
I. APPENDIX

A. Ablation of Objective Terms

The objectives terms we propose are designed to be
useful in many cases, but to understand this better, we
ablate several of the objective terms. We evaluate the
importance of the transformation validity objective, oc-
cupancy objective, and delta minimum distance objective
by repeating our experiments. In each ablation, we omit
one objective term. Each condition was run 10 times
with different random seeds. The results are shown in
Table I and Figure 1.

Fig. 1. Success vs Iterations for ablations. Bimanual rope manipula-
tion, in simulation.

Method Task Success % (↑)
(rope)

Position Error (m) (↓)
(planar pushing)

Full Method 0.700 (0.118) 0.0010 (0.0001)
No transf. valid. 0.700 (0.185) 0.0011 (0.0001)
No delta min dist 0.675 (0.185) 0.0012 (0.0002)
No occupancy 0.24 (0.136) 0.0028 (0.0011)

TABLE I
ABLATIONS: METRICS ON BOTH TASKS, WITH VARIOUS OBJECTIVE

TERMS REMOVED. THE STANDARD DEVIATION IS SHOWN IN
PARENTHESES.

We find that across both experiments, the most impor-
tant objective was the occupancy objective. Without this
objective, our method produced augmentations where
contacts and penetrations are not preserved. This is
invalid, and training on these examples produces a worse
model even than using no augmentations.

The next most important objective is the delta min-
imum distance objective. In our simulated rope experi-
ment, the method without this objective performs slightly
worse. By visualizing the different examples (Figure 2),
we found that without this objective, the augmentation
transforms examples which were near the hooks and

Fig. 2. Augmented rope data generated without the delta minimum
distance objective. On the left is the original transition, under the hook.
On the right is the augmented transition, which is far from the hook.
Without the delta minimum distance objective, data can be augmented
away from interesting regions, becoming less relevant. This is based
on the heuristic that contact and near-contact events are relevant for
manipulation.

protrusions far into free space. In contrast, with the delta
minimum distance objective, these examples stay near
the hooks. Since the planning tasks involve moving in
narrow passages around these hooks, it’s more relevant to
produce more examples in this area. Hence, by preserv-
ing the distance to nearby obstacles, we also tend to keep
examples in areas of interest. In the planar pushing task,
however, omitting the delta minimum distance objective
did not have a notable effect. This could be in part due
to the cluttered nature of the scene, which means that
most transformations are small.

Finally, we find that the valid transformation objective
can be omitted without effecting performance in these
two tasks. In the planar pushing case this is completely
expected, because there are no SE(2) transformations
which are always invalid or irrelevant. However, in the
rope experiment, this result is less intuitive. We found
that omitting this objective occasionally produced aug-
mentations where the rope is floating sideways in physi-
cally impossible states. This result suggests that even if a
few augmentations are invalid or irrelevant, training on
the augmentations still significantly outperforms using
no augmentations. Even if omitting the objective does
not degrade performance in these experiments, it is a
natural term to include and may be beneficial in other
applications.

B. Choosing the Number of Augmentations

Our method produces multiple distinct augmentations
for each original example. More augmentations should
improve generalization after training, but at the cost
of additional computation time. In this experiment, we
explore how the number of augmentations per-example



affects generalization. We tested this in the rope domain
on the task of learning the constraint checker. The
original un-augmented dataset came from the first three
iterations of learning. With these examples, we then
generated varying numbers of augmentations for each
example and evaluated on a held-out test example drawn
from the fourth iteration. Figure 3 shows three rope
transitions labeled 0 from the original three training
examples, followed by the held-out test example. In-
tuitively we would expect, with enough augmentations,
that from these original training examples we would be
able to generate augmented examples which are very
similar to the held-out test example.

Fig. 3. (top) These three original training example show rope
transitions with inaccurate predictions, where the rope is predicted to
move inside the hook on the engine. (bottom) The test transition is
similar, but is not identical. The proposed augmentation method can
move the rope transition while ensuring it still intersects the hook in
a similar way, which allows it to generate augmentations like the test
example.

For each number of augmentations, we generated 3
augmented datasets (using different random seeds) and
trained 3 models on each dataset (again using different
random seeds), for a total of 9 data points for each
number of augmentations. The results are shown in
Figure 4. The y-axis is the classifier output on the test
example, which has a true label of 0 (lower is better).
Without any augmentations, the classifier has an output
near 1, which is incorrect. Improvement began around 10
augmentations, and plateaued by 20. Since computation
cost was not significant, we chose 25 augmentations per-
example for all experiments in the main text.

C. Hyperparameters

The maximum number of iterations for stepping and
projecting are Np = 5 and Mp = 25, and we stop the
outer loop if the change in transform is ever less than
δp = 0.001. When solving Problem 3, we stop if the
gradient is smaller than ϵp = 0.0003. There are also

Fig. 4. Number of augmentations versus classifier output on a
test example. Lower is better. Performance plateaus at around 25
augmentations, in this example.

learning rate, learning rate decay, and weighting param-
eters used when solving Problem 3. For the objective
function weighting terms, we use β1 = 0.05, β2 =
1, β3 = 1, β4 = 0.1. The weighting terms were tuned
so that the magnitude of the different weighted losses
terms were comparable, and learning rate and number
of iterations were tuned to maximize convergence. All
values used are documented in our code, which can be
found on our project website.

https://sites.google.com/view/data-augmentation4manipulation
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