
APPENDIX A
SURVEYS

First, we provide Cronbach’s alpha scores for the surveys
we employ to test for internal reliability.

Scale α
Agreeableness .787

Likeability .928
Negative Situation .749

Negative Social .654
Negative Emotions .766

TABLE I: Cronbach’s alpha.

We next provide details regarding the interview questions
and hand-crafted questionnaires we administer.

A. Post-Interview Questions

We ask participants five post-interview questions.
1) “Describe your experience using the interface.”
2) “Did you feel any information was missing from the

explanations provided to you in this study?”
3) “What did you think about the videos you watched in

this study?”
4) “Do you think you were able to teach the robot better

as the experiment progressed?”
5) “Do you have any other comments or suggestions?”

B. Additional Subjective Metrics

We collect the following subjective metrics in the post-
survey questionnaire, but find no significance, and therefore
did not describe them in the paper.

• System Usability: We use the System Usability Scale
(SUS), 10 questions rated on a seven-point scale
(Strongly Disagree=1 to Strongly Agree=7) to measure
robot and system usability [2].

• Anthropomorphism: We use the Anthropomorphism
sub-scale of the Godspeed Questionnaire Series, consist-
ing of five questions rated on a five-point scale [1].

• Methods of Teaching the Robot: We employ a hand-
crafted questionnaire consisting of 17 questions rated
on a seven-point scale (Strongly Disagree=1 to Strongly
Agree=7) that measured the perceived usefulness and
effectiveness of the method of teaching (see Appendix).

• Trust: We employ the Multi-Dimensional Measure of
Trust (MDMT) questionnaire [6] consisting of 16 ques-
tions rated on an eight-point scale (Not at all=0 to Very=7,
with an option for Does Not Fit). We measure the overall
scale score, as well as participants’ score on the Capacity
Trust (with Reliable and Capable sub-scales) and Moral
Trust (with Ethical and Sincere sub-scales).

C. Hand-Crafted Questionnaires

1) Robotics Prior Experience Survey: Please provide your
years of experience with robots (0 to 10+). You must make a
selection, even if it is to keep the slider at 0.

Fig. 1: Depicted is the single item robotics prior experience
question.

2) Teacher Prior Experience Survey: This section of the
survey is a 7-point Likert scale ranging from strongly disagree
to strongly agree.

• I have experience teaching.
• I have experience mentoring.
• I have experience tutoring.
• I have experience coaching.
• I have experience training others.
3) Methods of Teaching the Robot: This section of the

survey is a 7-point Likert scale (Strongly Disagree to Strongly
Agree).

1) Using this method of teaching robots is useful for me
2) Using this method of teaching robots will improve my

effectiveness
3) Using this method of teaching robots will improve my

performance
4) This method of teaching robots would make it be easy

to teach robots behaviors I need
5) Learning this method of teaching robots would be easy
6) This method of teaching robots would be easy to use
7) Using this method to train agents is an idea I like
8) Using this method to train agents would be a pleasant

experience
9) Using this method to train agents is a good idea

10) Using this method to train agents is a wise idea
11) I trust this method to teach robots effectively
12) This method to teach robots is reliable
13) This method to teach robots is trustworthy
14) I am concerned about how I use my time to train agents
15) When I will need it I would like to use this method to

train robots
16) When I will need it I will intend to use this method to

train robots
17) When I will need it I predict I would use this method

to train robots

APPENDIX B
METHODS

A. Videos

Introduction Video and Optimal Teaching Strategy Videos
can be found at the following website.

https://sites.google.com/view/moormanetal-rss2023

B. Interface Design

The interface for this study relied on usability heuristics
and user experience principles. In order to understand what
improvements are needed, we analyzed an existing robot
manipulation interface [4] against Nielsen Norman’s 10

https://sites.google.com/view/moormanetal-rss2023
https://sites.google.com/view/moormanetal-rss2023

(a) Depicted is an image of the interface’s recording screen.

(b) Depicted is an image of the interface’s assemble screen.

Fig. 2: This figure illustrates the screens of the interface.

Fig. 3: Depicted is a flow chart of the record interface tab.

heuristics principles to determine which design elements could
be improved [5].

