems evaluated in this
study are designed to be easily interpreted and understood with
little training. Thus, studying the performance of our com-
munication systems on a sample from the general population
helps us to evaluate the performance of these systems with
minimal effects of prior knowledge of diving and underwater
communication on that performance.

D. Education and Distraction Procedure

Once participants entered the survey and passed a bot check,
they were randomly assigned a condition and directed to an
education procedure. The education procedure for each condi-
tion consisted of a video composed of the fourteen interaction
phrases in a set order from the EDU (ideal) viewpoint of the
robot and system of the participant’s condition. Participants
were asked to watch the entire video without skipping around
and warned that their payment would depend on watching the
entire video; however, they were permitted to leave the page
at any time. As previously mentioned, only participants who
spent at least 75% of the duration of their educational video
on the page were included in the analysis. This education
level falls somewhere between the two highest education levels
described in [11](only meanings shown and meanings shown
along with videos of kinemes), as the participant is shown
both the communication system displaying an interaction
phrase as well as the meaning of the phrase. However, since
the participant was not being taught directly by study staff,
the education provided in this study likely falls below the
accuracy at the highest education level from [11]. Following



Accuracy Op. Accuracy Confidence Time (s)
System Mean (1) SD (o) Mean (1) SD (c) Mean () SD (o) Mean () SD (o)
j KINEME 28.4 22.0 43.7 33.1 4.5 1.9 39.9 15.7
< TTS 21.2 24.8 29.4 40.2 4.4 2.6 20.6 9.3
% LCD 29.6 40.4 324 44.0 4.9 3.5 25.0 11.2
5 LED 353 27.7 34.7 325 4.7 24 25.6 11.1
- KINEME 41.8 133 71.7 18.9 4.5 1.7 44.7 10.0
a TTS 51.8 25.3 77.1 34.4 6.1 1.8 20.6 9.0
— LCD 82.7 21.8 91.6 15.2 7.4 1.9 19.3 2.6
< LED 70.4 23.8 61.6 36.8 6.9 2.7 30.8 154

Table IV: Mean and standard deviation of communication system metrics, averaged over all viewpoints and at the ideal
viewpoint for each system. Bold values are the best (min/max respectively) mean for metric in group (overall or at EDU).

the education procedure, participants were asked to solve
five ninth-grade level mathematics questions as a distraction
procedure. Distraction procedures are a common method in
psychology research used to induce forgetfulness in subjects.
Some examples can be found in the 1950’s memory research
of Brown [5] and Peterson [20], or other more recent work
on working memory by Waris et al. [29]. In our work, a
distraction procedure is used to separate the training and
testing phases of the study so that participants are less likely to
be able to hold the entirety of the training they just completed
in their short-term memory.

E. Testing and Evaluation

Each participant was shown videos of all 14 interaction
phrases in a random order, using the communication system
from the viewpoint indicated in their condition. Some received
the EDU viewpoint as their testing viewpoint, so they had
the same viewpoint for education and testing. For each video,
the participant was shown a video hosted on YouTube™
and asked to select its meaning from a drop-down menu.
Participants were also given the option to select “Unable to
select meaning”. If a meaning was selected, they were then
asked what their confidence in their choice was, on an ordinal
scale from 1 to 10 (10 being the most confident). Otherwise,
the confidence question was not presented, and they were
instead asked what made them unable to make a selection:
forgetting the meaning, being unable to see the interaction
phrase, the survey not displaying the video, or some other
issue. The time from when the participant entered the webpage
to when they left it was recorded, though participants were not
told that it would be. Once participants had completed all of
their videos, they were debriefed and given information on
how to submit their responses for certification.

VI. RESULTS
A. Metrics

We use the same metrics to measure system efficacy that
were used in the original RCVM study [11]: accuracy, oper-
ational accuracy, confidence, and time to answer. Accuracy
is the correctness of a participant’s answer, ranging from 0
to 100. Operational accuracy is the same metric but only
considering answers also rated a 5 or higher in confidence, to
simulate the answers that a user would be likely to act upon.

Confidence and time to answer are simply the values recorded
from the confidence question (0-10) and the time participants
took to select a meaning for a video in seconds. Time to
answer data was processed to remove outliers by discarding
values greater than 150 seconds. This was set as the cutoff
because for all interaction phrases, 95% of responses had a
time to answer lower than 150 seconds (mean 95th percentile
was 73.28 seconds). Durations of these outlier answers greatly
exceeded 150 seconds (e.g., 500 seconds or greater), which
suggests that the webpage was left open while the participant
briefly did something else.

The two metrics upon which we will perform statisti-
cal analysis are accuracy and operational accuracy. Shapiro-
Wilk [25] tests were performed for accuracy W = 0.84,
p < .001 and operational accuracy W = 0.84, p < .001,
both finding evidence that data was not normally distributed,
and direct observation of the data confirmed this. Due to this
finding, we will perform the following hypothesis testing using
the Kruskal-Wallis H-test [17]. Kruskal-Wallis is also referred
to as one-way ANOVA on ranks and is a non-parametric
equivalent to one-way ANOVA which does not assume a
normal distribution of data. Tests were run at a confidence
level of 99%, a significance of o = 0.01.

