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Abstract—We focus on correct-by-design robot task planning
from finite Linear Temporal Logic (LTLf ) specifications with
a human in the loop. Since provable guarantees are difficult to
obtain unconditionally, we take an assume-guarantee perspective.
Along with guarantees on the robot’s task satisfaction, we com-
pute the weakest sufficient assumptions on the human’s behavior.
We approach the problem via a stochastic game and leverage
algorithmic synthesis of the weakest sufficient assumptions. We
turn the assumptions into runtime advice to be communicated
to the human. We conducted an online user study and showed
that the robot is perceived as safer, more intelligent and more
compliant with our approach than a robot giving more frequent
advice corresponding to stronger assumptions. In addition, we
show that our approach leads to less violations of the specification
than not communicating with the participant at all.

I. INTRODUCTION

When deploying autonomous robots into the real world,
we desire for them to be safe and to work as intended. One
increasingly popular way to approach this challenging problem
is via the formal methods framework, which combines two
great advantages: (i) various involved tasks and constraints on
the robot’s behavior can be described rigorously in temporal
logics, such as Linear Temporal Logic (LTL); and (ii) formal
methods-based synthesis allows to algorithmically compute
plans that are correct by design, i.e. provably satisfy the logic
formula. Formal methods-based synthesis from temporal logic
specification has been successfully deployed in a number of
robot task planning scenarios [18] ranging from manipula-
tion that is robust against a human operator’s cooperative
or adversarial interventions [20] to multi-robot task planning
with pre-failure warnings that give users insight as to why a
specification may be violated in the future [14].

A question that remains largely open is how to guarantee
that a robot operates safely and as intended when there is a
human in the loop. Attempting to provide guarantees regard-
less of the human’s actions often leaves us with the answer:
“There is no correct-by-design plan.” For example, imagine
an autonomous vehicle following a road when a pedestrian
appears and wants to cross the street. If the pedestrian jumps
right in front of the vehicle, a collision is unavoidable and
the system safety will be violated. However, it might still be
possible to synthesize a provably safe control strategy for the
autonomous vehicle under a certain assumption, for instance
that the pedestrian does not decide to cross the street if the
vehicle is too close, that the pedestrian does not cross the
street at all, or that the pedestrian commits to crossing the

street only at designated space and time window as advised
by traffic lights. In other words, it might still be possible to
obtain conditional guarantees under the – not unreasonable –
assumption that the pedestrian is willing to some extent to
collaborate on maintaining safety.

In this work, we propose to take an assume-guarantee
perspective to correct-by-design task planning with a human
in the loop. Along with guarantees on the robot’s task satis-
faction, we synthesize assumptions on the human’s behavior.
As the example above shows, desired guarantees can be
achieved under a variety of assumptions, so an additional
challenge is to synthesize assumptions that will be perceived
as acceptable. On the technical level, we tackle the problem
through formulating the human-robot interaction as a stochas-
tic game. We transform the task planning problem under finite
LTL specifications into a stochastic game with a reachability
objective, and find the weakest sufficient assumptions [10]. We
turn these assumptions into advice communicated at runtime.
Loosely speaking, these take form of actions that the human
should not take (e.g., “Don’t take a tomato now.”) and actions
that the human is encouraged to take in near future (e.g., “Help
me with the ketchup.”). In an online user study, we show that
communicating the advice leads to less specification violations
than not communicating any advice at all. We also show
that communicating advice based on the weakest sufficient
assumptions is perceived as more safe, more intelligent and
more compliant compared to a more frequent advice based on
stronger assumptions.

A. Related Work

Task planning for autonomous robots with a human in the
loop has been approached from various angles. For instance,
Buisan and Alami [7] leverage hierarchical task networks to
plan for a task while also considering and emulating the human
decision, action, and reaction processes. In formal methods-
based task planning, many approaches rely on models of the
systems they analyze, including the humans. For example,
Feng et al. [13] model a human operator in a UAV control
scenario via a Markov Decision Process based on key char-
acteristics such as the operator’s workload, proficiency, and
fatigue. Junges et al. [17] use probabilistic human models ob-
tained through reinforcement learning on previously recorded
observations of human trajectories. However, explicitly mod-
elling humans is usually not very robust to small changes in the



context. Many assumptions, such as that the humans behave
rationally also do not hold in real-world experiments [8].

