## Gaze Complements Control Input for Goal Prediction During Assisted Teleoperation: Supplementary Material

Reuben M. Aronson Robotics Institute Carnegie Mellon University Pittsburgh, PA, USA rmaronson@cmu.edu Henny Admoni Robotics Institute Carnegie Mellon University Pittsburgh, PA, USA henny@cmu.edu

## I. SUBJECTIVE RESULTS

After completing trials for each condition, participants (N = 12) answered questions on a seven-point Likert scale, following Javdani et al. [1] (emphasis added; emphasized words act as references for reporting results):

- I felt in **control** while using this system.
- I was able to accomplish the tasks **quickly** while using this system.
- The robot did what I wanted while using this system.
- My goals were perceived accurately by this system.
- If I were going to teleoperate a robotic arm, I would like to use this system.

Participants also answered two open-response questions:

• Did you use any particular strategies while operating the robot?

• What are your comments about this system?

Participant responses are given in Fig. 1 and the statistical analysis is summarized in Tab. I. Overall, participants disliked the gaze-only condition and showed no preference between the merged and joystick conditions.

## REFERENCES

 Shervin Javdani, Henny Admoni, Stefania Pellegrinelli, Siddhartha S. Srinivasa, and J. Andrew Bagnell. Shared autonomy via hindsight optimization for teleoperation and teaming. *The International Journal of Robotics Research*, 37(7):717–742, 6 2018. ISSN 0278-3649. doi: 10.1177/ 0278364918776060. URL http://journals.sagepub.com/ doi/10.1177/0278364918776060.



Fig. 1: Participant answers to the post-condition Likert questions. Significance testing per question was performed with a Kruskal-Wallis test with  $\alpha = 0.05$ , and when significance was achieved, a Mann-Whitney U test was used for post-hoc evaluation. Conditions annotated with \* indicate significance at p < 0.05, and \*\* at p < 0.01. Overall, participants disliked the gaze condition, while showing no clear preference between the other two.

| Question   | $\chi^{2}(2)$ | p            | Conditions                                      | U                    | Corrected $p$                    |
|------------|---------------|--------------|-------------------------------------------------|----------------------|----------------------------------|
| Control    | 6.3           | 0.042*       | gaze-merged<br>gaze-joystick<br>merged-joystick | 45.5<br>29<br>65.5   | n.s.<br>0.013*<br>n.s.           |
| Quickly    | 5.9           | n.s. (0.054) |                                                 |                      |                                  |
| Wanted     | 8.5           | 0.014*       | gaze-merged<br>gaze-joystick<br>merged-joystick | 35.5<br>25.5<br>65.5 | n.s. (0.050)<br>0.0094**<br>n.s. |
| Accurately | 8.0           | 0.019*       | gaze-merged<br>gaze-joystick<br>merged-joystick | 28.5<br>35.5<br>67.0 | 0.014*<br>0.046*<br>n.s.         |
| Like       | 7.1           | 0.029*       | gaze-merged<br>gaze-joystick<br>merged-joystick | 31.5<br>37<br>63.5   | 0.026*<br>n.s. (0.058)<br>n.s.   |

TABLE I: Statistical analysis of participant answers to questions. Significance testing was performed first with a Kruskal-Wallis test for overall significance, and post-hoc analysis was done using the Mann-Whitney U test ( $n_1 = n_2 = 12$ ) with Bonferroni correction for multiple comparisons. \* indicates significance at p < 0.05, \*\* at p < 0.01. Marginally significant values (p < 0.1) are shown in parentheses. n.s. means "not significant" at  $\alpha = 0.05$ .