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1 Evaluation Data Preparation
We conduct benchmark evaluation on the test sets of three publicly available datasets: SUIM [5], UFO-120 [7],
and MUED [9]. SVAM-Net is jointly supervised on 3025 training instances of SUIM and UFO-120; their test sets
contain an additional 110 and 120 instances, respectively. These datasets contain a diverse collection of natural
underwater images with important object categories such as fish, coral reefs, humans, robots, wrecks/ruins, etc.
Besides, MUED dataset contains 8600 images in 430 groups of conspicuous objects; although it includes a wide
variety of complex backgrounds, the images lack diversity in terms of object categories and water-body types.
Moreover, MUED provides bounding-box annotations only. Hence, to maintain consistency in our quantitative
evaluation, we select 300 diverse groups and perform pixel-level annotations on those images.

Figure 1: There are 300 test images in the proposed USOD dataset (resolution: 640 × 480); a few sample images and their
ground truth saliency maps are shown on the top and bottom row, respectively. The dataset can be downloaded from here:
http://irvlab.cs.umn.edu/resources/usod-dataset.

In addition to the existing datasets, we prepare a challenging test set named USOD to evaluate underwater
SOD methods. It contains 300 natural underwater images which we exhaustively compiled to ensure diversity
in the objects categories, water-body, optical distortions, and aspect ratio of the salient objects. We collect these
images from two major sources:

• Existing unlabeled datasets: we utilize benchmark datasets that are generally used for underwater image
enhancement and super-resolution tasks; specifically, we select subsets of images from datasets named
USR-248 [6], UIEB [10], and EUVP [8].

• Field trials: we have collected data from several oceanic trials and field explorations in multiple open
water sites. The selected images include diverse underwater scenes and various setups for human-robot
cooperative experiments.

Once the images are compiled, four human participants independently annotated the salient pixels to generate
ground truth labels; a few samples are provided in Fig. 1.

2 SOD Performance Metrics
We evaluate the performance of SVAM-Net and other existing SOD methods based on four widely-used evaluation
criteria [2, 4, 11, 13]:

• F-measure (Fβ) is an overall performance measurement that is computed by the weighted harmonic mean
of the precision and recall as:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
. (1)

Here, β2 is set to 0.3 as per the SOD literature to weight precision more than recall. Also, the maximum
scores (Fmax

β ) are reported for quantitative comparison.
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• S-measure (Sm) is a recently proposed metric [3] that simultaneously evaluates region-aware (So) and
object-aware (Sr) structural similarities between the predicted and ground truth saliency maps as follows:

Sm = α× So + (1− α)× Sr. (2)

Here, we set α = 0.5 as suggested in [3].

• Mean absolute error (MAE) is a generic metric that measures the average pixel-wise differences between
the predicted (ŝm×n) and ground truth (sm×n) saliency maps as follows:

MAE(s, ŝ) =
1

mn

m∑
i=1

n∑
j=1

|si,j − ŝi,j |. (3)

• Precision-recall (PR) curve is a standard performance metric and is complementary to MAE. It is evaluated
by binarizing the predicted saliency maps with a threshold sliding from 0 to 255 and then performing bin-
wise comparison with the ground truth values. Then, the relationship between precision and recall is plotted
for every possible cut-off values.

3 Generalization Performance of SVAM
Underwater imagery suffers from a wide range of non-linear distortions caused by the waterbody-specific prop-
erties of light propagation [1, 8]. The image quality and statistics also vary depending on visibility conditions,
background patterns, and the presence of artificial light sources and unknown objects in a scene. Consequently,
learning-based SOD solutions oftentimes fail to generalize beyond supervised data. To address this issue, SVAM-
Net adopts a two-step training pipeline that includes supervision by (i) a large collection of samples with diverse
scenes and object categories to learn a generalizable SOD function, and (ii) a wide variety of natural underwater
images to learn to capture the inherent optical distortions. In Fig. 2 through Fig. 5, we demonstrate the robustness
of SVAM-Net with a series of challenging test cases.
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Figure 2: SVAM-Net performance for challenging test cases: with low contrast and/or color distortions.

As shown in Fig. 2, underwater images tend to have a dominating green or blue hue because red wavelengths
get absorbed in deep water (as light travels further). Such wavelength dependent attenuation, scattering, and other
optical properties of the waterbodies cause irregular and non-linear distortions which result in low-contrast, often
blurred, and color-degraded images. We notice that both SVAM-Net and SVAM-NetLight can overcome the noise
and image distortions and successfully localize the salient objects. They are also robust to other pervasive issues
such as occlusion and cluttered backgrounds with confusing textures. As Fig. 3 demonstrates, the salient objects
are mostly well-segmented from the confusing background pixels having similar colors and textures. Here, we
observe that although SVAM-NetLight introduces a few false-positive pixels, SVAM-Net’s predictions are rather
accurate and fine-grained.

Another important feature of general-purpose SOD models is the ability to identify novel salient objects,
particularly with complicated shapes. As shown in Fig. 4, objects such as wrecked/submerged cars, planes, statues,
and cages are accurately segmented by both SVAM-Net and SVAM-NetLight. Their SOD performance is also
invariant to the scale and orientation of salient objects. We postulate that the large-scale supervised pre-training
step contributes to this robustness as the terrestrial datasets include a variety of object categories. In fact, we
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Figure 3: SVAM-Net performance for challenging test cases: with cluttered background and/or confusing textures.
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Figure 4: SVAM-Net performance for challenging test cases: with unseen objects/shapes and variations in scale.

find that they also perform reasonably well on arbitrary terrestrial images [12]; a few results are shown in Fig. 5.
This suggests that with domain-specific end-to-end training, SVAM-Net could be effectively used in terrestrial
applications as well.
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Figure 5: SVAM-Net performance for challenging test cases: on unseen terrestrial images with arbitrary objects.
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