In contrast, some other works that focus on formal methods-
based task planning with a human in the loop do not model
the human explicitly, but introduce reactive re-planning, such
as in [20]. Migimatsu and Bohg [22] propose a object-
cenric reactive task-planning method that produces sequential
manipulation plans relative to object positions that remain
valid even if the objects are moved, for example by a human.
He et al. [15] synthesize strategies reacting to the human
behaviour. They propose an efficient, compositional approach
to perform synthesis for finite-horizon tasks.

Attempting to create plans that are robust to all possible
human behavior in the environment is, however, often too
conservative. In many situations, formal synthesis fails to find
a correct-by-design task plan e.g., due to high uncertainty
in the environment model, or infeasibility of the task. Solu-
tions to this challenge include refining the model, i.e. adding
assumptions on the robot or its environment, repairing the
specification itself, or finding plans that violate the specifi-
cation as little as possible. For instance, Raman and Kress-
Gazit [23] automatically provide feedback through structured
English expressions and allows a human user to add a refined
description of the environment increasing the chances to find
a correct-by-design plan. Sharma et al. [26] map natural
language sentences to transformations of cost functions that
enable users to correct goals and update motions to incorporate
user preferences and recover from planning errors. Some other
works propose quantitative evaluation of LTL specification
satisfaction, leading to finding the least-violating plans in the
given model [32, 33, 21]. To our best knowledge, none of the
works on formal methods-based robot task planning with a
human in the loop focuses on explicitly communicating advice,
that – if followed – enables guarantees.

Several works study the effect of robots giving advice to
human in a 1-on-1 human-robot interaction. Barlas [2] studied
how robot-instructed actions alter the human’s sense of agency.
Strait et al. [28] investigate the effects of robot communi-
cation strategies in advice-giving situations based on robot
appearance, interaction modality and distance. Torrey et al.
[29] experimentally compared help-giving strategies. Tucker
et al. [30] optimize agents to communicate according to utility,
informativeness, and complexity. These works generally study
how advice should be conveyed and what factors influence
the acceptance of such advice, but they do not focus on what
advice should be given in the first place.

Our approach to generating advice is driven by assume-
guarantee formal synthesis that has been studied in the broad
context of cyber-physical systems. Bloem et al. [5] survey
different approaches to handling assumptions over the en-
vironment for GR(1) specifications, an efficient fragment
of LTL. Various notions of optimality were associated with
the synthesized assumptions: Tumova and Dimarogonas [31]
formalize least-limiting strategy advisers for safety objectives
in game-based models of semi-autonomous systems. Chen
et al. [11] use maximally permissive supervisors to generate

flexible strategies for manufacturing systems. Bernet et al. [4]
define permissive strategies for parity games as strategies that
subsume the behavior of all memoryless strategies. Chatterjee
et al. [10] generate the weakest sufficient assumptions on
the environment. Using this definition of the weakest suf-
ficient assumptions, Boteanu et al. [6] express environment
assumptions based on [10] via natural language questions
referencing objects in the environment in robot-initiated spec-
ification repair. Schuppe and Tumova [25] use the notion of
the weakest sufficient assumptions [10] in order to propose
a scalable, decentralized multi-agent task-planning method
based on robots exchanging advice with each other.

II. NOTATION AND PRELIMINARIES

For a finite set X , a probability distribution on X is a
function δ : X −→ [0, 1] such that

∑
x∈X δ(x) = 1. We write

Supp(δ) = {x ∈ X | δ(x) > 0} for the support set of δ. We
denote the set of probability distributions on X by Dist(X).

A. Linear Temporal Logic and Automata

We use LTL interpreted over finite traces, called LTLf [12].

