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Fig. 1: We develop a robot-assisted dressing system based on a single learned policy that is able to dress different people with
diverse poses and garments. Each column shows snapshots from a trajectory of our policy. We learn the dressing policy using
reinforcement learning with point cloud observations to generalize to diverse garments. We use policy distillation to combine
multiple policies that each work for a small range of arm poses into a single policy that works for a large variety of arm poses.

Abstract—Robot-assisted dressing could benefit the lives of
many people such as older adults and individuals with disabilities.
Despite such potential, robot-assisted dressing remains a chal-
lenging task for robotics as it involves complex manipulation of
deformable cloth in 3D space. Many prior works aim to solve the
robot-assisted dressing task, but they make certain assumptions
such as a fixed garment and a fixed arm pose that limit their
ability to generalize. In this work, we develop a robot-assisted
dressing system that is able to dress different garments on people
with diverse poses from partial point cloud observations, based
on a learned policy. We show that with proper design of the
policy architecture and Q function, reinforcement learning (RL)
can be used to learn effective policies with partial point cloud
observations that work well for dressing diverse garments. We
further leverage policy distillation to combine multiple policies
trained on different ranges of human arm poses into a single
policy that works over a wide range of different arm poses. We
conduct comprehensive real-world evaluations of our system with
510 dressing trials in a human study with 17 participants with
different arm poses and dressed garments. Our system is able
to dress 86% of the length of the participants’ arms on average.
Videos can be found on our project webpage 1.

1https://sites.google.com/view/one-policy-dress

I. INTRODUCTION

Robot-assisted dressing could benefit the lives of many
people. Dressing is a core activity of daily living. A 2016
study by the National Center for Health Statistics [17] shows
that 92% of all residents in nursing facilities and at-home
care patients require assistance with dressing. Such needs
will likely keep growing due to aging populations. A robot-
assisted dressing system could not only improve life quality for
older adults and individuals with disabilities by helping them
maintain independence and privacy, but also help mitigate the
growing shortage of nursing staff, and provide some much
needed respite for caregivers.

Despite its potential societal impact, robot-assisted dressing
remains a challenging task for robotics for the following
reasons. As in many deformable object manipulation tasks,
there is no compact state representation of cloth, and the
dynamics of garments are non-linear and complex [60]. Com-
pared to table-top cloth manipulation tasks such as folding and
smoothing that can be solved via pick-and-place actions, the
dressing task demands more dexterous manipulation actions
in 3D space. Furthermore, people with disabilities and older
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adults usually have a limited range of motion and thus the
dressing robot needs to generalize to a diverse range of arm
poses. Finally, there are many different types of garments with
varying geometries and material properties, e.g., short-sleeve
hospital gowns and long-sleeve jackets. It is non-trivial for a
robot to be able to assist in dressing all these garments, since
dressing a slender long-sleeve elastic jacket might require very
different end-effector trajectories compared with dressing a
wide, short-sleeve non-elastic hospital gown. All these factors
render robot-assisted dressing a very challenging problem.

There have been many prior works that investigate robot-
assisted dressing, yet they make certain assumptions that
limit their ability to generalize. Most prior works [10, 23,
13, 11, 20, 59, 12] assume that the robot is dressing a
known fixed garment and thus does not generalize to dressing
diverse garments. Other prior works simplify the assistive
dressing problem by assuming that the person holds a single
pose [10, 37], or can move his arm into a pose that has high
probability of dressing success [23, 20, 13]. We aim to improve
upon these prior works to build a dressing system that can
generalize to diverse garments and human poses.

In this work, we learn a single policy that is able to dress
diverse garments on different people holding diverse poses
from partial point cloud observations using a single depth
camera. We use point clouds as input to our policy in order
to represent and generalize to different garments and human
arm poses. We show that with proper design of the policy
and Q-function architectures, reinforcement learning (RL) can
be used to learn effective policies with partial point cloud
observations that work well for dressing diverse garments.
We further leverage policy distillation to combine multiple
policies trained on different ranges of human arm poses into
a single one that works over a wide variety of different
poses. Finally, for robust sim2real transfer, we employ “guided
domain randomization”, which trains a policy with random-
ized observations by imitating policies trained without any
randomization. The final domain-randomized policy can be
reliably transferred to a real robot manipulator and dress real
people. We conducted a human study with 17 participants,
and performed 510 total dressing trials with different arm
poses and garments. On average, our system is able to dress
86% of the length of the participants’ arms, and achieves a
statistically significant difference in responses as compared to
alternative baselines in a 7-point Likert item. We also provide a
comprehensive analysis of our dressing system’s performance
in the human study to understand its strength and weakness.

