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Abstract—The field of Learning from Demonstration enables
end-users, who are not robotics experts, to shape robot behavior.
However, using human demonstrations to teach robots to solve
long-horizon problems by leveraging the hierarchical structure
of the task is still an unsolved problem. Prior work has yet to
show that human users can provide sufficient demonstrations
in novel domains without showing the demonstrators explicit
teaching strategies for each domain. In this work, we investigate
whether non-expert demonstrators can generalize robot teaching
strategies to provide necessary and sufficient demonstrations
to robots zero-shot in novel domains. We find that increasing
participant experience with providing demonstrations improves
their demonstration’s degree of sub-task abstraction (p < .001),
teaching efficiency (p < .001), and sub-task redundancy (p < .05)
in novel domains, allowing generalization in robot teaching.
Our findings demonstrate for the first time that non-expert
demonstrators can transfer knowledge from a series of training
experiences to novel domains without the need for explicit
instruction, such that they can provide necessary and sufficient
demonstrations when programming robots to complete task and
motion planning problems.

I. INTRODUCTION

Due to the diversity of end users and deployment settings,
it is intractable for a robot to be pre-programmed to do
any task in any environment One solution is to allow robots
to learn new skills in situ, from end-users. Prior work in
Learning from Demonstration (LfD) has investigated how to
allow non-roboticist end-users to operate in the role of the
robot teacher [8, 14, 44, 45, 47] in order to communicate
personal preferences and leverage their domain knowledge
[36, 42, 51]. However, many previous approaches require

human demonstrators to learn how to teach the robot tasks
in each domain, using videos or demonstrations from robot
experts [3, 21, 39]. This approach does not scale up in
enabling human users to teach a variety of tasks to a robot,
as demonstrator training is domain-dependent, and an expert
is still required to be in the training loop. In this work,
we develop a series of demonstrator training tasks through
which participants obtain knowledge about providing sufficient
and necessary demonstrations that can generalize to novel
domains.

Substantial emphasis in LfD has been placed on teaching
robots single, short-horizon skills, such as picking up or mak-
ing contact with an object [22, 28, 33, 37]. However, there is a
lack of work enabling robots to learn long-horizon tasks, such
as learning in-home assistive tasks or manufacturing process
assembly operations, from human demonstrations. Such tasks
can be considered multi-task problems. For example, setting
a dinner table would require a robot to set multiple place
settings, dependent on the number of guests, where each
table setting consists of multiple objects that each require a
different manipulation procedure. A demonstrator cannot be
expected to provide demonstrations for each task specification
of these multi-tasks, such as for each possible number of
plate settings. Since long-horizon tasks require a robot to
solve repetitive multi-task problems, demonstrators need to
break up their demonstrations into shorter abstractions that
a robot can reuse. Prior work has shown that demonstrators
are capable of teaching abstractions when explicitly instructed
on how to do so. Akgun et al., for instance, demonstrated



Fig. 1: Via the interface and kinesthestic teaching, participants record three demonstrations to save a sub-task. Saved sub-tasks
are then available in the interface library. To execute a task, participants assemble a recipe from the set of recorded sub-tasks.

that users can teach Keyframe-based abstractions for robot
movement [3]. Likewise, Mohseni-Kabir et al., demonstrated
that, for hierarchical tasks, novel sub-tasks can be taught to a
robot using combinations of previously taught sub-tasks [39].
However, if not prescribed how to teach the robot, prior work
has found that participants struggle to provide demonstrations
that exhibit abstractions sufficient for a hierarchical task [31].
Gopalan et al. similarly find that the majority of participants
did not naturally teach the robot tasks using abstractions [21].
The authors compare various modes of demonstrator training
and find that only videos where the experimenter demonstrates
how to provide demonstrations using sub-task abstractions in
the current domain enabled participants to use abstractions
(in the same domain) that would be robust to novel task
specifications [21]. In this work, we investigate whether, given
enough practice in previous domains, participants can use
sub-task abstractions to provide sufficient demonstrations in
a novel domain without being told how to do so.

Instead of training demonstrators from scratch in each
domain they encounter, we want the knowledge the demon-
strator learns about providing demonstrations in one domain
to be transferable to novel domains. We develop a three-hour
training procedure with five domains and corresponding unper-
sonalized expert videos. This procedure enables demonstrators
to transfer acquired knowledge about providing sufficient and
necessary demonstrations – gained through trial, error, and
expert feedback – to novel domains where no expert feedback
is available. In this work, we study the impact of domain

experience on users’ ability to provide demonstrations when
teaching a robot. Here, we define domain experience as the
number of training domains for which (i) the participant has
taught the robot a task via demonstration and (ii) the demon-
strator has subsequently watched a training video showing a
robotics expert providing the optimal teaching strategy. We
employ a standard way to formulate multi-modal1, multi-task
problems in robotics [19], namely Task and Motion Planning
(TAMP), for our sub-task representations.