Definition 1 (Syntax of LTLf ). An LTL formula over a set of
atomic propositions AP is defined as follows:

φ := true | a | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | Xφ, a ∈ AP

A trace is a finite word over the alphabet 2AP . Xφ requires a
proposition to hold in the next step. φ1Uφ2 requires φ1 to hold
until φ2 holds. Using the operators ¬ and ∧, the full power of
propositional logic is obtained. Furthermore, Fφ = trueUφ
represents φ holding eventually in the future and Gφ = ¬F¬φ
always holding from now on. See [12] for a full introduction
and definition of the semantics. An LTLf formula φ can be
represented by a deterministic finite automaton (DFA) [12].
We use the tool MONA [16] to translate an LTLf formula φ
into a DFA Aφ that precisely accepts L(φ). Translating LTLf
formulae into DFA is proven to be EXP-complete.

Definition 2 (Deterministic Finite Automaton). A DFA is a
tuple A = (Q,Σ,∆, qi, F ) where
• Q is the set of states,
• Σ the alphabet,
• ∆ : Q× Σ −→ Q the transition function,
• qi the initial state and
• F the set of accepting states.

A finite run of a DFA on a trace ρ = ρ0ρ1 . . . ρn, where ρi ∈
Σ, is the sequence of states q0q1 . . . qn+1 such that qi+1 =
∆(qi, ρi) for all 0 ≤ i ≤ n. This run is accepting if qn+1 ∈ F .

B. Stochastic Games

Definition 3 (Labelled Stochastic Game). A two and
a half player stochastic game (SG) is a tuple G =
((S,E), Act, δ, s0, AP, L) where
• (S,E) is a finite, directed graph,
• S = S1 ] S2 ] Sp is the states space partitioned into

player 1, player 2, and probabilistic states,



• E = E1 ] E2 ] Ep is the set of edges, partitioned
analogously,

• Act is a set of actions,
• δ : Sp −→ Dist(S1) is a probabilistic transition function,
• s0 ∈ S1 is the initial state,
• AP is a set of atomic propositions and
• L : S1 −→ 2AP is a state labelling function.
We define E1 ⊆ S1×Act×S2, E2 ⊆ S2×Act×Sp, Ep ⊆

Sp × S1. For all sp ∈ Sp and s1 ∈ S1, we have (sp, s1) ∈
E iff δ(sp)(s1) > 0. The state labelling function assigns to
every state the atomic propositions which hold true in there.

If each state in S2 has a single outgoing edge, G is called
a Markov Decision Process (MDP); in that case we omit S2

from the definition, and use E1 ⊆ S1×Act×Sp in the expected
way.

Definition 4 (Plays). A play of game G is an infinite sequence
π = s0s1s2 . . . of states such that (sk, a, sk+1) ∈ E1 ∪ E2

or (sk, sk+1) ∈ Ep for all k ≥ 0. We use Π for the set of all
plays.

Definition 5 (Strategy). A deterministic finite-memory strategy
for player i is a function λ : S∗i −→ Act, where λ(s1 . . . si) ∈
Act(si). A memoryless strategy is such that λ(s1 . . . si) =
λ(si) for all s1 . . . si ∈ S∗i and we use λ : Si −→ Act.

Strategies λ1, λ2 define plays that follow them πλ1,λ2 =
s0s1s2 . . ., where (sk, λi(sk), sk+1) ∈ Ei if sk ∈ Si, i = 1, 2.
For a set of plays E ⊆ Π, state s, and strategies λ1 and λ2, we
denote the probability that a play beginning in s and following
λ1, λ2 belongs to E by Prλ1,λ2

s (E).

Definition 6 (Objective). An objective for a player is a set
ψ ⊆ Π of plays that are winning for that player.

Definition 7 (Almost-Sure Winning). Given an objective ψ,
strategy λ1 of player 1 is almost-sure winning from state s, if
for every strategy λ2 of player 2, Prλ1,λ2

s (ψ) = 1.

Given an objective ψ, we denote the set of states from which
player 1 has an almost-sure winning strategy as 〈〈1〉〉(ψ).
Given an objective ψ, the cooperative winning set 〈〈1, 2〉〉(ψ)
is the set of states s where there exists a strategies λ1, λ2 for
players 1 and 2, such that Prλ1,λ2

s (ψ) = 1. Stochastic games
with a reachability goal can be solved by state-of-the-art tools,
such as PRISM-games [19].