In summary, we make the following contributions:
• We develop a robot-assisted dressing system based on a

learned policy with partial point cloud observations that
generalizes to different people, arm poses, and garments.

• We show the effectiveness of policy distillation to in-
crease the effective working range of the policy.

• We perform comprehensive real-world evaluations of our
system on a manikin, as well as with 510 dressing trials
in a human study with 17 participants of varying arm
poses and dressed garments.

II. RELATED WORK

A. Robot Assisted Dressing

There have been many prior works in robot-assisted dress-
ing [57] which can be categorized as follows. Some works
make the assumption that the person being dressed is collab-
orative in performing the dressing task [23, 7], while others
do not [10, 13]. We also do not assume a collaborative human
in this work. Instead, we simplify the problem by assuming
that the human is holding a fixed pose throughout the dressing
procedure.

A large body of works focus on user modeling and building
a personalized dressing plan for each human participant [23,
58, 13, 12, 4, 21, 59, 26]. In contrast to these prior works, we
do not focus on user modeling and aim to learn a single policy
that is able to generalize to diverse poses and body sizes of
different human participants. We leave the integration of user
modeling for future work.

Another line of work studies haptic perception and simula-
tion during robot-assisted dressing [9, 53, 22, 45]. In contrast,
we demonstrate how a robot can perform dressing assistance
using only partial point clouds from a single off-the-shelf
depth camera. Some prior works focus on learning where along
a garment to grasp in preparation for dressing [37, 56]. In this
work we make the assumption that the garment has already
been grasped by the robot, but our method can be combined
with these prior work to remove this assumption.

Reinforcement learning has been used in some prior works
for dressing backpacks [20] or hospital gowns [7]. However,
they assume a fixed garment and thus the policy has limited
generalization towards different garments. Our policy can
generalize to dressing diverse garments as we use point cloud
as the garment representation.

B. Robotic Deformable Object Manipulation

Deformable object manipulation has long been a core task
for robotics. It is challenging due to the complicated dynamics
of deformables, high-dimensional state representation, and
perception complexities such as self-occlusion. Many prior
deformable object manipulation tasks such as cloth smooth-
ing [29, 14, 51, 49], cloth folding [46, 1, 25], bedding
manipulation [41, 34], dough rolling [28], rope reconfigura-
tion [42, 27], and bag manipulation [2, 42, 6] focus on the
2D table-top setting. Many of these prior cloth manipulation
tasks can be solved by simple pick-and-place actions or the
use of other pre-defined motion primitives [29, 46, 41, 42,
49, 18, 14, 51]. Our work looks at the challenging problem of
dressing assistance, which involves manipulating a deformable
garment suspended in 3D space with complex closed-loop
actions during physical human-robot interaction.

C. Policy Learning for Manipulation From Point Clouds

There has been much recent work that aims to learn robotic
manipulation policies from point cloud observations. Some of
these works propose new algorithms for imitation learning
from point clouds for grasping and manipulating tools or
articulated objects [50, 43, 8, 31]. Some recent works explore



applying RL with point cloud observations for grasping or dex-
terous hand manipulation with rigid objects [44, 38, 30, 19].
Our work differs from these as we apply RL from point cloud
observations for deformable cloth manipulation.

III. TASK DEFINITION AND ASSUMPTIONS

As shown in Fig. 1, the task we study in this paper is
single-arm dressing, where the goal is to fully dress the
sleeve of a garment onto a person’s arm, and the task is
considered to be complete when the sleeve of the garment
covers the person’s shoulder. The person can hold different
arm poses before the dressing starts. The arm pose is defined
by three joint angles ϕ = [ϕ1, ϕ2, ϕ3] ∈ R3, where ϕ1 is the
lifting and lowering angle of the shoulder, ϕ2 is the inwards-
outwards bending angle of the elbow towards the body, and
ϕ3 is the lifting and lowering angle of the elbow (Fig. 5
illustrates these joint angles). A depth camera is used to record
depth images of the scene, and partial point clouds P can
be computed from the depth image. The ultimate goal of
the paper is to learn a policy π to dress diverse garments
g ∈ G for people holding a diverse range of arm poses
ϕ ∈ Φ. At each time step, the policy takes as input the
point cloud P and outputs an action a = π(P ) as the delta
transformation for the robot end-effector. The garment set G
we consider includes hospital gowns and common everyday
garments such as vests and cardigans with different sleeve
lengths, geometries, and materials. The set of arm poses Φ
is specified by the min and max values for each joint angle:
Φ = {[ϕ1, ϕ2, ϕ3] | ϕi ∈ [ϕmin

i , ϕmax
i ], i = 1, 2, 3}. Fig. 5

shows the garments and arm poses in Φ that we test in the
real-world human study.