To the best of our knowledge, our findings show for the first
time that humans can transfer knowledge from a few training
experiences to provide sufficient TAMP demonstrations in a
novel domain. In this work, we contribute the following.

1) We design a novel user study and set of training domains
to investigate whether participants improve their ability
to teach the robot via demonstrations over time, without
the use of a curriculum.

2) Our results demonstrate that participants are able to
generalize knowledge about task abstraction (p < .001),
teaching efficiency (p < .001), and redundancy (p <
.05) zero shot to novel domains.

3) We additionally find that prior teaching experience im-
pacts sub-task count (p = .011), that sub-task count
impacts perceived workload (p = .005) as well as robot
likeability (p = .007), and that participant agreeableness
impacts teaching duration (p = .006).

1For a definition of mode, see Section II



II. PRELIMINARIES

In this section, we define terms pertaining to our work. We
include a separate related works section (Section V) preceding
our discussion to contextualize our findings.

Multi-task problems – In multi-task problems, the objects
that the robot interacts with remain the same. However, the
number of objects, their locations, or the order in which the
robot interacts with the objects changes between sub-tasks
[12]. This is often accomplished by leveraging similarities
between the sub-tasks [50].

Multi-modal tasks – A mode is a sub-manifold of robot
motion within which the robot’s contact specification, with
respect to different objects in the world, remains constant [4, 5,
25, 26]. A multi-modal task is one where the robot transitions
between at least two modes to solve a task. For example,
to pick up a block, the robot first is restricted to a mode
where all its motion is confined to a sub-manifold within
which the robot’s gripper is not in contact with any object.
After picking up the block, the mode of the robot is the sub-
manifold within which it is in continuous contact with the
block. Similarly, a Long Horizon Task is a task where the
robot needs to perform multiple mode switches to solve the
task. Thus, per our definition, multi-modal tasks have at least
one mode switch (≥ 1), and long horizon tasks have several
(> 2) mode switches. In our work, the robot is solving multi-
modal tasks.

Task and Motion Planning (TAMP) – Robotics prob-
lems require an interplay between symbolic and continuous
domains. For example, to pass medicines to a patient, the robot
needs to make a high-level symbolic plan to know which boxes
of medicines to pick up and pass to a patient. This plan and
its corresponding state are symbolic and discrete over the type
and quantities of medicine box objects required. However, to
pick up a box the robot needs to create a continuous motion
plan without collisions such that the box is in the robot’s hand.
This motion planning problem occurs over the continuous state
of the robot’s joints. Such problems, that exhibit an interplay
between symbolic and continuous plans, are TAMP problems.
We choose to define our domains as TAMP problems, as
they require an interplay between symbolic goal states and
continuous motion from the robot.

Sub-task based abstraction – Transitions between the
symbolic states of a TAMP problem are called sub-tasks2 [19].
For example, when a robot moves to pick up a cup, the state
of the world transitions symbolically, such that the cup is in
the robot’s hand. In TAMP formulations, the sub-tasks are
described by preconditions (pre) and effects (eff), as well
as constraints (con) that must hold for all continuous actions
for the duration of time the action is being taken. We provide
a sample mathematical TAMP formulation for the sub-tasks
of the medicine dispensing domain in the Appendix.

Sufficient sub-tasks – In our domains, a sub-task is deemed

2Sub-tasks are referred to as actions in [19]; however, we refer to these
actions as sub-tasks to prevent confusion between low-level robot actions and
TAMP level actions.

sufficient if the sub-task changes the symbolic state of the
world and results in at most one mode change. For a sub-task
to change the symbolic state of the world, the change must
go beyond a negligible change in the robot’s pose. Moreover,
limiting the sub-task to at most one mode change ensures
that the robot can change its interaction with only one object
within the sub-task. Such design of sub-tasks ensures that a
sub-task transition affects only a small set of symbolic state
variables at a time. These sub-tasks can then be sequenced
by a task planner to reach a larger set of the symbolic state
space, allowing maximal generalizability in the tasks that can
be solved within the domain.

Redundant sub-tasks – A sub-task is deemed redundant
if its goal can be met by another sufficient sub-task or a
combination of sufficient sub-tasks previously taught. Sub-
task redundancy is defined with respect to a given set of
demonstrations being taught.