The design entails a recording screen (Figure 2a) and an
“assemble” screen (Figure 2b). The recording screen allows
users to facilitate robot teaching and learning on demand,
record their actions three times (to optimize robot learning),
and save learned tasks into a library. System status is visible
via the recording progress bar, which helps notify users of a
robot’s overall learning progress. In the assemble screen, the
library concept allows users to save, categorize, and visualize
all of the robot’s learned behavior; it is created to match the
user’s mental model of a knowledge repository and allows
users to quickly navigate to learned robot commands and be
able to call to action quickly. The queue concept allows users
to pick existing learned tasks from the library, arrange them
in a logical sequence, and form coherent, continuous, longer
tasks; it is created to maximize personalization for users while
accounting for a robot’s technical capabilities.

The design also incorporated a stop button that will halt
all robot movement immediately. This feature aligns with the
Nielsen Norman Group’s heuristics principles [5] in ensuring
enough user freedom and control in an interactive environ-
ment. Though the experiment is designed to be in a controlled
setting, this design added another user exit option to increase
both confidence in robot teaching as well as user safety.

APPENDIX C
STUDY DESIGN

A. Domains and Tasks

• Block Touching: A blue, green, and red block are placed
in front of the robot. Participants are asked to teach the
robot to touch the blocks in a particular order using the
gripper of the robot. The tasks for the block touching
domain are as follows.

1) Touch the red block, then touch the blue block.
2) Touch the blue block, then touch the green block.

3) Touch the green block, then touch the blue block,
then touch the red block.

• Box Packing: Two plastic bananas, two Jell-O boxes,
and two SPAM cans, along with a cardboard box are laid
out in front of the robot (these food items are chosen to
be in compliance with items commonly used in robotics
benchmarking, such as the YCB dataset [7]). Participants
are asked to teach the robot to pick up and place a
combination of these food items into the cardboard box.
In this domain, bananas served as distractor items, and
are not relevant to the tasks the participant must teach
the robot to accomplish. The tasks for the box packing
domain were as follows.

1) Pack 2 SPAM cans and 1 jello box in the box.
2) Pack 1 SPAM can in the box.
3) Pack 2 jello boxes in the box.

• Table Setting: Two forks, two knives, and two plates
are placed in front of the robot. Participants are asked to
teach the robot to pick up the utensils and place them
in designated locations around the two plate settings.
Duct tape has been wrapped around the utensils in order
to facilitate manipulation of the utensils by the robot’s
gripper. The tasks for the table setting domain were as
follows.

1) Place a fork and knife for plate setting 2 and a knife
for plate setting 1.

2) Place a fork for plate setting 1.
3) Place a fork and knife for plate setting 1.

• Soil Mixing: A bucket of manure, a bucket of sand, and
a bucket of lime are placed in front of the robot, along
with a mixing bowl into which scoops of each of these
materials are to be poured. Participants are asked to teach
the robot to create different soil mixtures for different
plants using the scoop, which has been placed in the
robot’s gripper. The tasks for the soil mixing domain were
as follows.

1) Assemble 2 scoops of sand and 1 scoop of lime.

2) Assemble 1 scoop of manure and 1 scoop of lime.
3) Assemble 1 scoop of sand and 1 scoop of manure.

• Medicine Dispensing: Four kinds of medicine (red pill
cup, green pill cup, yellow pill cup, and TUMS pill cup)
along with three trays labeled persons 1, 2, and 3 are
placed in front of the robot. Participants are asked to
pick and place these medicine cups into the appropriate
person’s tray to dispense the proper medication to each
person. Note that here the TUMS pill cup and person 3
tray both serve as distractor items, and are not relevant
to the tasks the participant must teach the robot in this
domain. The tasks for the medicine dispensing domain
were as follows.

1) Serve the red pills to person 1, and the yellow pills
to person 2.

2) Serve the green pills to person 1.
3) Serve the yellow pills to person 1 and the red pills

to person 2.

B. Orderings

We ordered the conditions based on a Latin square design
to ensure that the ordering is balanced. Each participant
experienced one of the conditions.

TABLE II: This table shows the domain orders for each of the
four conditions.