We make two assumptions for the dressing task. First, we
assume that the robot has already grasped a part of the garment
around the opening of the garment shoulder in preparation for
dressing, since grasping is not the focus of our work. Besides,
there has been some prior work that learn where along a
garment to grasp for dressing [37, 56], and our system can be
combined with these prior work to remove this assumption.
This assumption has been used in prior work as well [10, 23].
Second, we assume that the person holds the pose static during
the dressing process. This assumption helps address the visual
occlusion of the arm caused by the cloth during the dressing
process; with this assumption we can obtain the static arm
point cloud before the dressing starts. This assumption has
also been validated in other studies with participants with
impairments [23]. We leave for future work adapting to human
motion during the dressing process.

IV. METHOD
A. System Overview

As illustrated in Fig. 2, our robot-assisted dressing system
consists of the following components. We first use reinforce-
ment learning (RL) to learn the dressing policy π in a physics-
based simulation by formulating the robot assisted dressing
problem as a Partially Observable Markov Decision Process
(POMDP). We design a special policy network architecture
for efficient training of effective RL policies from partial point

cloud observations. As it is hard to train a single policy that
generalizes to a diverse range of arm poses Φ, we divide the
arm pose range into multiple sub-ranges {Φsub}Ni=1 and train
a policy πi on each of them. We then use policy distillation
to combine these different policies into a single policy π∗

that works for the wide range of arm poses Φ. For robust
sim2real transfer, we further train the policy π∗ with domain
randomization in the policy observation, with a behaviour
cloning loss to imitate policies that are trained without any
randomization, a procedure which we name as “guided domain
randomization”. Finally, we deploy the domain-randomized
policy to a real robot that successfully dresses different par-
ticipants with diverse poses and garments in a human study.

B. Learning to Dress with Reinforcement Learning

We use reinforcement learning in simulation to train policies
for the dressing task. We formulate the robot-assisted dressing
task as a POMDP ⟨S,A,O,R, T, U⟩, where S is the state
space, A is the action space, O is the observation space, R
is the reward function, T is the transition dynamics, and U is
the measurement function that generates the observation from
the state. We now detail the design of the core components of
the POMDP as follows.

Observation Space O: Due to the lack of a compact state
representation for cloth, the garment naturally requires a high-
dimensional representation such as an image, mesh, or point
cloud. To facilitate sim2real transfer, we use the partial point
cloud P of the dressing scene computed from a depth camera
as the policy observation. We perform cropping on the point
cloud to only keep points that belong to the right arm of the
human, denoted as Ph, and those that belong to the garment,
denoted as P g . In simulation we can easily perform such
cropping using the ground-truth simulator information; see
Section VI-C for details on how we perform such cropping in
the real world. We further add a single point at the position of
the robot end-effector to the point cloud to represent the robot
gripper, denoted as P r. The policy observation is then the
concatenation of the arm, garment, and robot gripper points:
o = [Ph;P g;P r]. See the middle part of Fig. 2 for an example
of the segmented point cloud.

Action Space A: The action a ∈ SE(3) is the delta
transformation of the robot end-effector. We represent the delta
transformation as a 6D vector, where the first 3 components
are the delta translation, and the second 3 components describe
the delta rotation using axis-angle. We set the roll rotation to
be 0 in the action as it is not necessary for the dressing task.

Reward Function R: Fig. 3 illustrates the main reward rm
we use for the dressing task, which measures the progress
of the task. The dressing task can be divided to two phases.
Before the garment is dressed onto the person’s forearm,
the reward rm is the negative distance from the garment
shoulder opening center pgcenter to the finger of the person
phfinger: rm = −||pgcenter − phfinger||2. After the garment is
dressed onto the person’s forearm, we compute the reward
rm based on the distance the garment has been dressed onto
the person’s arm. To compute the dressed distance, we first
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Fig. 2: An overview of our proposed robot-assisted dressing system. (Left) In simulation, we divide the diverse arm pose
range into multiple sub-ranges to ease policy learning. (Middle) We propose a new policy architecture and a corresponding
Q function architecture for reinforcement learning from partial point cloud observations to learn effective dressing policies
on each of the divided pose sub-ranges. (Right) We then leverage policy distillation to combine policies working on different
pose sub-ranges into a single policy that works for a diverse range of poses. We also perform guided domain randomization
for sim2real transfer, and we deploy the distilled policy to a real-world human study dressing real people.