Necessary sub-tasks – Similarly, a sub-task is deemed
necessary if its goal can not be met by another sufficient sub-
task or a combination of sufficient sub-tasks previously taught.
Sub-task necessity is defined with respect to a given set of
demonstrations being taught. A sub-task is deemed necessary
if it is a not a redundant sub-task.

Domain experience – We define domain experience, a
metric for demonstrator training, as the number of domains
experienced thus far in the user study. Note that for each
domain, this experience entails participants first providing
demonstrations to the robot, then observing the optimal teach-
ing sub-task breakdown in the form of a video.

III. METHODS

In this section, we describe our study design, research
questions, metrics, domains, and experimental procedure.

Study Design

We conducted a 1 × 4 within-subjects experiment with
twenty-eight participants, seven per ordering condition (see
Appendix for the domain ordering of each condition). Partici-
pants experience five domains in this study, a practice domain
that all participants experience first, and the four ordered
domains. We control for the ordering of the remaining four
domains using a Latin square, ensuring that the participant
count per condition is balanced. The independent variable in
this study is the number of domains encountered thus far.

The robot employed in this study is the JACO arm (Gen2,
three fingers for a total of seven degrees of freedom) [11]
attached to a hand-crafted base located next to the experiment’s
table, as seen in Figure 1. We additionally designed a user
interface that allows users to record and save sub-tasks they
demonstrate to the robot; interface design decisions can be
found in the Appendix. Participants can then use the interface
to combine different sub-tasks to accomplish a task. We name
the group of sub-tasks assigned to a particular task a recipe.
We require the participant to record three demonstrations for
each sub-task in order to capture variability in the way the
participant moves the robot for robustness to noise.



Research Questions

RQ1: What is the impact of domain experience on the qual-
ity of demonstrations? We investigate whether participants can
perform zero-shot transfer to novel domains of any acquired
knowledge as measured by sub-task abstraction score, teaching
efficiency, and sub-task redundancy.

RQ2: What is the effect of demonstration abstraction on
participants’ perceived workload? We hypothesize that higher
abstraction scores will reduce the repetitiveness of participant
demonstrations, thereby reducing perceived workload.

RQ3: Do participant demographics impact the quality of
demonstrations? We investigate whether participant demo-
graphics, such as prior robotics experience and prior teaching
experience, impact the quality of their demonstrations. We
posit that participants with robotics or teaching experience
will teach the robot, via demonstration, more effectively and
efficiently.

RQ4: Does domain type impact the quality of demonstra-
tions? We hypothesize that the domain type will impact the
sub-task count and redundancy, abstraction score, and teaching
duration.

Metrics

The objective metrics we collect in our user study are as
follows. These metrics are collected per domain, for each
participant.

• Abstraction Scores: We employ the abstraction scoring
method validated in [21]. In this scoring method, one
point is allotted for each instance of a sufficient sub-task
employed to accomplish a task, and one point is awarded
for sufficient sub-tasks that could be constructed by com-
posing other sufficient sub-tasks. The latter ensures that
finer-grain abstractions are scored higher than coarser-
grain abstractions, within reason (no points are awarded
for gratuitously low-level abstractions such as move left).
The abstraction scoring rubrics employed in each domain
can be found in the Appendix. This metric allows us to
evaluate the sufficiency of demonstration sub-tasks.

• Redundancy Score: We count the number of redundant
sub-tasks taught, i.e., sub-tasks whose function can be
fulfilled by another existing sub-task or a combination of
existing sub-tasks. This metric allows us to evaluate the
necessity, independently from the sufficiency, of demon-
stration sub-tasks.

• Sub-task Count: We count the total number of sub-tasks
taught to the robot in each domain, that are employed to
accomplish a task.

• Teaching Duration: We measure the total time the partic-
ipant taught the robot, including time using the interface
and time spent providing the kinesthetic demonstrations.

The subjective metrics in our user study are as follows.
The details of hand-crafted surveys, Cronbach’s alpha, and
qualitative results and quotes from interview questions are in
the Appendix.

Pre-study Questionnaire:
• Demographic Information: We collect participants’ age,

gender, education, and race/ethnicity.
• Personality We employ the Big Five Personality survey

[20], consisting of fifty questions rated on a seven-
point scale (Very Strongly Disagree=1 to Very Strongly
Agree=7).

• Prior Robotics Experience We obtain participants’ prior
robotics experience through a hand-crafted single-item
question rated on a scale from 0 to 10+ years.

• Prior Teaching Experience We obtain participants’ prior
teaching experience through a hand-crafted, 5-question
survey rated on a five-point scale (Strongly Disagree=1
to Strongly Agree=5).