Table Ordering Soil Ordering Box Ordering Medicine Ordering
1 2 3 4
3 1 4 2
4 3 2 1
2 4 1 3

Condition 1: Table Setting, Soil Mixture, Box Packing,
Medicine Dispensing

Condition 2: Soil Mixture, Medicine Dispensing, Table
Setting, Box Packing

Condition 3: Medicine Dispensing, Box Packing, Soil Mix-
ture, Table Setting

Condition 4: Box Packing, Table Setting, Medicine Dis-
pensing, Soil Mixture

APPENDIX D
TAMP SUB-TASK FORMULATION

Task and Motion Planning

Task and motion planning (TAMP) problems integrate
multi-modal motion planning with representational strategies
originating in long horizon task planning [3, 8]. TAMP is
a framework that allows for an agent to break down and
complete long-horizon tasks while taking into account multi-
faceted constraints in a similar manner to Multi-Modal Motion
Planning. As such, each sub-task is described by its precondi-
tions, pre, that need to be set in order for a sub-task to take
place, constraints con that is the set of constraint functions
that must hold for all continuous actions during the duration
of the sub-task, and effects (or transition), eff, the changes

Fig. 4: Sample formulation in the medicine domain.

made to the robot, objects and environments after a sub-task
has been executed.

Sample Formulation

Next, we provide a sample formulation for the Medicine
Dispensing domain, shown in Figure 4. Each task takes in an
initial state si, a trajectory provided by a demonstration τ , the
final state the robot should reach at the end of the task sx (x
varies depending on the task), and a collection of poses of all
objects in the environment.

Variable τ represents a single trajectory. There are few
different types of constraints included in this formulation.
Move(si, τ, sj) ∀si, sj ∈ S is a constraint over trajectories
where the robot moves from si to sj . The constraints for
CloseGripper(si, τ, sj) and OpenGripper(si, τ, sj) are

similar, they represent trajectories that allow the robot to grasp
and release the cup respectively. There are also collision-free
constraints, such as CFreeE and CFreeTUMS that tell the
robot not to collide with the environment or any of the objects
in the environment. The go to person sub-tasks also include an
Upright constraint telling the robot to keep the cup upright
when holding it.

In the go to pills sub-tasks the robot is not holding any-
thing in its gripper, i.e., holdingCup=False. As explained
above, this means that its range of motion is not nearly as
limited as the robot does not have to worry about any object
that it may be manipulating. The go to person sub-tasks are
transfer mode subtasks [3], as holdingCup=True, and so
the robot’s range of motion is limited as it has to worry about
not spilling the pills while moving the cup; hence Upright
is included in con. grasp performs a kinematic switch
when grasping a cup; this switch can be seen in the sub-task
formulation as holdingCup=False in pre being switched
to holdingCup=True in eff. The reverse can be seen in
release.

APPENDIX E
QUOTES

Getting better over time

We first wanted to study how domain experience impacts the
quality of demonstrations. In our post-interview, we found that
the majority of participants agreed that they were able to teach
the robot better as the experiment progressed. Two sample
quotes supporting this qualitative finding are as follows.

“I learned from both my experience teaching the
robot, and watching the videos and seeing you teach
the robot how to do things.”
“After watching the video of how you accomplished
the overall work, then I understood what I should
do.”

Zero-shot transfer

We found that participants can perform zero-shot transfer of
knowledge regarding sub-task abstraction, teaching efficiency,
and sub-task redundancy to novel domains. One participant in
particular commented on this in the transition between the box
packing and table setting domains. They describe their gained
understanding about abstracting sub-tasks to account for item
multiplicity.

“I followed again the example of the [table setting
domain] video so I knew that the two cans of SPAM
and two cans of Jell-O were basically equivalent so I
only trained it to go to the space and then separately
trained it to close the gripper to pick up an item
separately...”

Hierarchical Task Planning

In our interviews, we found that participants spoke about
low-level motion control in the first couple domains. One
participant, when asked whether they thought they taught the
robot better as the experiment progressed, stated the following.

“Earlier, there was a lot of joints and the ways the
robot could move that I didn’t know of. Or many
things that I felt it couldn’t do but it could have that
I got to learn while watching the videos. So yeah, as
the experiment progressed, I felt pretty comfortable
and easier to control the robot.”

