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Fig. 1: Label distribution of each image sequence.

I. MORE DETAILS OF THE CWT DATASET

Our dataset is collected at a construction site while an
excavator is navigating through the work area. We collect 3
videos that total approximately 30 minutes; 669 images of size
1920 × 1080 with pixel-wise annotation are included in our
dataset. Please refer to this link for the access to the CWT
dataset.

A. Dataset Details and Statistics
There are three video sequences collected on our excavator

test site. In Figure 1, we show the class distribution breakdown
for three sequences. The first video is collected after rain and
consists of mostly water and muddy ground. The trenches
caused by excavation and navigation can also be seen. The
other two video sequences are captured on a sunny day in
different scenarios. The videos are collected by a professional
operator controlling the movement of the robot. The three
videos are 268s, 668s, and 822s. We sample the camera stream
every two seconds and annotate the images with ground truth
labels, resulting in a total of 669 images after removing some
redundant ones.

B. Benchmarks
We give several metrics and show the performance of

several SOTA methods on the CWT dataset in Table I. C
denotes the set of all classes.

* Work done during an internship at Baidu RAL.

Fig. 3: Grid map output comparison: We show slope
(left), step height (middle), and roughness (right) values in
geometric traversability computations. All values are converted
to the scale from 0 to 1. Slope value tends to have many small
areas of peaks, while step height tends to have smoother values
across a bigger region. On the other hand, roughness does not
have many peak values, and many regions like hills are already
captured by the previous two measurements.
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https://forms.gle/zeAcgptpideCrFbw8
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Year Methods Flat Bumpy Water Rock Mixed Excavator Obstacle mIoU mAcc

2018 CGNet [10] 73.02 63.11 38.22 69.67 47.0 47.04 35.78 53.41 67.59
2019 Fast SCNN [6] 74.1 65.87 32.02 73.42 46.58 45.51 45.91 54.77 68.75
2019 Fast FCN [9] 71.96 61.23 35.61 60.06 35.3 0.0 27.6 41.68 51.85
2021 BiSeNetV2 [12] 76.49 69.65 38.33 71.44 46.42 41.02 37.22 54.37 67.05
2021 SETR* [13] 54.24 49.67 4.07 25.23 6.03 0.0 0.16 19.91 30.61
2021 DPT* [7] 59.45 53.75 23.78 33.69 26.0 0.0 6.49 29.02 47.65
2021 Segformer [11] 73.44 64.47 39.62 70.29 43.81 30.48 32.07 50.6 64.29

TABLE I: Performance of SOTA methods on the CWT dataset: We list several SOTA semantic segmentation methods and
train the model with 240K iterations. ∗ marks methods that do not converge well after 240K additional iterations.

II. MORE DETAILS OF TNS
A. Roughness in Geometric Traversability

In many existing works [1, 8] for geometric traversability
or danger value calculation, a roughness score is calculated as
a factor of terrain traversability.
Roughness Estimation: The terrain roughness r is calculated
as the standard deviation of the terrain height values to the
fitting plane. The distance d from the center point p of the
grid to the fitting plane of k neighboring grids is calculated
as:

d =
p⃗p̄ · n⃗
|n⃗|

where n⃗ is the surface normal vector of the fitting plane and
p̄ is a point in the plane. Finally, the roughness estimation of
the grid g can be computed as:

r =

√√√√ k∑
i=1

(di)2

However, roughness is not a good measurement in unstruc-
tured environments, especially in our situation. During the
design of our method, we discover that the roughness measure-
ment is either random or, in some regions, the distribution of
roughness resembles that of slope or step height, except with
lower peak values. Eventually, the roughness score did not
impact the results too much. We demonstrate such similarity
in Figure 3.

III. MORE DETAILS OF TNS-BASED PLANNING

In this section, we add more details of our planning method
and experimentation.

A. A* and Hybrid A*

A* [3] search can be seen as an improvement of Dijkstra’s
search. Dijkstra calculates the cost to start g(x) of each
vertex to determine the next vertex to be expanded. A*
search enhances the algorithm by using heuristic cost h(x),
allowing faster convergence under certain conditions, while
still ensuring its optimality [4]. The heuristic cost h(x) is the
cost to goal based on a heuristic estimate of the cost from
state x to the goal state xgoal, since the actual cost g(x) is the
path that has been actually traversed. The total cost is thus

f(x) = g(x) + h(x)

by which the way points will be sorted. A standard heuristic
estimate function is the Euclidean distance for two dimen-
sional problems.

