
APPENDIX

A. Variational Inference for Finite-Horizon Stochastic Optimal
Control

The variational posterior over trajectories is defined by the
dynamics and the variational posterior over actions:

q(τ |x0) = q(X,U |x0)
= p(X|U, x0)q(U)

= q(U)

T∏
t=0

p(xt+1|xt, ut)
(15)

We will omit the dependence on the initial state x0 for
convenience.

KL (q(τ)||p(τ |o = 1)) =

∫
q(τ) log

q(τ)

p(τ |o = 1)
dτ

=

∫
q(X,U) log

p(X|U)q(U)p(o = 1)

p(o = 1|X,U)p(X|U)p(U)
dXdU

(16)

Since p(o = 1) on the numerator does not depend on U, when
we minimize the above divergence it can be dropped. The
result is minimizing the below quantity, the variational free
energy F .

F =

∫
q(X,U) log

q(U)

p(o = 1|X,U)p(U)
dXdU (17)

= −Eq(X,U) [log p(o|X,U) + log p(U)− log q(U)] (18)
= Eq(X,U) [J(X,U)] +KL(q(U)||p(U)) (19)

= Eq(X,U)

[
Ĵ(X,U) + log q(U)

]
(20)

For the last two expressions we have used our formulation
that the p(o = 1|X,U) = exp(−J(X,U)), where J is the
trajectory cost, and we have incorporated the deviation from
the prior into the cost function. For example, a zero-mean
Gaussian prior on the controls can be equivalently expressed
as a squared cost on the magnitude of the controls.

B. Training & Architecture Details

Fig. 6. The architecture for both the prior flow and the control sequence
posterior flow, based on [8] and [37], showing a mapping from arbitrary Y to
Y’. Each flow consists of L chained transformation blocks. A transformation
block consists of a conditional coupling layer, a batch norm layer, and a linear
layer. There is a final conditional coupling layer on the output. For the vae
prior, there is no context therefore we use standard coupling layers and not
conditional coupling layers.

Variable Planar Navigation 3D 12DoF Quadrotor

control peturbation Σe 1−
epoch

#epochs

α 500
epoch

#epochs
β 1 1

# epochs 1000 1000
Initial learning rate 1× 10−3 1× 10−3

Learning rate decay 0.9 every 50 epochs
# Training environments 10000 20000

# (x0, xG) per training env. 100 100
h dim 64 256
a 5 5

b
1

64
1

1024

VAE training epochs 100 100
pϕ(h) flow depth L 4 4
fζ flow depth L 10 10

TABLE III
TRAINING AND ARCHITECTURE HYPERPARAMETERS FOR EACH

EXPERIMENT.

1) Hyperparameter Tuning: There are several hyperparame-
ters to tune in our approach. The scalar a in equation 11 was
tuned so that aLV AE and Lflow were of approximately similar
magnitude. The scalar b in equation 14 was selected to be equal
to the dimensionality of the SDF observation divided by the
dimensionality of the latent environment embedding. This value
was chosen initially to make the projection loss similar across
the quadcopter and the double integrator, and we found this
automatic tuning worked well in practice. Hyperparameters α, β
together control the trade-off between entropy and optimality.
We kept β fixed and tuned only α. To tune α, for each
experiment we performed a grid search and selected the value
of α that resulted in the best performance in the training
environment when used with FlowMPPI.

C. Environment details

The environments are 4m×4m, and generated as occupancy
grids, from which we compute the SDF. For each training
environment, we randomly sample 100 start & goal pairs such
that they are always collision free, and within the bounds of
the voxel grid. We sample start velocities from a Normal
distribution, and set the goal velocity to be zero. During
evaluation, for both the in-distribution and out-of-distribution
environments, we sample 100 start, goal and environment
tuples and evaluate all methods on these tuples. The exception
to this is the real-world environments, where we keep the
environments fixed and sample 100 start and goal pairs per
real-world environment and evaluate all methods on these pairs.
To ensure the navigation problem is non-trivial, we sample
starts and goals that are at least 4m away.

1) Real-world environments: The two real world environ-
ments are taken from area 3 from the 2D-3D-S dataset [1]. To
generate the two environments, we used the 3D mesh from the
dataset and defined a subset of the area to be the environment.
We then generated an occupancy grid by densely sampling the
mesh, which we then used to compute the SDF.