In the latter domains, however, participants shifted to dis-
cussing higher-level strategies and task planning. One partic-
ipant, when initially asked about their experience after block
touching (the first domain), describes low-level strategies for
manipulating the robot.

“I just noticed that it had some joints that could be
moved to make it to teach it to do what I wanted so
I just moved those and like pointed to the different
blocks and then saved as I went.”

The same participant, after their final domain in the Box
packing domain, describes their high-level task planning.

“So for this tasks I simply act out the robot how
to grab either Jell-O, bananas, or SPAM and then I
taught it how to go to the box and then I taught it
how to grab and drop so that you would grab either
banana, Jell-O, and SPAM and then go to the box
and then drop it there.”

The contrast between thinking about the low-level movement
in the first demo domain and the higher-level abstractions in
the last domain encountered is especially apparent with these
answers.

Workload

We also investigate the effect of demonstration abstraction
on participants’ perceived workload. Our findings indicated
an inverse correlation between sub-task count and perceived
workload. One participant noted fatigue and a high perceived
workload at the end of the study.

“Overall, it was very time-consuming, repeating the
motions over and over again. I found myself getting
really tired near the end, like the last [domain].”

APPENDIX F
CODER INSTRUCTIONS

Following are the coder instructions from which we obtain
our abstraction and redundancy scores, cited as [4] in our
work.

Coder Instructions

Context

Learning from Demonstration enables end-users, who are not robotics experts, to shape robot behavior.

In our work, we are interested in how the quality of demonstrations changes over time, after trial and

error teaching the robot in different domains.

Domains

Block Touching: A blue, green, and red block are placed in front of the robot. Participants are asked to

teach the robot to touch the blocks in a particular order using the robot gripper.

Box Packing: Two plastic bananas, two Jell-O boxes, and two Spam cans, along with a cardboard box are

laid out in front of the robot. Participants are asked to teach the robot to pack (pick up and place) a

combination of these food items into the cardboard box.

Table Setting: Two forks, two knives, and two plates are placed in front of the robot. Participants are

asked to teach the robot to set the table by picking up the utensils and placing them in designated

locations around the two plate settings.

Soil Mixing: A bucket of manure, a bucket of sand, and a bucket of lime are placed in front of the robot,

along with a mixing bowl into which scoops of each of these materials are to be poured. Participants are

asked to teach the robot to create different soil mixtures for different plants. In this domain, the scoop

is placed in the robot's gripper by the experimenter.

Medicine Dispensing: Four kinds of medicine (red pill cup, green pill cup, yellow pill cup, and TUMS pill

cup) along with three trays labeled persons 1, 2, and 3 are placed in front of the robot. Participants are

asked to dispense the proper medication to each person by picking and placing medicine cups into the

appropriate person's tray.

Definitions

Domain: The participant will work with the robot in 5 domains, as listed above.

Task: In each domain, the participant must teach the robot 3 tasks (like assemble exactly two scoops of

sand and one scoop of lime).

Subtask: The participant teaches the robot sub-tasks (like go to sand) that can be used to accomplish

tasks.

Demonstration: The participant physically moved the robot, demonstrating to record how to accomplish

a subtask.

What data do we have?

In each domain, participants would provide a series of demonstrations to teach subtasks that can be

reused to accomplish tasks. They then used these subtasks to accomplish 3 tasks in each domain. We

have notes that describe the subtasks provided, and we also have the list of subtasks names assigned for

each task. For instance, in the soil mixing domain, a participant could record the following subtasks:

- Go to sand bin

- Go to manure bin

- Go to lime bin

- Scoop

- Go to mixing bucket

- Drop

Then, they would assign these subtasks to the following tasks:

Soil Mixing Domain Task 1 Task 2 Task 3

Task description Assemble exactly two

scoops of sand and

one scoop of lime.

Assemble exactly one

scoop of manure and

one scoop of lime.

Assemble exactly one

scoop of sand and one

scoop of manure

Subtasks assigned to

task

∗ Go to sand bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to sand bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to lime bin

∗ scoop

∗ Go to mixture bin

∗ Dump

∗ Go to manure bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to lime bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to sand bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to manure bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

Types of scoring

Given the notes of each subtask recorded by participants, how do we evaluate the quality of the

demonstrations used for each task? We look at two metrics: abstraction score and redundancy score.