III. WEAKEST SUFFICIENT ASSUMPTIONS FOR
HUMAN-ROBOT INTERACTION

A. Modelling Approach

We model the robot’s capabilities through a finite labelled
MDP M = (S = S1 ] Sp, Act, δ, s0, APr, L), where APr
is a set of atomic propositions that describe the status of
the robot with respect to its tasks, and L : S −→ APr is a
function that labels state with atomic propositions, which hold
there. For simplicity, we assume that each transition (action
execution) takes one time unit and the robot’s environment
is observable at all times. Probabilistic transitions are used

to model probabilistic outcomes of chosen actions. These
probabilities could originate from modelling success rates of
the actions or unmodelled disturbances of the environment.

The robot is given a high-level task formulated as an LTLf
specification φ over APφ. APφ is a set of atomic propositions
that include APr as well as other propositions regarding the
status of the environment, or the human in the loop. This
means the robot’s task may involve subtasks that depend on
actions of the human. The robot’s aim is to satisfy the formula
almost-surely; our aim is to find a strategy under which it does
so along with assumptions on the behavior of the human in
the loop.

Example III.1. A simple example of a robot in an environment
is given in Figure 1. The robot can move in the bottom six
grey cells, interact with the five ingredients on the table in
the center and it can also deliver at the designated delivery
tray at the bottom. This is modeled as an MDP illustrated in
Figure 2. The states S ofM describe the position of the robot,
expressed through the cell it currently occupies. In each state,
the robot can move to an adjacent cell in either of the four
cardinal directions or interact with the ingredient or delivery
trays. The self-loops indicate not taking an action and idling
for one time unit. In this particular case, the probability of
each depicted transition is 1 and the action names are omitted
for readability.

The robot’s task is to interact with all the ingredients of the
table in the center once. The specification formula

φ = φg ∧ φc (1)

is split into goals and constraints. The goal formula φg
describes that the robot should interact with all ingredient
trays, regardless of their order and that it requires help from
the human when interacting with the ketchup. The constraint
formula φc forbids the collision when both actors reach into
the same tray at the same time at all other ingredient trays.
Clearly, to accomplish this task, the robot will need to assume
some cooperation from the human.

φg = F bunsr ∧ F pattyr ∧ F lettucer (2)
∧ F (ketchupr ∧ ketchuph) ∧ F tomator

φc = G ¬(bunsr ∧ bunsh) ∧G ¬(pattyr ∧ pattyh) (3)
∧ G ¬(lettucer ∧ lettuceh) ∧G ¬(tomator ∧ tomatoh)

In this work, we do not aim to explicitly represent the
human’s states, goals or intention through a model. For task
planning purposes, we abstract the influence of the human’s
actions on the environment relevant to the robot’s task through
a set of atomic propositions and their changes. We denote
these atomic propositions APh = APφ \ APr. The robot
considers the human to be able to freely change an arbitrary
subset of atomic proposition from APh in every step and
the assumptions that we aim to synthesize take the form of
restrictions on changes to this set.



Fig. 1. The study game screen with the playing field in the center, ingredient
inventory on the left, timer and burger counter on the right.

pattyr bunr tomator saucer lettucer

deliveryr

Fig. 2. Robot MDP of the study game. States in Sp are depicted as small
dots and the outgoing edges from them are associated with probability 1.
Propositions that hold in a state are denoted inside of the state.

We model the interaction through a stochastic game. Start-
ing from the initial state, the robot represented through player
1 makes a decision on its move, takes an action from Act and
induces a change to propositions from APr . Meanwhile, the
human represented through player 2 may make a change to
propositions from APh . Note that this change can be triggered
by one or more actions of the human. The remaining half
player corresponds to the resolution of probabilistic outcomes
of the robot MDP’s actions. While a concurrent game seems
to be the most suitable choice, we opt for turn-based games as
they are simpler to handle algorithmically with the objectives
at hand. At the same time, in a turn-based game, player 2 is a
stronger adversary, so winning resulting strategies for player
1 in a turn-based game are conservative, but also winning
strategies for player 1 in a concurrent game, where player 2
has to choose without knowledge of the action of player 1.