2) Planar Navigation: The dynamics for the planar naviga-
tion system are
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ẋ
ẏ
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3) 12DoF Quadrotor: The dynamics for the 12DoF quadro-
tor are from Sabatino [29] and are given by
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(22)
Where c(p), s(p), t(p) are cos, sin, tan functions respectively.
We use a parameters m = 1, Ix = 0.5, Iy = 0.1, Iz =
0.3,K = 5, g = −9.81. The quadrotor geometry is modeled
as a cylinder with radius 0.1m and height 0.05m.

D. Controller details

Variable Planar Navigation 12DoF Quadrotor
Control Horizon H 40 40

Trial length T 100 100
Control prior σ 1 4
Dynamics ∆t 0.05 0.025

TABLE IV
CONTROLLER AGNOSTIC PARAMETERS USED FOR THE EVALUATIONS

.

Controller Variable Planar Navigation 12DoF Quadrotor

MPPI
λ 1 1
Σ 0.9 0.5

iterations 1 4

SVMPC

Σ 1 0.5
# particles 4 4

Learning rate 1 0.5
iterations 4 4

warm-up iterations 25 25

iCEM

Σ 0.75 0.5
noise parameter 2.5 3

% elites 0.1 0.1
% kept elites 0.3 0.5

iterations 4 4
momentum 0.1 0.1

FlowMPPI

λ 1 1
Σ 1 0.75

iterations 1 2
M 10 10

Proj. learn. rate 1× 10−2 1×10−2

TABLE V
CONTROLLER HYPERPARAMETERS USED FOR THE EXPERIMENTS FOR BOTH

OUR PROPOSED METHOD AND THE BASELINES.

E. Algorithms

Algorithm 2 Sample from Control Sequence Posterior with
Perturbation

1: function SAMPLEPERTU(C,Σϵ,K)
2: for i ∈ {k, ...,K} do
3: Zk ∼ N (0, I)
4: ϵk ∼ N (0,Σϵ)
5: Uk ← fζ(Zk, C) + ϵk
6: Ẑk ← f−1

ζ (Uk, C)

7: qζ(Uk|C)← from Ẑk via eq. (5)
8: return {Uk, qζ(Uk|C)}Kk=1

Algorithm 3 Flow Training
Inputs: N iterations, K samples, Θ1 = {θ1, ψ1, ϕ1, ω1, ζ1}
initial parameters, control perturbation covariance Σϵ, learning
rate η, loss hyperparameters (α, β)

1: for n ∈ {1, ..., N} do
2: h← qθ(h|E)
3: Ê ← pψ(E|h)
4: Compute log pϕ(h) via eq. (5)
5: Compute LV AE
6: C ← gω(x0, xG, h)
7: {Uk, qζ(Uk|C)}Kk=1 ← SAMPLEPERTU(C,Σϵ,K)
8: L ← LV AE
9: for k ∈ {1, ...,K} do

10: wk ← from ({Ui, log qζ(Ui|C)}Ki=1, α, β}) via (9)
11: L ← L− wk · log qζ(Uk|C)
12: Θn+1 ← Θn − η ∂L∂Θ



Algorithm 4 Projection
Inputs: N iterations, K samples, θ, ϕ, ω, ζ parameters, control
perturbation covariance Σϵ, learning rate η, loss hyperparame-
ters (α, β)

1: h1 ← qθ(h|E)
2: for n ∈ {1, ..., N} do
3: Compute log pϕ(h

n) via eq. (5)
4: C ← gω(x0, xG, h

n)
5: {Uk, qζ(Uk|C)}Kk=1 ← SAMPLEPERTU(C,Σϵ,K)
6: L ← −pϕ(hn)
7: for k ∈ {1, ...,K} do
8: wk ← from ({Ui, log qζ(Ui|C)}Ki=1, α, β}) via (9)
9: L ← L− wk · log qζ(Uk|C)

10: hn+1 ← hn − η ∂L∂h

F. Additional Results

K=256 K=512 K=1024
Projection loss Success Cost Success Cost Success Cost

LOOD + Lflow 0.71 3688 0.83 3443 0.93 3200
LOOD 0.52 3859 0.63 3704 0.89 3371
Lflow 0.6 3758 0.72 3489 0.87 3226

TABLE VI
ABLATION OF THE DIFFERENT LOSS TERMS IN FLOWMPPIPROJECT FOR

DIFFERENT SAMPLING BUDGETS FOR THE 12DOF QUADROTOR
OUT-OF-DISTRIBUTION ENVIRONMENT