Fig. 3: Illustration of the main reward for the dressing task.
(Left) The garment is not dressed onto the person’s arm.
(Right) The garment is dressed onto the person’s arm.

approximate the opening of the garment shoulder as a hexagon
(shown in blue in Fig. 3). Then, we represent the person’s
forearm as a line that connects the elbow point phelbow and
the finger point phfinger, and we represent the upper arm
as another line that connects the shoulder point phshoulder
and the elbow point phelbow. Next, the intersection point pint
between the garment shoulder opening hexagon and the two
arm lines are computed. If the intersection point pint is on
the forearm, rm equals the dressed distance, which is the
distance between the intersection point and the person’s finger
point: rm = ||pint − phfinger||2. If the intersection point pint
is on the upper arm, the dressed distance is the length of the
forearm plus the distance between the intersection point and
the elbow point, and rm is a weighted combination of these
two: rm = ||phelbow−phfinger||2+w · ||pint−phelbow||2. We set
w = 5 to encourage the policy to turn at the elbow and dress
the upper arm.

In addition to the main reward term that measures the task

progression, we also have three additional reward terms. The
first is a force penalty rf that prevents the robot from applying
too much force through the garment to the person. The second
is a contact penalty rc that prevents the robot end-effector
from moving too close to the person. The last reward term
is a deviation penalty rd that discourages the garment center
from moving too far away from the arm. The full reward is
given by: r = rm + rf + rc + rd. More details of how these
terms are computed can be found in Appendix Section A. Note
that the reward function is only available in simulation, as it
requires access to the ground-truth garment and human mesh
information, which is non-trivial to estimate in the real world.

Policy and Q function Architecture: Most prior works [30,
38, 44] that train RL policies with point cloud observation use
a classification-type PointNet-like [35, 36] network architec-
ture for the policy, which encodes the whole partial point cloud
to a single action vector. There have been some recent works
showing that instead of compressing the whole point cloud
into a single action vector, inferring the action from a dense
output leads to better performance [54, 47, 55, 48, 43, 8, 14, 5].
We follow the dense action representation idea and propose
a new policy architecture named Dense Transformation for
reinforcement learning from point clouds.

As shown in Fig. 2, the input to the policy is a segmented
point cloud P = {pi}Mi=1 of size M , which contains the
garment points P g , human right arm points Ph, and a single
point at the robot end-effector position representing the robot
gripper P r. The features for each point pi include its 3D
position, and a 3-dimensional one-hot vector indicating the
class of the point, i.e., whether the point belongs to the
garment, the human arm, or the robot gripper. Instead of
using a classification-type neural network architecture (e.g.,
a classification-type PointNet++) that compresses the whole
point cloud into a single action vector, the Dense Transfor-
mation policy uses a segmentation-type neural network archi-



tecture (e.g., a segmentation-type PointNet++) that outputs a
dense per-point action vector {ai}Mi=1 (see Fig. 2). Among
these M action vectors, we only execute the action vector
a∗ corresponding to the gripper point P r, i.e, we select the
action a∗ = aj , where j is the index of the gripper point. We
could alternatively use a classification-type PointNet++ that
encodes the whole point cloud to a single action, but we find
that using a segmentation-type network leads to slightly better
performance (though the difference is relatively small).

For the Q function, given the current point cloud P and the
action sampled from the Dense Transformation policy a∗ ∼
π(P ), we concatenate a∗ as an additional feature to every
point pi in the input point cloud, so the feature of each point
includes its 3D position, the one-hot vector of the class type,
and the action a∗. We then use a classification-type neural
network architecture (i.e., classification-type PointNet++) to
output a scalar Q value. This Q function architecture has also
been used in prior work [44], although with a different policy
architecture. We compare to other ways of representing the Q
function in experiments and show that this one works the best.
We use SAC [15] as the underlying RL algorithm, and we use
PointNet++ [36] for the policy and Q function network.

C. Generalization to Diverse Human Poses via Policy Distil-
lation

Learning a dressing policy that works on a diverse range of
arm poses can be viewed as a multi-task learning problem,
where each small range of poses can be considered as an
individual task. The same holds true for learning a policy that
works for diverse garments – each garment can be treated as
an individual task. In our experiments, we find it is possible
to learn a single universal policy for a diverse set of garments,
and the performance is similar to that of learning an individual
policy for each garment. However, we find it challenging to
learn a single policy that works well for a diverse range of arm
poses, possibly due to imbalanced learning speed for different
tasks (e.g., some poses are easier to learn compared with
others), conflicting gradients from different tasks (the desired
trajectory for one arm pose might contradict to another), and
other potential issues. Inspired by [39, 40], we use policy
distillation to address this issue.