• Negative Attitude towards Robotics We employ the
Negative Attitudes Towards Robotics (NARS) Scale [49],
composed of 14-questions rated on a seven-point scale
(Strongly Disagree=1 to Strongly Agree=7). We report
results on the three sub-scales: negative situations, nega-
tive social influence, and negative emotions.

Post-domain Questionnaire:
• Teaching Strategy After completing each domain, we

ask participants to “please explain your strategy and
thought process when teaching the robot in this domain.”

Post-study Questionnaire:
• Workload We use the NASA Task Load Index (NASA

TLX) [23] to obtain perceived workload.
• Impression of Agent We use the Perceived Intelligence

and Likeability sub-scales of the Godspeed Questionnaire
Series, rated on a 5-point scale [7].

• Post-Interview We ask participants five post-interview
questions. The question list and qualitative results can be
found in the Appendix.

Domains
We employ five domains in this study, each comprised of

three tasks that the participant must teach the robot, as seen
in Figure 2. The set of tasks in each domain was designed to
be repetitive and time-consuming to encourage participants to
use sub-task abstractions in order to avoid recording repetitive
sub-tasks. Additionally, we chose these domains because they
are representative of common household chores that humans
could reasonably be asked to teach a robot: setting the table,
packing lunch, gardening, and dispensing medication. Each
task has a distinct objective with differing numbers of objects
and goals but requires similar types of abstractions from the
participant.

Furthermore, when teaching a robot a task in a residential
or “unsanitized” setting, there will likely be objects in the
environment that are unrelated to the task being taught. We
thus employ distractor items in this study, which are present
but not relevant to the list of tasks the participant must teach
the robot in the domain, to realistically represent such settings.

Participants were given unlimited time to record sub-task
demonstrations and build recipes using these recorded sub-
tasks in the interface. The optimal sub-task list for each task in



Fig. 2: This figure depicts the five domains in which participants taught the robot.

each domain can be found in the Appendix. We now describe
the domains in this study (Fig. 2).

Block Touching: A blue, green, and red block are placed in
front of the robot. Participants are asked to teach the robot to
touch the blocks in a particular order using the robot gripper.

Box Packing: Two plastic bananas, two Jell-O boxes, and
two Spam cans, along with a cardboard box are laid out in
front of the robot. Participants are asked to teach the robot to
pack (pick up and place) a combination of these food items
into the cardboard box.

Table Setting: Two forks, two knives, and two plates are
placed in front of the robot. Participants are asked to teach the
robot to set the table by picking up the utensils and placing
them in designated locations around the two plate settings.

Soil Mixing: A bucket of manure, a bucket of sand, and a
bucket of lime are placed in front of the robot, along with a
mixing bowl into which scoops of each of these materials are
to be poured. Participants are asked to teach the robot to create
different soil mixtures for different plants. In this domain, the
scoop is placed in the robot’s gripper by the experimenter.

Medicine Dispensing: Four kinds of medicine (red pill cup,
green pill cup, yellow pill cup, and TUMS pill cup) along with
three trays labeled persons 1, 2, and 3 are placed in front of the
robot. Participants are asked to dispense the proper medication
to each person by picking and placing medicine cups into the
appropriate person’s tray.

Procedure

This study was approved by our university’s Institutional
Review Board (IRB), protocol #H22450. We recruited all
participants through advertisements on campus. The study took
three hours, and participants were compensated with a $50
Amazon gift card, given the long duration of the study. The
procedure of the study is as follows.

Participants first take the pre-study questionnaire, comprised
of surveys to collect demographic information, personality
measures, prior robotics experience, prior teaching experience,
and negative attitude towards robots. After the pre-study ques-
tionnaire, participants start the training portion of the study. To
begin, they observe the introduction video. The introduction
video3 introduces the study, the robot, and the interface used
to teach the robot sub-tasks. The video then consists of a
conceptual description of how to optimally teach the robot

3The videos employed in this study can be found at https://sites.google.
com/view/moormanetal-rss2023.

to make an omelet. The optimal sub-tasks described for this
example included (1) going to the egg carton, (2) picking up
an egg, (3) going to the pan, and (4) breaking an egg into the
pan. This portion of the video motivates breaking up the task
into sub-tasks that can be called many times, to generalize to
an omelet of any quantity of eggs. It also suggests recording
the “go to the egg container” sub-task separately from the
“pick up the egg” sub-task, allowing the robot to generalize
going to an egg carton whose location has been moved. Finally,
this video communicates that the sub-tasks can be called from
generalized starting positions so multiple sub-tasks can be
chained together without going back to a home position first.
We note that this initial omelet domain is experienced entirely
virtually, and we do not show the participant how it would be
taught on the physical robot.