B. Internal Validity

The Kruskal-Wallis H-test found no significant relationship
between the percentage of their education video that a partic-
ipant watched and their average accuracy in the testing phase
H(5) = 2.89, p = .717. Further, we found no significant
relationship between accuracy and gender H(1) = 0.10,
p = .750. A correlation test using Spearman’s method detected
no significant correlation between accuracy and age r(119) =
—0.145, p = .112 No threats to internal validity were detected,
but participant recognition accuracy was considerably lower
for all systems than expected.

The kinemes in the pilot study achieved 60% accuracy,
while the highest RCVM accuracy achieved in this study
was 41.8%, at the ideal viewpoint. This may be due to
the fact that the study was conducted online via video, or
due to low education absorption. However, the performance
of the kinemes and LED systems at the EDU viewpoint is
generally between the accuracy level reported at education
levels 1 and 2 in [11], which is consistent with our education



Accuracy Op. Accuracy Confidence Time (s)
Viewpoint Mean () SD (6) Mean (u) SD (o) Mean (1) SD (o) Mean (1) SD (o)
EDU 41.8 13.3 77.7 18.9 4.5 1.7 44.7 10.0
E 3m 259 253 384 38.0 5.4 2.4 45.8 16.6
% 8m 35.7 26.4 444 31.9 43 2.3 41.8 8.1
g 45° 12.2 79 20.3 25.7 4.1 1.3 344 16.5
90° 26.5 232 38.3 25.1 3.7 14 32.0 222
- EDU 51.8 25.3 77.1 344 6.1 1.8 20.6 9.0
E 3m 12.1 10.7 8.5 10.5 4.6 2.8 19.9 10.4
& 8m 5.7 6.6 12.1 31.2 2.9 2.2 214 9.4
a EDU 82.7 21.8 91.6 15.2 7.4 1.9 19.3 2.6
O 3m 2.7 3.7 3.0 6.1 3.0 3.1 33.0 10.8
= 450 3.6 6.0 2.4 5.8 4.6 39 21.1 12.8
EDU 70.4 238 61.6 36.8 6.9 2.7 30.8 15.4
a 3m 43.8 18.9 41.1 30.6 4.6 2.0 22.8 10.0
m  8m 14.3 17.0 14.9 19.5 43 2.1 27.3 10.0
= 450 33.7 20.9 40.0 26.6 54 1.7 27.8 10.1
90° 13.3 12.7 15.0 27.8 24 1.7 19.9 8.8

Table V: Mean and standard deviation of communication system metrics, for all evaluated viewpoints. Bold values are the

best (min/max respectively) mean for metric in system group.

procedure’s expected success (as mentioned in Section V-D).
Higher accuracy at all viewpoints could likely be achieved
by administering an education procedure which would train
users until a certain competency level is reached. However,
we believe the general trend of results to be correct, and
statistically large effects should persist in in-person testing,
as our Pilot study demonstrates similar accuracy levels to [11]
for in-person testing.

C. Overall Results

When considering differences between the four communi-
cation systems we tested, we are most interested in the effects
on accuracy and operational accuracy. When considered over
all viewpoints, none of the systems tested have statistically
significant differences in accuracy H(3) = 7.60, p = .055
or operational accuracy H(3) = 4.27, p = .234. Due to
the challenging nature of the underwater environment and the
viewpoints at which they were tested, none of these systems
have achieved high accuracy overall. However, when we
consider the accuracy of these systems at different viewpoints,
we see significant differences, despite the overall low accuracy,
which indicate how RCVM performs compared to other com-
munication options underwater (and often outperforms them).

D. Viewpoint Comparisons

The effect that viewpoint has on the accuracy of tested sys-
tems can be found in Table V. While we see RCVM accuracy
is the lowest of any system at the EDU viewpoint, once we
move to the more challenging viewpoints, the TTS and LCD
systems become entirely non-competitive, with accuracies near
to that of a random guess (7%).

Kruskal-Wallis tests show that viewpoint has a statistically
significant effect on every communication system, with the
exception of the kineme system H(4) = 8.94, p = .063.
The effect is most significant with the TTS H(2) = 14.38,

p < .001 and LCD H(2) = 14.71, p < .001 systems, but is
also present for the LED system H(4) = 20.99, p < .001.
Considering the values shown in Table V, it is apparent that
non-EDU viewpoints reduce accuracy significantly for each of
these systems. We also test operational accuracy with Kruskal-
Wallis tests, which show that viewpoint affects operational
accuracy for the LCD system H(2) = 15.87, p < .001 and
the TTS system H(2) = 10.75, p = .005. However, there is
no statistically significant difference in operational accuracy
by viewpoint for the kineme system H(4) = 10.78, p = .029
or the LED system H(4) = 10.33, p = .035.

To summarize, through statistical testing we find that TTS
and LCD communication begin to fail quickly at any challeng-
ing interaction viewpoint, while LED and Kineme communi-
cation are more viewpoint-invariant, particularly kinemes.
Since the accuracy of the kineme system is above that of
a random guess (7% accuracy) at challenging viewpoints,
we suggest that this shows that kinemes are more viewpoint
invariant than other systems, though the LED system is a
strong competitor.