Policy Distillation. Given a set of policies that were each
trained for a single task, policy distillation [39] can be used to
combine the set of policies into a single policy that works for
all of the tasks. It has been shown that this often outperforms
directly training a single policy for all of the tasks. In our
case, we train individual policies each for dressing a human
arm pose sub-range; we then distill these policies into a single
policy that works for the full diverse range of arm poses Φ.

To employ policy distillation, we first need to decompose
the diverse arm pose range Φ into smaller ranges {Φsub

i }Ni=1

where RL can be directly used to learn effective policies on
these smaller pose ranges. As aforementioned, the arm pose
range Φ is specified by min and max values for each of the
three joint angles Φ = {[ϕ1, ϕ2, ϕ3] | ϕi ∈ [ϕmin

i , ϕmax
i ], i =

1, 2, 3}. We perform the decomposition by dividing each joint

angle range [ϕmin
i , ϕmax

i ] into a number of smaller intervals.
For example, we can uniformly divide the range [ϕmin

i , ϕmax
i ]

to Φj
i = [ϕmin

i + (j − 1)δ, ϕmin
i + jδ], j = 1, ..., L , where

δ = (ϕmax
i −ϕmin

i )/L. This will then result in L3 sub-ranges
{Φsub = Φj

1 × Φk
2 × Φl

3}Lj=1,k=1,l=1.
After we decompose the diverse arm pose range Φ into N

smaller ranges, we train N “teacher” policies {πt
i}Ni=1, one for

each pose sub-range, using RL as described in Section IV-B.
We then distill these N teacher policies {πt

i}Ni=1 into a single
“student” policy πs by training the student policy with a
combination of the RL loss and a policy distillation loss,
shown in Eq. 1.

Specifically, let θs denote the parameters of the student
policy πs, let θit denote the parameters of the ith teacher policy
πt
i , and let N (µθ(o), σθ(o)) = πθ(o) denote the Gaussian

distribution of the action output by policy πθ on observation
o. Given a batch of samples collected by the student policy
πs, {on, an, rn, o′n}Bn=1, we use the following loss to train πs:

L(θs) =LSAC(θs) + β

N∑
i=1

Ldistill(θs, θ
i
t), (1)

where LSAC(θs) is the standard SAC training loss, Ldistill is
the policy distillation loss (described below), and β weighs the
two terms. The policy distillation loss computes the distance
between the student action distribution and the teacher action
distribution, and thus the student learns to imitate the teacher’s
behaviors by minimizing such a loss. Specifically, we compute
the Earth Mover’s distance between the action distribution of
the student and the teacher policy:

Ldistill(θs, θ
i
t) =

B∑
n=1

(
µθs (on) − µ

θit
(on)

)2
+

(»
σθs (on) −

√
σ
θit

(on)
)2

(2)
The loss in Eq. 1 has also been used in prior work [40]; how-
ever, they used the KL divergence instead of Earth Mover’s
distance for the distillation loss. Our experiments indicate that
earth-mover distance leads to significantly improved perfor-
mance. We set β = 0.01 in our experiments.

D. Guided Domain Randomization Learning for Sim2real
Transfer

We find that there is a huge difference between the sim-
ulated garment point cloud and the real-world garment point
cloud, due to large variations in simulation vs. real garment
geometries, and also since the simulator does not perfectly
model the dynamics of garment deformations in the real world.
To make the observation more aligned between simulation
and the real world, and to make the policy robust to the
observation difference, we add randomizations to the policy
observation (described at the end of this section). Let o
denote the original non-randomized point cloud observation,
and let õ denote the randomized observation. Naively training
the policy with randomized observation õ will usually fail
or lead to degraded performance, since the randomizations
make policy learning more difficult. To mitigate this issue,
we propose “guided domain randomization”, where we first
train teacher policies πt

i without any domain randomization;
we then distill the teachers into a student policy πs trained with



domain randomization on the observation. Let θs denote the
parameters of the observation randomized policy πs. To train
the student policy πs, we run the student to collect a batch
of data that stores both the randomized and non-randomized
observation {õn, on, an, rn, õ′n, o′n}Bn=1, and train it as follow:

L(θs) = L̃SAC(θs) + β
N∑

i=1

L̃distill(θs, θ
i
t),

L̃distill(θs, θ
i
t) =

B∑
n=1

(
µθs (õn) − µ

θit
(on)

)2
+

(»
σθs (õn) −

√
σ
θit

(on)
)2

,

where L̃SAC(θs) is the SAC loss with running the policy
πs on the randomized observations, and L̃distill(θs, θ

i
t) is the

loss of imitating the teacher policy πt
i trained without domain

randomization. Importantly, note that the student receives the
randomized observation õn whereas the teacher receives the
non-randomized observation on. For the observation random-
ization, we perform random cropping, dropping, erosion, and
dilation on the cloth point cloud, and we add random noise
to the robot gripper position. More details on the observation
randomization can be found in Appendix Section A.