Abstraction Score

The abstraction score describes how well the subtasks were abstracted, to maximize the usability of the

subtasks. Recall the goal in the soil mixing domain of making soil mixtures for plants. If, for instance, the

goal was 2 scoops of lime and 1 scoop of sand.

Insufficiently Abstracted Optimal Abstraction Overly Abstracted

− Go to lime, scoop, go to

bucket, drop, go to

lime, scoop, go to

bucket, drop, go to

sand, scoop, go to

bucket, drop

− Go to sand

− Go to lime

− Scoop

− Go to bucket

− Drop scoop

− Move left

− Move right

− Move up

− Move down

The problem here is that we can

only reuse this subtask in the

exact same scenario (this

subtask cannot be used to

scoop 1 scoop of lime and 2

scoops of sand).

This optimally abstracted set of

tasks will generalize to any

number of scoops of lime and

sand required.

The problem here is that it is

unclear how to combine these

tasks to accomplish the goal,

since they are too abstracted.

To calculate abstraction score, one point is awarded for each subtask that can be used towards the task

when using the sub-tasks to accomplish the task. For example, the insufficiently abstracted example

above would receive 1 point as their abstraction score as they only recorded one subtask that could be

applied to the task. If they had instead recorded two subtasks:

− Go to lime, scoop, go to bucket, drop, go to lime, scoop, go to bucket, drop

− Go to sand, scoop, go to bucket, drop

Then they would receive an abstraction score of 2.

The optimal abstraction score example above would be used as follows to accomplish the task:

− Go to lime

− Scoop

− Go to bucket

− Drop scoop

− Go to lime

− Scoop

− Go to bucket

− Drop scoop

− Go to sand

− Scoop

− Go to bucket

− Drop scoop

Resulting in an abstraction score of 12.

Redundancy Score

The redundancy score describes how (un)necessary tasks are. A sub-task is deemed redundant if its goal

can be met by another sub-task or a combination of sub-tasks previously taught. Sub-task redundancy is

defined with respect to a given set of subtasks being taught. For instance, for the same context, where

the goal is 2 scoops of lime and 1 scoop of sand, the following table describes two levels of redundancy.

Redundant Optimal

Go to sand. Scoop sand. Go to lime. Scoop lime.

Go to bucket. Drop lime. Drop Sand.

Go to sand. Go to lime. Scoop. Go to bucket. Drop

scoop.

The problem here is that we can only reuse drop

sand for drop lime (simply drop), so drop lime is

unnecessary, and redundant. Similarly, we can

use scoop sand for scoop lime (simply scoop), so

scoop lime is unnecessary and redundant.

This is the proper subtask breakdown, where the

demonstrator recognizes that drop can work for

sand, lime, and manure, and scoop similarly can

work for sand, lime and manure.

To calculate redundancy score, one point is given for each subtask that can be done using other sub-

tasks recorded in the domain. For instance, the redundant example above receives a redundancy score

of 2 (one for the redundant drop subtask and one for the redundant scoop subtask). However, the

optimal example above receives a redundant score of 0 as no redundant subtasks were taught.

Note that the redundancy score is computed based upon the subtasks taught by that participant, not

the optimal subtask list.

Key for each domain

Soil Mixing Domain Task 1 Task 2 Task 3

Task description Assemble exactly two

scoops of sand and

one scoop of lime.

Assemble exactly one

scoop of manure and

one scoop of lime.