Fig. 4: Left: A* associates costs with centers of cells and only
visits states that correspond to grid-cell centers. Right: Hybrid
A* associates a continuous state with each cell, and the score
of the cell is the cost of its associated continuous state. A*
path can always move to the center of the adjacent node, while
in hybrid A*, we consider the actual motion constraints of the
object, so the red dot does not appear in the grid center.

Fig. 5: Comparison between original and improved hybrid
A* planners. Our planning method has more flexibility,
including running over small obstacles between two tracks
based on our traversability map.

The hybrid A*[2, 5] algorithm is proposed for path planning
of nonholonomic robots. In A*, we do not consider the
direction of the moving object, and we do not consider the
actual movement of the object. However, in hybrid A*, we
need to consider the constraint of the robot motion model. In
Figure 4, we use the red dot to indicate the possible position
of the robot. The differences between the two algorithms are
shown in Table II, and we also provide pseudo-code in Alg. 1.

Hybrid A* A*
Dimension (x, y, θ) (x, y)

Vertex Possible movement paths Grid map cells
g(x) Kinematic model Manhattan / Euclidean
h(x) Max(Reeds Shepp Dist, A*) Manhattan / Euclidean

TABLE II: Differences between A* and Hybrid A*
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Algorithm 1: Hybrid A* Search
Input: Start state: xs; Goal state: xg

Output: Valid path between xs and xg

1 begin
2 O = ∅ // Initialize Open set
3 C = ∅ // Initialize Close set
4 f(xs) = g(xs) + h(x) // Update cost of xs

according to the cost function. g(x) is the actual
cost and h(x) is the heuristic cost.

5 O.push(xs)
6 while O not empty do
7 x ← O.popMin() // O.popMin() return the

node with the lowest cost in O
8 if x == xg then
9 return path // Trace the parent node from

the end point x, until it reaches the
starting point, return to the result path
found.

10 else
11 C.push(x)
12 for each n ∈ neig(x) do
13 // Go through all collision-free

neighbors of x according to the
kinematic model

14 if n /∈ O then
15 f(n) = n.updateCost()
16 O.push(n)

17 return null // Can not find a valid path

Scenarios Difficult Terrain Obstacles Geometric Method [1] (%) TNS (%)

Case 1 ✓ ✓ 40 60
Case 2 ✓ ✓ 16.67 71.43
Case 3 ✓ 50 50
Case 4 ✓ ✓ 50 100
Case 5 ✓ 20 100
Case 6 ✓ ✓ 40 80
Case 7 ✓ 50 50
Case 8 ✓ 20 60
Case 9 ✓ 20 60

Overall ✓ ✓ 33.3 82.6

TABLE III: Success rate of planning in each scenario.
“Difficult Terrain” means the excavator must traverse through
or navigate around a rough region or water. “Obstacles” means
there are obstacles in the environment.

B. Experiment Details of Offline Planning

We compare the success rate of the planner using output
traversability maps from the geometric-only method [1] and
the proposed TNS. We use 9 different scenarios, and each
scenario is tested with the same starting points and random
goal position with more than 10 trials. We list the details of
all scenarios in Table III.

C. Failure Cases of Hybrid A* in Our Applications

We show some planning scenarios where traditional Hybrid
A* would fail in Fig 5.

Fig. 6: Traversability maps of our two testing sites. Each
grid is 10 m by 10 m.

IV. MORE VISUALIZATION

A. Testing Site

We show the traversability maps of two testing sites in
Figure 6. In Figure 7, we show a drone image taken in 2020.
Note that the image is outdated, and the condition might be
different from when our experiments are done.

B. Qualitative Comparisons on Mapping methods

In Figure 8, we compare traversability maps generated using
a geometric-only method [1] and using TNS with geometric-
semantic fusion. The output after fusion is less noisy since
segmentation results can smooth out safe regions. Our method
detects more non-traversable regions based on obstacles and
dangerous regions from semantic information.
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Fig. 7: Aerial image of our testing site taken in 2020.

Fig. 8: Grid map comparison between the geometric-only
scheme [1] and ours: (1) Our method is less noisy and has
more connected regions to plan a feasible trajectory. (2) Our
method can detect obstacles that the geometric method could
not recognize.
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