Definition 8 (Interaction Model). Given a robot represented as
a labelled MDP M = ((S = S1 ] Sp, E), Act, δ, s0,APr, L)
and a set of propositions controlled by the human actor Σh =
2APh , we create a labelled stochastic game

G̃ = ((S̃, Ẽ),Act ∪ {ε}, δ̃, s0,APr, L)

as follows:

1) State space. S̃ = S1 ] Sp ] S̃p, where S̃p = Sp × Σh
s̃p = (sp, σ) is the state of the game after the robot took
an action and the human chose atomic propositions that
hold true now. Without loss of generality, in practice S̃
will include only the states reachable from s̃0.

2) Actions. The actions of the game are the actions of the
robot; the actions of humans as well as the half-player
are not labeled.

3) Edges. Ẽ = E ] Ep ] Ẽp.
• Ep = {(sp, s̃p) | sp ∈ Sp, s̃p = (sp, σ) ∈ S̃p}

represent a change in the propositions triggered by
the human.

• Ẽp = {(s̃p, s1) | s̃p ∈ S̃p, s1 ∈ S1, s1 ∈
Supp(δ(sp))} resolve the probabilistic outcome of
the actions of the robot MDP.

4) Probabilistic Transition Function. δ̃ : S̃p −→ Dist(S1).
Given s̃p = (sp, σ) ∈ S̃p, we define:

δ̃(s̃p)(s1) = δ(sp)(s1).

B. Strategy Synthesis

In the next step, we introduce the specification of the robot
into the game. First, we translate φ into a DFA Aφ. We then
construct a stochastic game with a reachability objective that
is determined from the accepting states of the DFA. In this
game, finding an almost-surely winning strategy translates to
satisfying the specification φ.

Definition 9 (Synthesis Game). Given the interaction model
G̃ = ((S̃, Ẽ),Act ∪ {ε}, δ̃, s0,APr, L) and a DFA Aφ =
(Q, 2APφ , q0,∆, F ), where APr ⊂ APφ,APh = APφ\APr
and Σh = 2APh , we create a labelled stochastic game

Ĝ = ((Ŝ, Ê),Act ∪ {ε}, δ̂, ŝ0,APr, L̂),

as follows:
1) State space. Ŝ = S̃ × Q. All states carry information

about the current state of the interaction model and the
DFA.

2) Edges. Ê = Ê1 ] Ê2 ] Êp. The state of the DFA is
updated on edges in Êp. All other edges keep their
original mapping, carrying over the current DFA state.

a) Ê1 = {(ŝ1, a, ŝ2) | ŝ1 = (s̃1, q) ∈ Ŝ1, a ∈
Act, ŝ2 = (s̃p, q) ∈ Ŝ2, and (s̃1, a, s̃p) ∈ Ẽ}

b) Ê2 = {(ŝ2, ε, ŝp) | ŝ2 = (s̃2, q) ∈ Ŝ2, ŝp =

(s̃p, q) ∈ Ŝp, and (s̃2, ε, s̃p) ∈ Ẽ}
c) Êp = {(ŝp, ŝ1) | ŝp = (sp, q, σ) ∈ Ŝp, ŝ1 =

(s̃1, q
′) ∈ Ŝ1,∆(q, σ ∪ L̃(s̃1)) = q′) and s̃1 ∈

Supp(δ̃(s̃p))}.
3) Probabilistic Transition Function. δ̂ : Ŝp −→ Dist(Ŝ1).

Given ŝp = (sp, q, σ) ∈ Ŝp and ŝ1 = (s̃1, q
′) ∈ Ŝ1, we

define:

δ̂(ŝp)(ŝ1) =

{
δ̃(s̃p)(s̃1), if ∆(q, σ ∪ L̃s(s̃1)) = q′

0, otherwise.

4) Initial State. ŝ0 = (s0, q0).



5) State Labelling Function. L̂ : Ŝ1 −→ APr. Given ŝ1 =
(s1, q) ∈ Ŝ1, L̂(ŝ1) = L(s1).