Assemble exactly one

scoop of sand and one

scoop of manure

Optimal Subtask List ∗ Go to sand bin

∗ Go to manure bin

∗ Go to lime bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

Optimal Subtask

Assignment

∗ Go to sand bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to sand bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to lime bin

∗ scoop

∗ Go to mixture bin

∗ Dump

∗ Go to manure bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to lime bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to sand bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

∗ Go to manure bin

∗ Scoop

∗ Go to mixture bin

∗ Dump

Max Abstraction Score 12 8 8

Block Touching (Demo)

Domain

Task 1 Task 2 Task 3

Task description Touch the red block

then touch the blue

block

Touch the blue block

then touch the green

block

Touch the green block

then touch the blue

block then touch the

red block

Optimal Subtask List ∗ Go to and touch the green block

∗ Go to and touch the blue block

∗ Go to and touch the red block

Optimal Subtask

Assignment

∗ Go to and touch the

red block

∗ Go to and touch the

blue block

∗ Go to and touch the

blue block

∗ Go to and touch the

green block

∗ Go to and touch the

green block

∗ Go to and touch the

blue block

∗ Go to and touch the

red block

Max Abstraction Score 2 2 3

Box Packing Domain Task 1 Task 2 Task 3

Task description Pack exactly two SPAM

cans and exactly

one jello box in the box

Pack exactly one SPAM

can in the box

Pack exactly two jello

boxes in the box

Optimal Subtask List ∗ Go to SPAM

∗ Go to jello box

∗ Close gripper

∗ Go to box

∗ Open gripper

Optimal Subtask

Assignment

∗ Go to SPAM

∗ Close gripper

∗ Go to box

∗ Open gripper

∗ Go to SPAM

∗ Close gripper

∗ Go to box

∗ Open gripper

∗ Go to jello box

∗ Close gripper

∗ Go to box

∗ Open gripper

∗ Go to SPAM

∗ Close gripper

∗ Go to box

∗ Open gripper

∗ Go to jello box

∗ Close gripper

∗ Go to box

∗ Open gripper

∗ Go to jello box

∗ Close gripper

∗ Go to box

∗ Open gripper

Max Abstraction Score 12 4 8

Table Setting Domain Task 1 Task 2 Task 3

Task description Place the fork and knife

for plate setting 2

and knife for plate

setting 1

Place fork for plate

setting 1

Place knife and fork for

plate setting 1

Optimal Subtask List ∗ Go to fork container

∗ Go to knife container

∗ Close gripper

∗ Go to plate setting 1

∗ Go to plate setting 2

∗ Go to plate’s fork loc

∗ Go to plate’s knife loc

∗ Open gripper

Optimal Subtask

Assignment

∗ Go to fork container

∗ Close gripper

∗ Go to plate setting 2

∗ Go to plate’s fork loc

∗ Open gripper

∗ Go to knife container

∗ Close gripper

∗ Go to plate setting 2

∗ Go to plate’s knife loc

∗ Open gripper

∗ Go to knife container

∗ Close gripper

∗ Go to plate setting 1

∗ Go to plate’s knife loc

∗ Open gripper

∗ Go to fork container

∗ Close gripper

∗ Go to plate setting 1

∗ Go to plate’s fork loc

∗ Open gripper

∗ Go to fork container

∗ Close gripper

∗ Go to plate setting 1

∗ Go to plate’s fork loc

∗ Open gripper

∗ Go to knife container

∗ Close gripper

∗ Go to plate setting 1

∗ Go to plate’s knife loc

∗ Open gripper

Max Abstraction Score 15 5 10

Medicine Dispensing

Domain

Task 1 Task 2 Task 3

Task description Serve red pills to

person 1, and yellow

pills to person 2

Serve green pills to

person 1

Serve yellow pills to

person 1 and red pills

to person 2

Optimal Subtask List ∗ Go to yellow pill cup

∗ Go to red pill cup

∗ Go to green pill cup

∗ Close gripper

∗ Go to person 1 location

∗ Go to person 2 location

∗ Open gripper

Optimal Subtask

Assignment

∗ Go to red pill cup

∗ Close gripper

∗ Go to person 1

location

∗ Open gripper

∗ Go to yellow pill cup

∗ Close gripper

∗ Go to person 2

location

∗ Open gripper

∗ Go to green pills cup

∗ Close gripper

∗ Go to person 1

location

∗ Open gripper

∗ Go to yellow pill cup

∗ Close gripper

∗ Go to person 1

location

∗ Open gripper

∗ Go to red pill cup

∗ Close gripper

∗ Go to person 2

location

∗ Open gripper

Max Abstraction Score 8 4 8

How is the data organized?