V. SIMULATION EXPERIMENTS

A. Experimental Setup

We train our policies using Softgym [27] based on the
NVIDIA Flex simulator. We use SMPL-X [33] to generate hu-
man meshes of different body sizes and arm poses. To generate
random poses, the shoulder joint ϕ1 is uniformly sampled from
[−20, 30], the inwards-outwards elbow joint ϕ2 is uniformly
sampled from [−20, 20], and the upwards-downwards elbow
joint ϕ3 is uniformly sampled from [−20, 30]. We decompose
the arm pose range Φ into N = 27 regions for policy
distillation, by dividing each joint angle range into 3 intervals.
We randomly pick 5 garments for training from the Cloth3D
dataset [3]: a hospital gown and 4 cardigans. The selected
garments have different geometries such as varying sleeve
lengths and widths. We randomly generate 50 human poses
for each of the 27 pose sub-ranges, resulting in a total of
27·50·5 = 6750 different configurations. Among the 50 poses
for each sub-range, we use 45 poses for training and 5 poses
for evaluation. At each training episode of SAC, we randomly
sample one garment out of the five for training. The simulated
dressing environment with the person holding different poses
and with different garments is shown in Fig. 2. More details of
the simulation experimental setup can be found in Appendix
Section B.

B. Baselines and Ablations

We compare the following RL algorithms for learning the
dressing policy from partial point cloud observations: Dense
Transformation policy (ours) is our proposed method, which
is described in Section IV. Dense Transformation policy +
latent Q function: This baseline uses the same policy as
our method. For the Q function, instead of concatenating the
action to the input point cloud as an additional feature, this
baseline first uses a PointNet++ to encode the point cloud
observation into a latent vector, and then concatenates the
action with the latent vector. An MLP then takes as input the

Dense
Transform

(Ours)

Dense
Transform
Latent Q

Direct
Vector TD-MPC Deep Haptic

MPC

1 0.68 ± 0.05 0.55 ± 0.05 0.63 ± 0.07 0.04 ± 0.04 0.31 ± 0.08
2 0.55 ± 0.06 0.42 ± 0.08 0.52 ± 0.09 0.00 ± 0.00 0.11 ± 0.02
3 0.75 ± 0.04 0.68 ± 0.07 0.73 ± 0.02 0.03 ± 0.05 0.37 ± 0.02

TABLE I: Upper arm dressed ratio of different policies on 3
pose sub-ranges. Results are averaged across 3 seeds.

Policy
Distillation

(Ours)

Policy
Distillation

(KL)
PCGrad No

Distillation

Heuristic
Motion

Planning
0.68 ± 0.012 0.45 ± 0.010 0.37 ± 0.063 0.34 ± 0.10 0.32

TABLE II: Upper arm dressed ratio of different ways to enable
the policy to generalize to diverse poses. Results are averaged
across 3 seeds. The Heuristic Motion Planning baseline does
not have a standard deviation because there is no learning or
randomness in this method.

concatenated latent vector and outputs a scalar Q value. Direct
Vector uses a classification PointNet++ policy to encode the
input point cloud to a single action vector. It uses a similar
Q function network architecture as our method, where the
action is concatenated to every point in the point cloud as
an additional feature. TD-MPC [16], a state-of-the-art model
based RL algorithm. Deep Haptic MPC [10], which learns a
force prediction model based on end-effector measurements,
and combines it with MPC to plan forward actions that
minimizes the predicted force during dressing. The actions
in MPC are sampled based on a “moving forward” heuristic.
Note that this method does not use any visual information of
the arm or the garment.

We also compare different ways of enabling the policy to
generalize to diverse poses. Policy Distillation is our proposed
method, as described in Section IV-C. Policy Distillation
(KL) replaces the Earth Mover’s distance in Equation (2)
with KL divergence. PCGrad [52] is a multi-task learning
algorithm that balances gradients from different tasks; in our
case, a “task” is defined as training on a different pose sub-
range. No Distillation trains a single policy on the entire pose
range, without any distillation. Heuristic Motion Planning
finds a collision-free robot end-effector path along the human
arm based on some heuristically designed constraints. More
implementation details of these baselines can be found in
Appendix Section B.