E. Content Comparisons

We chose to study the effect of message content because
message content is known a priori, meaning that if a commu-
nication system shows an affinity for communicating certain
types of messages, we can autonomously switch to using that
system to get the message across most effectively. For this
experiment, we consider three categories of our interaction
phrases (see Section III-A and Table I): Conversational, Di-
rectional, and Status phrases. In Table VI, we can see that
kinemes and LEDs have similar accuracies for Conversational
and Status interaction phrases, but the accuracy of LEDs is
higher for Directional phrases. This is unexpected given the
spatial nature of kinemes, but analysis of kineme identifica-
tions suggests that participants may have been confused as to



Accuracy Op_Acc. Confidence Time (s)
Phrase Content Mean (1) SD (0) Mean () SD (¢6) Mean (u) SD (o) Mean (1) SD (o)
%—1 Conversational 35.0 28.8 45.5 38.8 4.8 22 37.5 18.2
i Directional 233 27.3 29.3 36.3 4.3 2.2 41.7 20.7
E Status 23.9 21.3 422 413 4.1 2.1 420 17.2
- Conversational 17.9 27.4 26.2 422 4.2 2.6 20.3 12.3
&  Directional 23.6 27.2 30.5 41.7 4.6 2.9 19.7 11.0
& Status 22.9 30.2 29.4 43.1 4.5 2.7 21.7 11.9
A Conversational 28.6 42.7 31.0 453 5.0 35 22.2 10.4
O Directional 324 38.7 34.5 42.8 5.0 3.6 28.0 14.6
= Status 28.6 42.7 324 47.1 4.7 35 25.5 14.1
A Conversational 40.6 31.9 38.8 39.3 4.8 2.6 28.7 16.1
m  Directional 40.6 33.6 39.8 38.0 5.0 2.7 24.0 13.2
= Status 25.0 26.3 23.0 33.1 4.5 2.6 24.6 11.6

Table VI: Mean and standard deviation of communication system metrics, separated by phrase content. Bold values are the

best (min/max respectively) mean for metric in system group.

whether “left” referred to their left or the robot’s left, and
vice versa for right. A Kruskal-Wallis test does not show
a significant effect on the accuracy of Directional phrases
based on which communication system is used H(3) = 6.40,
p = .094, however. Simply observing the higher accuracy
of the LED system suggests that LED codes may be more
effective in expressing directional information than kinemes,
but this difference is not statistically significant.

No communication system is found to have statistically
higher accuracy than others when considering the accuracy
of Status phrases H(3) = 1.48, p = .686, but system type
does have a significant effect on the accuracy Conversational
phrases H(3) = 11.61, p = .009. Post-hoc analysis with
Dunn tests using a Bonferroni-adjusted alpha level of 0.0017
(0.01/6) was used to compare pairs of systems. No com-
parisons were significant after Bonferroni adjustment (all ps
> .012), but the TTS system under-performs both the kineme
and LED systems on Conversational phrases. This may be due
to the fact that Conversational phrases are typically short for
the TTS system, meaning that they might be entirely missed
or easily misidentified at challenging viewpoints, while the
longer phrases of the kineme and LED systems provide more
opportunity to understand the phrase.

To summarize, while we had hoped that Directional ac-
curacy of the kineme system would be high, no statistically
significant effect is detected for Directional accuracy based on
system type. Not effect is detected for Status phrases either, but
Conversational accuracy is affected by system type (though no
system is shown to be better than others in post-hoc analysis).

VII. CONCLUSION

In this paper, we presented the first physical implementation
of RCVM, an explicit motion-based human-robot communi-
cation system for AUVs along with a short evaluation of its
effectiveness in a full communication loop and an extensive
analysis of performance compared to other communication
systems. After modifying and refining the phrasebook from
the original proposal of RCVM (which contained some un-

realistic kinemes), we implemented the system using ROS
and a modified version of the Aqua AUV’s PID motion
controller. To test our implementation, we performed a small
in-person pilot study, in which we tested RCVM in a full-
loop communication scenario, and found it to be sufficiently
effective for further study. Following this we performed a large
online study, comparing RCVM to three baseline systems we
produced in terms of their efficacy at different viewpoints.
Our results suggest that while RCVM is not the most ac-
curate in the ideal conditions for any given system, it does
perform better at challenging viewpoints than our LCD and
TTS systems, and competes well with our new LED system
(improved from the baseline system in [11]). Additionally,
we find that RCVM does not outperform other systems in
communicating directional information, as initially expected.
RCVM and the LED systems are more accurate than the TTS
and LCD systems for Conversational information, though not
to the point of statistical significance. Based on our results,
it seems that while RCVM would likely be insufficient for
robust communication on its own, it has strengths that other
underwater communication options do not have, and should
be integrated with other communication systems. In future
work, we plan to do just that, integrating RCVM with a system
which is capable of autonomously selecting a communication
strategy based on information about the interaction context it
is in. Kinemes will be a key part of this system, to be used
to communicate information when interaction viewpoints are
challenging, as this is when RCVM thrives.
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