Next, participants teach the robot to complete the three
block touching tasks in the demo (i.e., practice) domain.
After this demo domain, the participant explains their teaching
strategy, recorded via a voice recording. We note that after this
demo domain, we do not show the participant a video of the
optimal way to teach the robot. This block-touching domain
serves to familiarize the participant with moving the robot and
using the interface.

Then, for the testing portion of the study, participants teach
the robot how to accomplish tasks in four different domains:
box packing, table setting, soil mixing, and medicine dis-
pensing. Each participant experiences one ordering condition,
which defines the order in which the domains are encountered.
All participants experience each of these domains (within
subjects). The four domain ordering conditions are listed in
the Appendix. For each of these four domains, participants
are introduced to the domain verbally, then asked to teach the
robot how to do three tasks in that domain using the interface,
as seen in Figure 1. To teach the sub-tasks, participants provide
kinesthetic demonstrations in which participants physically
manipulate the robot. After teaching the robot, the participants
answer the post-domain interview question and then observe
a video showing the optimal way of teaching the robot in that
domain (communicating the proper sub-task breakdown) prior
to experiencing the next novel domain. The optimal teaching
strategy video for each domain was designed to communicate
how to optimally teach the robot, listing the optimal sub-tasks
for the domain, along with how to teach and record those sub-
tasks on the robot using the interface. Next, the videos show
how to use the sub-tasks to build the recipe for one task in

https://sites.google.com/view/moormanetal-rss2023
https://sites.google.com/view/moormanetal-rss2023
https://sites.google.com/view/moormanetal-rss2023
https://sites.google.com/view/moormanetal-rss2023


(a) Abstraction score does not signifi-
cantly differ across domains.

(b) Teaching duration differs across the
different domains.

(c) Redundancy score differs across the
different domains.

(d) Abstraction score increases with more
domain experience.

(e) Teaching duration decreases with
more domain experience.

(f) Redundancy score decreases overall
with more domain experience.

Fig. 3: We depict results with respect to domain type (top row) and domain experience (bottom row).

the domain.
Between each domain, the experimenter reset the envi-

ronment, placing the proper domain’s items on the table.
After experiencing all four domains, participants take the
post-survey questionnaire, comprised of surveys to collect
perceived workload and impressions of the robotic agent.
Finally, participants answer the post-interview questions.

For each demonstration saved via the interface, we record
the robot trajectories along with a third-person perspective
video of the participant moving the robot, collected using
a Kinect camera. While participants record their sub-tasks,
the experimenter takes detailed notes on participant behavior,
recording which sub-tasks they record. These notes, along with
the interface’s saved recipes (i.e., an ordered list of sub-tasks
applied to each task in each domain), were used to obtain the
abstraction score and redundancy score for each domain. Three
coders scored participant abstraction and redundancy scores,
resulting in an intra-class correlation coefficient of 0.998 for
abstraction scores and 0.755 for redundancy scores.

IV. RESULTS

We conducted our study with 28 participants (39.26%
female, mean age = 22.89, standard deviation = 1.63). Before
running statistical tests, we first checked that our data met
parametric assumptions via Shapiro-Wilk’s test and Levene’s
test. Due to our statistical models not passing tests for normal-
ity, we employ non-parametric tests throughout our analysis.
We employ Bonferroni correction when applying multiple tests

for the same hypothesis to reduce the risk of Type I errors
[46]. To test RQ1 and RQ4 we employ the Friedman rank
sum test, where we report χ2(degree of freedom) and p-value.
For follow-up pairwise comparisons, we employ the Nemenyi
Wilcoxon-Wilcox all-pairs test, for which we report the p-
value. To test RQ2 and RQ3 we employ Spearman’s rank
correlation test, where we report ρ and p-value.

Research Question 1

We first study the impact of domain experience on the qual-
ity of demonstrations. This hypothesis investigates whether
participants can perform zero-shot transfer of knowledge re-
garding sub-task abstraction, teaching efficiency, and sub-task
redundancy to novel domains.

We note that the block touching domain was the demo
task, intended to familiarize the participant with the robot and
the interface, to isolate the effect of learning in the actual
test rounds. As the participants do not observe the optimal
demonstration after this demo task, we do not include the
block-touching domain in our domain experience.