In simulation, we use the upper arm dressed ratio as
the evaluation metric. The ratio is computed between the
dressed upper arm distance and the actual upper arm length:

||pint−ph
elbow||2

||ph
shoulder−ph

elbow||2
; see Section IV-B and Fig. 3 for how these

points are defined. This ratio is upper bounded by 1.

C. Does the Dense Transformation policy perform better than
the alternative baselines for learning the dressing policy?

We first compare the performance of different RL algo-
rithms. We randomly select 3 different sub pose-ranges, and
for each method, we train a separate policy on these 3 pose
sub-ranges to compare their performances. We train each
method for 1e6 steps, evaluate at each 10K steps, and report
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Fig. 4: Real-world human study setup.

the maximum performance. The results are shown in Table I
and averaged across 3 seeds. As shown, our proposed method
Dense Transformation policy achieves the best performances
on all 3 pose sub-regions, although Direct Vector has similar
performance. Using a “Latent Q” architecture leads to much
worse performance. We find that TD-MPC [16] does not work
at all for this dressing task, possibly since the algorithm is
originally designed and tested on image and state observations
instead of point clouds, and also since it might be hard to learn
a good latent dynamics model for deformable garments. Deep
Haptic MPC also does not work well. The original paper tested
only one arm pose and garment, with no visual information
of the garment or human pose, potentially explaining its low
performance in our setting with diverse arm poses and gar-
ments. Based on this result, we use Dense Transformation as
our base RL algorithm for the following experiments.

D. Does policy distillation improve the ability of our method
to generalize to diverse poses?

We now compare the performance of different methods for
learning a single policy on all 27 pose sub-ranges. We train
all methods long enough until they converge (as different
methods require different numbers of environment steps to
converge), and report the maximum achieved performance.
Results are averaged across 3 seeds. As shown in Table II,
policy distillation with the Earth Mover’s distance outperforms
all other baselines. The baseline “No Distillation” and “PC-
Grad [52]” both perform poorly, showing the difficulty of
directly learning a single policy across diverse pose ranges
without distillation. The performance of the “Heuristic Motion
Planning” baseline is also low. We find it performs well when
there is no sharp bending at the shoulder and the elbow, and
worse when the bends are sharp, aligning with findings in
prior work [23]. Interestingly, we find that using Earth Mover’s
distance noticeably outperforms KL divergence, even though
KL divergence seems to be the most common choice for policy
distillation in the literature [39, 40, 32].

VI. REAL-WORLD EXPERIMENTS AND HUMAN STUDY

We perform guided domain randomization (Section IV-D)
to obtain a distilled policy that is robust for sim2real transfer,
and deploy it in the real world, both for dressing a manikin
and in a real-world human study. Our real-world experiments
aim to answer the following questions: (1) Does our distilled
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Fig. 5: Arm poses and garments used for the human study.

policy outperform the baseline in the real world? (2) Does
our policy generalize to different people with diverse poses
and different garments?

A. Setup

Fig. 4 shows the real-world setup that we use for the
human study, and Fig. 6 shows the manikin setup. Fig. 5
shows the arm poses and dressing garments we test. The
poses we test in the real world span the pose ranges we
train in simulation. We test 5 garments: a sleeveless, non-
elastic vest; a short-sleeve, non-elastic hospital gown; a short-
sleeve, elastic pink cardigan; a medium-length sleeve, narrow
opening, elastic green cardigan; and a long-sleeve, non-elastic
purple cardigan. Note that the real-world garments are not
calibrated to the training garments in simulation; for example,
the policy is never trained on a sleeveless vest in simulation.
We use a Sawyer robot to execute the dressing task and an
Intel RealSense D435i camera to capture the depth images.

We use the following quantitative metrics to measure the
performance of a dressing trial. Dressing Success: We put a
marker on the participant’s shoulder, at the position that is
80% of the length up the upper arm. If the marker is covered
by the garment at the end of the dressing trial, we consider
this dressing trial is a success; otherwise it is not. Upper Arm
Dressed Ratio: We compute the ratio between the “dressed
upper arm distance” and the length of the participant’s upper
arm. The “dressed upper arm distance” is measured as the
distance from the elbow to the intersection point of the gar-
ment and the participant’s upper arm (see Fig. 3). Whole Arm
Dressed Ratio: We compute the ratio between the “dressed
whole arm distance” (the upper arm dressed distance + the
forearm dressed distance) and the length of the participant’s
whole arm (upper arm length + forearm length).