The objective of the game is to reach an accepting state of
the DFA:

ψ = {s0s1s2 · · · ∈ Π | ∃k ≥ 0, sk = (s, q) ∈ S, q ∈ F} (4)

If the robot can find an almost-surely winning strategy in
Ĝ for ψ, it satisfies φ regardless of what the human does. If
not, additional assumptions on the human’s actions, or more
precisely their effect on the atomic proposition, are necessary
to offer guarantees. To synthesise sufficient assumptions, we
leverage the fact that any linear-time property, such as a
property expressed in LTLf can be decomposed into a safety
and a liveness component [1]. Based on this observation, we
generate sufficient assumptions split into two parts: Safety
assumptions and fairness assumptions expressed as a set of
player-2 edges from Ĝ. Safety assumptions Es ⊆ E2 are edges
that player 2 can never take. Fairness assumptions El ⊆ E2 of
edges that need to be chosen fairly (i.e. infinitely many times
upon infinitely many visits to their outgoing state).

Definition 10 (Sufficient Assumptions[25]). Given an objec-
tive ψ, a safety assumption Es ⊆ E2 is sufficient if player 1
has an almost-sure winning strategy for the objective

AssumeSafe(ψ,Es) = ψ ∪
{π = s0s1s2 . . . | ∃k ≥ 0, (sk, sk+1) ∈ Es}

A fairness assumption El is sufficient if player 1 has an
almost-sure winning strategy for the objective

AssumeFair(ψ,El) = ψ ∪ {π = s0s1s2 . . . |
∃(s, s′) ∈ El s.t. sk = s for infinitely many k but

sk+1 = s′ only finitely often.}

Furthermore, a set of sufficient assumptions E∗ is the
weakest assumption if there exists no smaller set |E′∗| ≤ |E∗|,
E′∗ ∈ E2, ∗ ∈ {s, l} is sufficient. The weakest sufficient
assumptions can be algorithmically computed [25]. We refer
to [25][10] for full definition, proof and the algorithm to com-
pute sufficient and the weakest sufficient safety and fairness
assumptions.

A key insight is that given a set of the weakest
sufficient assumptions Es, El, there exists an almost-
surely winning strategy in Ĝ for the objective
AssumeFair(AssumeSafe(ψ,Es), El). In other words,
assuming that edges from Es are never taken, while edges
form El are fairly taken, specification φ is guaranteed to be
satisfied. In other words, if the human is able and willing to
never change the atomic propositions that trigger edges Es
in Ĝ and to eventually change the atomic propositions that
trigger edges El in Ĝ, the robot will be able to provably
accomplish its task.

C. Communicating the Assumptions via Advice

After computing the weakest sufficient assumptions Es and
El and the corresponding robot’s strategy, the assumptions
have to be communicated to the human in a way they can
easily understand and follow. Hence, instead of communicat-
ing these sets directly, we propose to monitor the robot and the
human (i.e. the state of the game Ĝ) and issue advice at run-
time. In particular, if one of the outgoing edges of the current
state is found in the safety assumption set Es, we identify the
propositions σ from (s̃2, s̃p) ∈ Es, and s̃p = (sp, q, σ). The
safety assumption is then communicated as forbidden changes
to the atomic propositions. In Example III.1, this could be
for instance communicating to the human that they should not
interact with the patty when the robot does so. The fairness
assumptions can be communicated as a suggestion to make
a particular change to atomic propositions. In Example III.1,
this could be for instance suggesting to the human that they
should eventually interact with the sauce while the robot waits
for their help. If this advice is followed at all times, the
assumptions are fulfilled and hence the guarantees hold. We
give a concrete example of communicating the assumptions
via advice below in Section IV.

IV. USING LEAST-LIMITING ADVICE IN AN ONLINE USER
STUDY

The full source code for game construction, solving and
assumption computation is available on GitHub1. We used
Python 3 to construct and manipulate the stochastic games
and PRISM-games [19] to solve instances. Source code of the
study and raw result data are in a separate repository2. The
interactive game is written in Rust and compiled to WASM,
so participants could play in their browser. The repository also
includes other experimental materials such as questionnaires.

We designed an online user study where participants play
an interactive game with a robot. We examine if humans are
able and willing to follow computed assumptions given by
the robot, how they evaluate the experience, and the effect of
communicating assumptions on the specification satisfaction.