Abstraction Score – Through a Friedman test, we find
a main effect of the participant’s domain experience on the
participant’s domain abstraction score (χ2(3) = 28.056, p <
.001). We conduct pairwise comparisons using a Nemenyi
Wilcoxon-Wilcox all-pairs test, visualized in Figure 3d, and
find significance between the first and second domain (p =
.006), the first and third domain (p = .001), and the first and
fourth domain experienced (p < .001).



We first observe in Figure 3d that abstraction scores improve
between the first and second domains. This finding points
to participants’ ability to transfer knowledge about sub-task
abstraction zero-shot to a novel domain. We further observe
that abstraction scores improve between the first domain and
all subsequent domains. This finding supports our hypothesis
that participants improve the level of abstraction of their
demonstrations as they gain domain experience.

Our results show that abstraction scores, on average, are
monotonically increasing. While the statistically significant
improvement in abstraction score occurs after the first domain,
the results show a positive trend in subsequent rounds. The
diminishing but positive improvement is consistent with prior
work finding that human task performance improves logarith-
mically with practice [43].

Teaching Duration – We find significance with respect
to teaching duration and domain experience (χ2(3) =
41.796, p < .001). We find the significant pairs (Figure 3e)
to be between the first and second domain (p = .014), the
first and third domain (p < .001), and the first and fourth
domain (p < .001), as well as between the second and fourth
domain (p = .041). This finding indicates that participants
provide demonstrations more efficiently over time.

Sub-task Redundancy– We find a main effect with respect
to learning experience and sub-task redundancy (χ2(3) =
8.018, p = .046), but find no pairwise significance, (Figure
3f). This finding suggests that there may be a trend between
domain experience and sub-task redundancy, but more data are
needed.

Research Question 2

We investigate the effect of demonstration sub-task abstrac-
tion on participants’ perceived workload.

Sub-task Count – We perform a Spearman’s correlation test
and find significance between sub-task count and perceived
workload (ρ = −.519, p = .005). These findings imply
that sub-task count is negatively correlated with perceived
workload. High sub-task count means breaking up the task
into many smaller sub-tasks, each of which can be reused to
avoid redundant demonstrations. One possible explanation of
this finding is that fewer sub-tasks for a task indicate more
repetitive demonstrations.

Research Question 3

We investigate whether participant demographics impact the
quality of demonstrations.

Teaching Experience – We find significance between prior
teaching experience and sub-task count (ρ = −.473, p =
.011). This finding is evidence that increased prior teaching
experience is negatively correlated with sub-task count. This
gained understanding of the impact of prior teaching experi-
ence on sub-task count could be used to improve the existing
curriculum designed to teach demonstrators how to provide
sufficient demonstrations.

Likeability – We find significance between sub-task count
and robot likeability (ρ = −.501, p = .007). This finding is

evidence that increased robot likeability is negatively corre-
lated with sub-task count.

Agreeableness – Next, we find significance between teach-
ing duration and the agreeableness sub-scale of the Big Five
Personality survey (ρ = .503, p = .006). This finding is
evidence that participant agreeableness is negatively correlated
with the efficiency with which they provide demonstrations,
namely that more agreeable participants utilize more time to
provide demonstrations.

Negative Social Influence – Finally, we find significance
between teaching duration and the negative social influence
sub-scale of the Negative Attitude towards Robotics survey
(ρ = .577, p = .001). This finding is evidence that higher
teaching duration is correlated to perceptions of negative robot
social influence, i.e., participants that are warier of robots take
more time to provide demonstrations.

Research Question 4

We now investigate whether domain type impacts the quality
of demonstrations.

Teaching Duration – Through a Friedman rank sum test,
we find significance in the teaching duration among domains
(χ2(3) = 8.656, p = .034). We find one significant pair
between table setting and box packing domains (p = .036).
We plot domain type against teaching time, as seen in Figure
3b.

Sub-task Redundancy – Through a Friedman rank sum
test, we find significance in the redundancy score among
domains (χ2(3) = 33.836, p < .001). We find the significant
pairs to be between table setting and medicine dispensing
(p = .006), table setting and soil mixing (p < .001), and
box packing and soil mixing (p = .023) (Figure 3c).

Sub-task Count – Through a Friedman rank sum test, we
find significance in the unique sub-task count among domains
(χ(3)2 = 45.87, p < .001). A Nemenyi-Wilcoxon-Wilcox all-
pairs test yields significant pairs for table setting and box
packing (p < .001), table setting and medicine dispensing
(p = .006), and table setting and soil mixing (p < .001).

Abstraction Score – Finally, we note that we find no
significance between the abstraction score and domain, as seen
in Figure 3a.

