Supplementary: Human-to-Robot Imitation
in the Wild

A. Videos

Videos of our results can be found at:
human2robot.github.io

https://

B. Implementation Details

1) Real Robot Setup

We use use the Stretch robot from Kemp et al. [2]. This
is a robot with a mobile base and a wrist with suction cups
as fingertips. All 6 degrees of the freedom of the robot are
controllable, and we use code provided in https://github.com/
hello-robot to control the robot. To capture videos of humans
and the robot we use an Intel Realsense D415. We obtain
both depth and RGB images from this camera setup. Each
human demonstration takes about 30 seconds. Similarly, each
robot episode also takes 30-45 seconds. Overall training takes
anytime between 4 and 6 hours, including time to compute

inpainted videos (which is the bottleneck in terms of software).

Our real robot tasks are all in the wild (i.e. outside labs).
We perform tasks using everyday objects and in every day
locations such as kitchens etc. Due to torque limits on the
robots, we had to use non-standard objects for some settings,
such as the ball in hoop task, as the robot’s gripper cannot
grasp a heavier and bigger basketball. In Figure 2 we present
a full list of tasks with images. We show details on train and
test objects for our shelf pick-and-place task in Figure 1.

2) Data Collection

Human demonstrations are very easy obtain and each takes
about 30 seconds to collect. The tasks presented in Figure ??
are trained from one demonstration. During each iteration, 30
samples were taken, and we used the top 10 ranking ones to
fit the policy. The Stretch robot [2] took less than 1 minute
per episode, thus around 20 minutes per iteration.

(a) Training Objects

(b) Pouring

Fig. 1: Images of the objects we used in our shelf pick-and-place
task. Objects a-d are train objects, objects e and f are test objects

3) Hyper-parameters and Design Choices
Our policy is a 4 layer MLP, which takes as input an
embedding of a demonstration video as well as the prior.
The output of the policy is the residual to the prior. We
process the human video using an action-recognition pipeline,
using features from state-of-the-art pretrained action recognition
models such as SlowFast 3D ResNets [1]. We train the policy
as a Variational Auto-Encoder, using a KL-divergence loss
with weight 0.0005 to train the model and latent dimension =
4. However, larger latent dimensions work well too, but this
should be dependent on the size of the action space for the
robot (which in our case is 13 dimensional). Our exploration
policy is structured in a similar manner. For the human prior,
we use the hand-object interaction detector from Shan et al. [7].
We employ Copy-Paste Networks [3] for inpainting humans
and robots from videos. We use action recognition models
such as Multi-Moments [4] and SlowFast 3D ResNets [1]
as our representation space (®) for aligning humand and
robot videos. Furthermore, for measuring “change” in the
environment we used features from the VGG16 [8] network.
Our exploration policy uses the same exact architecture. We
use the following video augmentations for our representations:
Salt-Pepper Jittering, Random Crops, Gaussian Blurs, Vertical
and Horizontal Flips). For the hand-object and wrist detection
modules we used default parameters provided by the respective
codebases. To smooth the predictions we used the filter
from https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.savgol_filter.html. We used about 200 labeled images of
the robot to train the instance segmentation module, with the
default network sizes from the codebase. All of our image and
video sizes were 640 x 480. For the policy training module, our
optimization approach fits to the top 10 (out of 30) samples.
4) Codebases
We use the following codebases:
« For hand-object detection we use the codebase from Shan
et al. [7] , https://github.com/ddshan/hand_detector.d2
o For wrist detection we use FrankMocap [5], https://github.
com/facebookresearch/frankmocap
o For the instance segmentation module we use code
from https://github.com/wkentaro/labelme to label robot
instances, and use code from Detectron2 [10] (https:
//github.com/facebookresearch/detectron2) code provided
in https://pytorch.org/tutorials/intermediate/torchvision_
tutorial.html to train an instance segmentation model.
o For the TCN [6] baseline we use code from https://github.
com/kekeblom/tcn
o For the CycleGAN baseline we use code from https://


https://human2robot.github.io
https://human2robot.github.io
https://github.com/hello-robot
https://github.com/hello-robot
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
https://github.com/ddshan/hand_detector.d2
https://github.com/facebookresearch/frankmocap
https://github.com/facebookresearch/frankmocap
https://github.com/wkentaro/labelme
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://github.com/kekeblom/tcn
https://github.com/kekeblom/tcn
https://github.com/Lornatang/CycleGAN-PyTorch

(b) Door

(e) Ball in Hoop

(f) Cleaning Whiteboard

(m) Remove Shirt from Hanger

(q) Fold Shirt (r) Pull Plug from Socket

(g) Garbage Can

(o) Turn Off Light

(p) Shelf Pick-and-Place

(t) Toaster

(s) Open Tap

Fig. 2: Images of our 20 tasks.

github.com/Lornatang/CycleGAN-PyTorch

e Our Inpainting model [3]: https://github.com/shleecs/
Copy-and-Paste-Networks-for-Deep- Video-Inpainting

o We use the model from Monfort et al. [4] (https://github.
com/zhoubolei/moments_models) to compute representa-
tions for our cost functions

o Our offline RL baselines are from Takuma Seno [9] (https:
//github.com/takuseno/d3rlpy)

o https://github.com/okankop/vidaug

REFERENCES

[1] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, 2019. 1

[2] Charles C Kemp, Aaron Edsinger, Henry M Clever, and
Blaine Matulevich. The design of stretch: A compact,


https://github.com/Lornatang/CycleGAN-PyTorch
https://github.com/shleecs/Copy-and-Paste-Networks-for-Deep-Video-Inpainting
https://github.com/shleecs/Copy-and-Paste-Networks-for-Deep-Video-Inpainting
https://github.com/zhoubolei/moments_models
https://github.com/zhoubolei/moments_models
https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy
https://github.com/okankop/vidaug

lightweight mobile manipulator for indoor human envi-
ronments. arXiv preprint arXiv:2109.10892, 2021. 1

[3] Sungho Lee, Seoung Wug Oh, DaeYeun Won, and
Seon Joo Kim. Copy-and-paste networks for deep video
inpainting. In ICCV, 2019. 1, 2

[4] Mathew Monfort, Bowen Pan, Kandan Ramakrishnan,
Alex Andonian, Barry A McNamara, Alex Lascelles,
Quanfu Fan, Dan Gutfreund, Rogerio Feris, and Aude
Oliva. Multi-moments in time: Learning and interpreting
models for multi-action video understanding. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2021. 1, 2

[5] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmo-
cap: A monocular 3d whole-body pose estimation system
via regression and integration. In CVPR (ICCV) Work-
shops, pages 1749-1759, October 2021. 1

[6] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-
contrastive networks: Self-supervised learning from video.
In ICRA, 2018. 1

[7] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F
Fouhey. Understanding human hands in contact at internet
scale. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9869—
9878, 2020. 1

[8] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014. 1

[9] Michita Imai Takuma Seno. d3rlpy: An offline deep rein-
forcement library. In NeurIPS 2021 Offline Reinforcement
Learning Workshop, December 2021. 2

[10] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-

Yen Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 1


https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