Available is a list describing each of the subtasks recorded for that domain. These are notes taken by the

experimenter. Available is also the recipe constructed by the participant for each task (task 1 – 3) in that

domain. This uses the names the participant called each of their subtasks (the naming scheme may

differ between people).

For each person, the coder must read the tasks recorded, understand how they differ from the optimal

key provided, and look at how the participant used these subtasks for each task in the domain. Then,

they score the abstraction score and redundancy of that domain, by summing the abstraction score

across tasks of the domain, and summing redundancy score across tasks of the domain.

The written notes are to provide context into the observed behavior of the recording of subtasks.

However, it is possible that participants recorded subtasks that they never used, i.e. in the recipe for the

task (if they for instance change their strategy half way through). Therefore, when calculating score

please verify that the subtask was used in the recipe saved.

More Information

This section details background in Task and Motion Planning (TAMP) to enable us to answer the

question: How to tell if a subtask is valid/ can be applied to the task?

Pre-requisits

1) an understanding of TAMP (https://arxiv.org/abs/2010.01083)

2) familiarity with the domain that you are rating. This familiarity can be gained by actually solving

the domain and understanding the possible abstractions within the domain to solve the given

tasks.

Concepts needed to score –

There are two concepts that a rater of TAMP abstractions needs to understand: Mode Changes and

Bottleneck states.

Mode changes: When we interact with objects, we change the mode of contact with them. Consider

picking up a fork. When we have no fork in the gripper the gripper is bound by fewer constraints of

movement. When the fork is in the gripper the gripper is bound by additional constraints such as the

fork not colliding with anything else in the world. This change in constraints of movement lead to

obvious points of sub-task creation. Pick up fork needs to be a different sub-task from move fork to the

plate.

Bottleneck States: Bottle neck states are states that an agent needs to reach to solve a larger family of

sub-tasks. A classic example of a bottleneck state is a door. To access the gas stove or the kitchen

cabinet or to cook, you first need to cross the bottleneck state of the kitchen door. Across these

bottlenecks the agent has access to a greater number of sub-tasks. In pick and place domains a classic

bottle neck is the “pre-grasp” position. Consider the location just above the fork, this allows the robot to

pick up the fork in different orientations. Hence, this location just above the fork is considered a pre -

grasp position. The robot does not have to constrain its gripper pose when moving to the pre-grasp

position, but when initiating the “grasp” sub-task the robot’s gripper needs to be strictly oriented to pick

the object correctly. A similar situation occurs when the robot needs to place knives and forks next to a

plate. The move to plate is a good sub-task to teach as all utensils would require the robot to move to

the plate. After which the robot can move to the knife’s location and place the knife or move to the

fork’s position to place the fork. Notice that for a different plate we would need to teach a novel reach

plate task as the plates are at different locations, however the knives and forks are at the same relative

position when compared to the plate’s position, making the move to fork or knife position sub -tasks

repeatable when taught once. Without teaching this bottleneck abstraction of move to plate, the user

would have to teach place knife next to plate 1 and place knife next to plate 2 as different tasks, and

repeat these sub-tasks for the forks, the napkins, the spoons, etc, for each plate. Now they just have to

teach how to reach the bottleneck state of reaching a plate, and then the robot can just repeat the

placement of the knives and forks from previous relative sub-tasks.

How to award points –

Abstraction score - We give points for each sub-task the user taught that is necessary in solving the task.

The sub-tasks are necessary if without them the overall task could not have been solved. For example,

to place a fork from the fork location next to plate 1 we can break down subtasks in many ways. A user

might just pick the fork and place it next to plate 1 in one task. This is a necessary sub-task to solve this

problem, hence the user gets one point. Or the user might decide to move to the fork location (pre-

grasp), pick up the fork (grasp), move to the plate 1 (bottleneck), move to fork location (pre -place), place

fork (place). These provide 5 sub-tasks all necessary and repeatable hence the user gets 5 points. The

users might not distinguish between a pre-grasp and a grasp or a pre-place and place and they might

only get 3 points (for pick, move to bottleneck and place).

Redundancy score - Sometimes users teach sub-tasks but do not use them, or use them but they were

unnecessary to begin with. For example, a lot of users teach a sub-task to move the robot back to a

home position before the robot does the next sub-task. This is not necessary. The users do it because of

a poor understanding of how the robot works and this is penalized when measuring the redundancy

score.