V. RELATED WORKS

In this section, we discuss relevant prior work in robot
learning from human demonstrators and hierarchical task rep-
resentations to further contextualize and motivate our results
prior to the discussion.

Learning from Human Demonstrators

The field of LfD explores how human demonstrations can
be used to teach robots new skills [14, 44, 8, 41, 13, 27]. LfD
enables the agent to learn from a small set of examples, i.e.,
demonstrations provided by a teacher rather than learning from
lengthy exploration, i.e., experience collected in an environ-
ment [6]. The mode of demonstration collection depends on
whether the LfD algorithm aims to model the human feedback



[32], latent reward function [1, 18, 52], or unknown robot
policy directly [27]. Additional LfD design decisions include
accounting for prior robotics experience, demonstrator sub-
optimality, and demonstration heterogeneity [48, 47, 13, 9, 40].
In this paper, we evaluate how well non-experts can teach
robots kinesthetically without explicitly being taught by
domain experts.

Much prior work in LfD has focused on enabling robots to
perform short-horizon skills [28, 33, 22, 37]. There has been a
lack of approaches using LfD to train robots to perform long-
horizon tasks and multi-tasks, which would require the robot
to accomplish a series of shorter sub-tasks. LfD approaches
to multi-task learning are often expensive since demonstrators
need to be taught how to provide demonstrations for each
of the tasks required [16]. We show that demonstrators can
generalize knowledge about providing sufficient and necessary
demonstrations to novel tasks. These findings suggest that
demonstrators do not need to be taught how to teach in
each domain explicitly, making long-horizon, multi-task
LfD more tractable.

Hierarchical Task Representations

Prior work has investigated how the hierarchical nature of
a task can facilitate long-horizon task completion [2, 35, 38].
Breaking up a long-horizon task hierarchically and abstract-
ing the task components into repurposable sub-tasks reduces
planning depth and allows for faster planning [24, 29]. This
representation of the task affords the agent the ability to adapt
to novel environments that share features with the distribution
of environments previously experienced [17].

Currently, LfD demonstration collection requires multiple
demonstrations for each possible configuration of a multi-
task setup. One way to make this process more tractable
is for demonstrators to break up the task into a series of
shorter abstractions that the robot could reuse for multiple
configurations within the same domain. Prior work has shown
that users can teach robots using task abstractions [3, 39].
Akgun et al. found that demonstrators can teach abstractions
for robot end-effector movement [3], and Mohseni-Kabir et
al. found that participants could teach the robot novel sub-
tasks using previously taught sub-tasks as building blocks
[39]. However, in most prior work establishing a human
demonstrator’s ability to provide usable demonstrations that
contain abstractions, the participants are shown precisely how
to teach the robot. They are then asked to reproduce the
method of robot teaching that was prescribed. Cakmak et al.
compare written and video demonstrator instruction, and find
that trial and error plays a large role in the learning process
[10]; we note that these demonstrators learn and are evaluated
on the same task. Teaching a robot using abstractions without
this guidance is not intuitive to non-experts [31]. Gopalan et
al. find that the majority of participants are unable to provide
sufficiently abstracted demonstrations naturally, and find that,
even when told to employ abstractions, demonstrators struggle
to provide demonstrations robust to minor changes in the task
specification, such as item multiplicity or item location [21].

In this work, we investigate whether demonstrators’ ability to
provide sufficient sub-task abstractions improves over time, as
they practice providing demonstrations in multiple different
domains. Our findings support participants’ ability to
learn to provide sufficient sub-task abstractions in novel
domains, with enough practice.

There have been algorithmic approaches to learning tasks
from user demonstrations without requiring the demonstrations
to specify task abstractions [34, 30, 15]. However, these
approaches require the collection of demonstration datasets
that would not be scalable for multi-task settings. In order to
investigate the scalability of training non-expert demonstrators,
we additionally investigate whether participants can generalize
knowledge about providing demonstrations zero-shot, to novel
domains. Our findings support that, rather than training
demonstrators in each domain they encounter, experi-
menters could train demonstrators in a handful of training
domains, for demonstrators to generalize this training to
novel domains.

VI. DISCUSSION

In this work, we studied the effect of domain experience
and participant demographics on the quality of LfD demon-
strations. Previous works have studied short horizon skills
[28, 33, 22, 37] and teaching robots tasks using experts
[21, 39, 3, 14, 44, 8, 41, 13, 27]. In our work we allow
users to refine their teaching strategies through demonstrator
training. We then show that they can effectively teach the robot
in new domains where they do not receive expert guidance. In
this section, we give perspective over our results. We go over
prominent results relating to RQ1, RQ2, and RQ3.