A. Interactive Game Design

A snapshot of the interactive game is illustrated in Figure 1.
The robot’s capabilities, MDP model, and specification are
discussed in Example III.1. Before playing the game, the
participants are given instructions that explain the game in
detail. They control the character represented by the human
icon via arrow keys. Every time the participant moves, the
robot moves as well.

The participants are tasked to assemble hamburgers along-
side their robotic co-worker and to collectively produce as
many burgers as possible in a given time limit. For this, they
have to collect all necessary ingredients from ingredient trays
and then deliver the burger to the plate at the top. An inventory
of ingredients is displayed on the left of the screen. Collected

1https://github.com/KTH-RPL-Planiacs/human-advisers
2https://github.com/KTH-RPL-Planiacs/human-adviser-study

https://github.com/KTH-RPL-Planiacs/human-advisers
https://github.com/KTH-RPL-Planiacs/human-adviser-study


Fig. 3. From top to bottom: Next-Move Advice, Safety Advice and Fairness
Advice

ingredients are coloured, otherwise they are greyed out. On
the right, a timer shows the remaining time until the game
is over and a counter displays the total amount of delivered
burgers.

The participants are aware that for safety reasons, the human
and the robot should not reach into the same tray at the same
time. If the participant and the robot move into the same
ingredient tray at the same time, they crash and the screen
fades to black, the currently collected ingredients are lost and
the robot’s and participant’s positions are reset to the starting
positions. The synthesis game G̃ restarts to the initial state also
every time the robot satisfies the specification. Advice is com-
municated via pictograms. Safety advice forbids certain atomic
proposition changes (coming, e.g. from the safety assumption
Es) is communicated by a red cross as illustrated in Figure 3
in the middle. Fairness advice suggests that a certain atomic
proposition should change eventually (coming, e.g. from the
fairness assumption El) is communicated by a green arrow
as illustrated in Figure 3 in the middle. Finally, advice that
dictates to the human its next move is communicated via a
black arrow as illustrated in Figure 3 in the bottom.

B. Study design

We compare our approach (LeastLimiting) to two baselines:
• NoAdvice: The robot does not issue any advice.
• NextMove: The robot communicates to the user exactly

which move to take in every step. The moves are de-
termined by computing a cooperative strategy for the
synthesis game. In other words, we treat the human
as fully controllable. Following the NextMove advice
leads to provable satisfaction of the robot’s specification
Equation 1; this approach however does not focus on the
advice to be the least limiting.

The main purpose of our study was to answer (1) whether
the LeastLimiting advice lead to less specification violations
than NoAdvice and (2) whether the LeastLimiting advice were
perceived as less limiting than the NextMove advice.

We recorded the following data in-game:
• total steps taken by the human
• number of burgers produced by the robot

Least Limiting Next Move None
Perceived Intelligence
Incompetent-Competent 4.05 (0.91) 3.42 (1.54) 3.81 (1.14)
Ignorant-Knowledgeable 4.22 (0.85) 3.56 (1.52) 3.97 (1.00)
Irresponsible-Responsible 3.89 (0.96) 3.33 (1.31) 3.78 (1.07)
Unintelligent-Intelligent 3.78 (1.16) 3.44 (1.44) 3.78 (1.22)
Perceived Safety
Anxious-Relaxed 4.17 (1.00) 3.11 (1.47) 3.94 (1.31)
Agitated-Calm 4.06 (0.98) 3.03 (1.54) 4.00 (1.27)
Quiescent-Surprised 3.78 (1.05) 3.39 (1.22) 3.44 (1.18)
Perceived Hindrance
Unpredictable-Predictable 3.95 (0.91) 3.53 (1.34) 3.81 (1.14)
Incompliant-Compliant 3.86 (0.95) 2.97 (1.40) 3.69 (1.21)
Unrestrictive-Restrictive 3.86 (0.95) 3.89 (1.01) 3.47 (1.23)

TABLE I
MEANS AND STANDARD DEVIATIONS (IN PARENTHESES) OF THE

QUESTIONNAIRE RATINGS.