What about over-abstracting? Are we providing too many points for users to create too many sub-tasks?

Does moving 1 cm to the left a sub-task – no, there is no mode change or reaching of a bottleneck state

because of this sub-task, hence it is not necessary in solving the task. However, you can teach two ways

of getting to the fork, is that important? What if I make a different sub-task to pick every fork in the fork

location, now I have tons of sub-tasks. Well picking up one fork from a fork basket is no different from

picking another so just wasted your time, and this is a redundant sub-task!

How the scoring strategy applies to each domain –

Now for each domain we will provide our scoring key and list of bottleneck and mode changes. These

should be sufficient to score both the abstraction scores and redundancy scores.

Soil domain -

The mode changes here happen when contacting the objects being picked with the scoop. The

bottleneck states are the pre-grasp positions over the positions of the objects and the mixing bowl. The

optimal abstraction moves over objects (bottleneck state / pre-grasp), scoops them (grasp), moves to

the mixing bowl (bottleneck state /pre-place), dumps contents (place).

Table setting domain -

The mode changes happen when forks or knives are picked up (grasp) or placed (released). The bottle

neck states are the pre-pick and pre-place over the knife and fork locations and the move to plate, move

to fork pick location (which is a fork dispenser like a drawer partition with forks alone) and a move to

knife pick location (again a knife dispenser).

Medicine delivery domain -

The mode changes here are pick and place of the medicine boxes. The bottle neck states are to get to

the position of each of the colored medicine pill boxes and person’s location for delivery of the

medicines as pre-grasp and pre-place positions.

Box packing domain -

The mode changes are in the pick and place of the items and are taught as close gripper and open

gripper. The bottle-neck abstractions are to reach the location of the spam containers, and jello-box

containers storage locations, and reach the location of the box being packed. Again, the spam and jello

boxes are present at the same location (like a shelf) and do not need the robot to be taught different

tasks to reach them.

Block touching -

Here the only mode change is when the blocks are touched. There is no need of a bottleneck state as

there are no constraints over the pose of the arm when touching the blocks.

REFERENCES

[1] Christoph Bartneck, Dana Kulić, Elizabeth Croft, and
Susana Zoghbi. Measurement instruments for the anthro-
pomorphism, animacy, likeability, perceived intelligence,
and perceived safety of robots. International journal of
social robotics, 1(1):71–81, 2009.

[2] John Brooke. System usability scale (sus): a quick-
and-dirty method of system evaluation user information.
Reading, UK: Digital equipment co ltd, 43:1–7, 1986.

[3] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Integrated task and motion plan-
ning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[4] Nakul Gopalan, Nina Moorman, Manisha Natarajan, and
Matthew Gombolay. Negative result for learning from
demonstration: Challenges for end-users teaching robots
with task and motion planning abstractions. In Proceed-
ings of Robotics: Science and Systems., 2022.

[5] Jakob Nielsen. Usability engineering. Morgan Kaufmann,
1994.

[6] Daniel Ullman and Bertram F Malle. What does it mean
to trust a robot? steps toward a multidimensional measure
of trust. In Companion of the 2018 acm/ieee international
conference on human-robot interaction, pages 263–264,
2018.

[7] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network
for 6d object pose estimation in cluttered scenes. arXiv
preprint arXiv:1711.00199, 2017.

[8] Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto,
Selma Kchir, and David Filliat. Task and motion
planning methods: applications and limitations. In
19th International Conference on Informatics in Control,
Automation and Robotics ICINCO 2022), pages 476–
483. SCITEPRESS-Science and Technology Publications,
2022.

	Appendix A: Surveys
	Post-Interview Questions
	Additional Subjective Metrics
	Hand-Crafted Questionnaires
	Robotics Prior Experience Survey
	Teacher Prior Experience Survey
	Methods of Teaching the Robot

	Appendix B: Methods
	Videos
	Interface Design

	Appendix C: Study Design
	Domains and Tasks
	Orderings

	Appendix D: TAMP Sub-Task Formulation
	Appendix E: Quotes
	Appendix F: Coder Instructions