Impact of domain experience on demonstration sufficiency,
necessity, and efficiency (RQ1).

We find that participant abstraction score is positively
impacted by the number of domains experienced (p < .001),
meaning that over time participants provide demonstrations
that manifest higher levels of abstraction. We further find that
teaching duration is negatively impacted by the number of
domains experienced (p < .001). This indicates that over time
participants take less time to provide demonstrations.

These findings suggest that participants can generalize
knowledge gained about providing demonstrations efficiently,
using more sub-task abstraction, from previously experienced
domains to a novel domain. These findings indicate that
demonstrators can be trained to efficiently provide suffi-
cient demonstrations to new domains, zero-shot.

Impact of prior teaching experience on sub-task count (RQ3).

We find that prior teaching experience is negatively corre-
lated with sub-task count (p = .011), indicating that partici-
pants with more teaching experience record fewer sub-tasks.
We note that we don’t find significance between prior teaching
experience and abstraction score or redundancy score. This
finding indicates that increasing teaching experience will



Fig. 4: Depicted is a summary of our significant results.

increase sub-task efficiency, though not at the expense of
sub-task sufficiency or necessity.

Since general teaching experience does not appear to trans-
late to demonstration quality, our findings highlight the need
for a way to teach demonstrators how to provide sufficient
and necessary sub-tasks. Our results show that we contribute
a scalable and generalizable method for training LfD demon-
strators, by exposing demonstrators to multiple domains in
which they practice and observe the optimal teaching method.

Impact of sub-task count on perceived workload (RQ2).
We find that participant workload is negatively correlated

with their sub-task count (p = .005). This indicates that
a lower sub-task count correlated with a higher perceived
workload. We hypothesize that this is due to the lengthier
process of demonstrating and recording under-abstracted sub-
tasks. In addition to abstractions being useful for robust
robot learning, this finding suggests that participants find
correct abstractions less effort to teach, as observed via
lower perceived workload.

Impact of robot likeability, participant agreeableness, and
negative attitudes on demonstrations (RQ3).

We find that robot likeability is negatively correlated with
sub-task count (p = .007). This suggests that people rated
the robot as more likeable when the teaching was less
involved.

On the other hand, we find that participant agreeableness is
positively correlated with teaching duration (p = .006). This
finding suggests that demonstrators with higher agreeableness
take longer when providing demonstrations, though not at the
expense of sub-task count, abstraction score, or redundancy.
This finding indicates that more agreeable demonstrators
take their time when recording demonstrations. We posit
this is because these participants either wanted to please the
experimenter or because they wanted to be thorough in order
to be helpful.

Participants that perceived robots as more socially negative
additionally took longer to teach the robot (p = .001).
Participants that are warier of robots take more time to
provide demonstrations, therefore we posit that addressing
negative robot perceptions will reduce the time people take to
teach robots.

Limitations and Future Work

A limitation of our work is that our participants are com-
posed primarily of college students. We additionally report
limitations in our study design. Firstly, in this work partic-
ipants do not observe the learned robot behavior (resulting
from their demonstrations). This absence of observing the
subsequent consequences on the environment of their demon-
strations may have reduced participant urgency and desire to
improve. Secondly, we note the possible impact of the exper-
imenter expectancy effect on participant behavior, since the
experimenter took notes on the participant’s demonstrations
throughout the study.

As our abstraction scoring method is taken from prior work
which validates it on a real robot system [21], we do not
validate the scoring method again in this study. In future work,
we propose to further validate our abstraction score, redun-
dancy score, and original subjective surveys. We additionally
propose to explore demonstrators’ ability to perform the zero-
shot transfer, with regards to providing useful demonstrations,
to novel domains when providing demonstrations that operate
under different sub-task specifications.

VII. CONCLUSION

Learning from demonstration enables non-expert end-users
to be involved in robot learning. However, providing usable
demonstrations is not intuitive to most demonstrators. Demon-
strators have to be trained in order to provide demonstrations
that would be usable, and this training is often domain-
specific. Instead of teaching demonstrators how to provide
sufficient demonstrations in all possible domains, we propose
to teach demonstrators such that what they learn can generalize
to novel domains. In this work, we study the impact of
experience providing demonstrations across multiple domains
on the quality of demonstrations for LfD. We find that as
participants gain domain experience they are able to generalize
knowledge about sub-task abstraction (p < .001), teaching
efficiency (p < .001), and sub-task redundancy (p < .05) zero
shot, to novel task domains. We show that with a few hours
of training, we can teach human demonstrators to provide
sufficient, necessary, and efficient demonstrations in novel
domains.
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