• number of burgers produced by the human
• number of specification violations measured through vi-

olation of safety constraints in (3)
After playing the game for two minutes, we asked the

participants to rate their impressions of the robot on semantic
differential scales from 1-5 between different adjective pairs.
The questionnaire aims to study three aspects: perceived
intelligence, perceived safety and perceived hindrance. All
attribute pairs are shown in Figure IV-B. For perceived intel-
ligence and safety, we used the corresponding parts from the
Godspeed questionnaire [3]. Since the ”perceived hindrance”
scale does not belong to a validated questionnaire, we analysed
its component items individually. In addition, we also collected
anonymous demographics data.

C. Study Results

We conducted the study on Amazon Mechanical Turk, and
invited 120 participants evenly split over the three conditions.
Of the 120 participants, 50 self-described as female, 57 as
male, and 2 as non-binary; their age ranged from 24 to 72
years old (median = 36). The vast majority (N = 85) self-
described as native English speakers, 5 as native-like, 14 as
fluent, and 5 did not respond. Finally, we asked them about
their experience with playing video games: 42 people reported
playing every day, 46 weekly, 14 monthly, and 7 did not
respond. We paid each participant $2 plus a performance bonus
based on the amount of burgers they produced in the game.
The study took on average 18 minutes, with the game taking
a fixed two minutes. We conducted the study in accordance
with the ethical guidelines of the hosting institution.

After data collection, some participants had to be excluded
due to poor performance, or for signing up to the study
twice. As a result, the final dataset contained data from 109
participants.

All analyses were performed in R version 4.2.1. For the
questionnaire data, we conducted one-way ANOVAs to see
if the adviser mode had any effect on the different scales.
We found that adviser mode significantly influenced perceived
safety (F (2, 105) = 6.27, MSE = 0.63, p = .003, η̂2G =
.107); post-hoc pairwise comparisons using the Tukey HSD



test showed that the LeastLimiting condition was perceived as
safer than the Next Move condition (p = .009). The effect
of the adviser mode approached significance at the .05 sig-
nificance level for perceived intelligence (F (2, 106) = 2.88,
MSE = 1.16, p = .061, η̂2G = .052), with the LeastLimiting
condition being perceived as more intelligent than the Next
Move condition (Tukey HSD p = .05). Finally, for perceived
hindrance, we only found an effect of adviser mode in the
Incompliant - Compliant adjective pair (F (2, 106) = 5.65,
MSE = 1.44, p = .005, η̂2G = .096), with the LeastLimiting
condition being perceived as more compliant than the Next
Move condition (Tukey HSD p = .005).

We conducted a Poisson regression on the number of safety
violations, and we found that there were significantly fewer
violations in the LeastLimiting condition than in the No-
Advice baseline (b = 0.62, 95% CI [0.08, 1.18], z = 2.21,
p = .027). At the same time, burger productivity remained
roughly the same between the two. The total amount of burgers
produced were 142 in the LeastLimiting condition, 154 in the
NoAdvice condition and 76 in the NextMove condition.

V. DISCUSSION & CONCLUSION

We presented a novel, formal methods-based approach to a
human-in-the-loop task planning. We proposed to synthesize
and communicate advice, which – if followed – enables the
robot to successfully accomplish its task. The advice is based
on the weakest sufficient assumptions in stochastic games. Our
results suggest that a robot communicating this type of advice
is perceived as safer, more intelligent and more compliant than
a robot giving more frequent advice based on sufficient, but
stronger assumptions. Our study results also indicate that our
advice leads to less violations of the robot’s task specification
when compared to not communicating any advice.

The presented theory also applies when modelling multiple
human actors instead of only one, with each actor only
controlling a subset of APh. The assumption computation
remains unchanged, but communicating assumptions for mul-
tiple human actors remains future research. Since our user
study features only the single-human case, we restricted the
notation for the sake of readability.

In this work, we opted to use non-verbal communication
in the form of pictograms, communicating only a subset of
possible assumptions. The best method for conveying assump-
tions remains unstudied, especially for real robots.Other non-
verbal methods [9], such as light- and sound-based methods
[27][24] present interesting directions for future research.
Based on existing works on generating natural language from
logical statements [6], studying if natural language improves
communication of assumptions also remains future research.
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