B. Comparison on a Manikin

In order to perform a strictly controlled comparison of
the Distilled Policy and the No Distillation baseline, we first
conduct experiments on a manikin shown in Fig. 6. The
manikin has a fixed pose similar to pose 1 in Fig. 5. We
conduct 10 dressing trials per garment (across 5 garments),



D
istilled

 P
o

licy
 

(o
u

rs)
N

o
 D

istillatio
n

(b
aselin

e)

Fig. 6: Final state comparison of the Distilled Policy (Ours,
top) and No Distillation baseline (bottom) on the manikin.

Total
Distilled

Policy (Ours) 10/10 10/10 10/10 10/10 10/10 50/50

No
Distillation 0/10 0/10 0/10 0/10 0/10 0/50

TABLE III: Dressing success rate of the Distilled and No
Distillation policies on 5 garments on the manikin.

resulting in 50 trials for each method. The numerical results
are shown in Table III and Fig. 7. As shown, the Distilled
Policy performs vastly better than the No Distillation baseline
on all metrics, which resembles performance in simulation.
The Distilled Policy successfully covered the marker on the
shoulder every trial for all the garments. Fig. 6 shows the final
state achieved by the Distilled Policy and the No Distillation
baseline. For most of the trials, the No Distillation policy can
only dress the forearm, and it has trouble correctly turning at
the elbow to dress the upper arm.

C. Human Study Procedure

We recruit 17 participants in the human study, including
6 females and 11 males. The age of the participants ranges
from 19 to 29. For each participant, we conduct 6 trials for
each of the 5 garments, totaling 30 trials. Among the 6 trials
per garment, we perform 5 trials using our distilled policy,
corresponding to the 5 human poses shown in Fig. 5. To
compare against the baseline, we perform the remaining trial
using the No Distillation baseline on a pose randomly chosen
from the 5 poses. We test the No Distillation baseline with only
one pose for each garment as we find that most participants
experience arm soreness after 30 trials; thus it is impractical to

Avg. Avg.

Fig. 7: The whole arm (left) and upper arm (right) dressed
ratio of the Distilled Policy and the No Distillation baseline
on 5 garments on the manikin, averaged across 10 trials for
each garment.

(*)
p < 0.05

Fig. 8: Likert item responses of the Distilled Policy and the No
Distillation baseline, on the 85 dressing trials for which both
methods are evaluated on the same poses and garments, shown
as a full distribution (top) or box plot (bottom). We perform
the Wilcoxon signed rank test on the Likert item response and
find a statistically significant difference (p < 0.05) between
our distilled policy and the baseline.

Whole Arm
Dressed Ratio

Upper Arm
Dressed Ratio

Success
Rate

Distilled
Policy (Ours) 0.86 ± 0.19 0.74 ± 0.35 0.66 ± 0.47

No
Distillation 0.63 ± 0.15 0.26 ± 0.27 0.01 ± 0.11

TABLE IV: Comparison of the Distilled Policy and the No
Distillation baseline in a real-world human study. Results are
averaged over 17 participants, on the 85 trials for which both
methods are evaluated on the same poses and garments.

test all poses with the baseline policy. Furthermore, since the
No Distillation baseline shows poor performance on a static
manikin as shown in Table III, it is less likely that it would
work on real humans with diverse arm shapes and poses. We
randomize the test order of the garments, the poses, and the
policy for each participant. During the study, the participant
is not aware of which policy we are testing.

The procedure of each trial is as follows: We first show
the participant the pose they should imitate, and they lift their
right arm to maintain the pose. We then capture a point cloud
of the participant’s right arm. We move the Sawyer’s end-
effector, which is already holding the garment, to be positioned
near the participant’s hand. We then capture a point cloud of
only the garment using color thresholding. The color-based
segmentation of the garment could be replaced by training a
garment segmentation network, such as fine-tuning an existing
segmentation network with a small amount of data in our
setting [24]. The point clouds of the human arm (recorded
statically before the trial), the garment (color thresholded at
each timestep), and the end-effector position (obtained using
forward kinematics of the robot) are concatenated as input to
the policy. The participant holds their arm steady throughout
the trial. The trial terminates if any of the following conditions
holds true: (1) if a maximum time step of 75 is reached, (2) if



Whole Arm
Dressed Ratio

Upper Arm
Dressed Ratio

Success
Rate

0.86± 0.17 0.71± 0.34 0.57± 0.49

TABLE V: Performance of our distilled policy, averaged over
17 participants and all 425 dressing trials (not just the 85 trial
subset in Table IV).

Fig. 9: (Top) Full distribution and (Bottom) box plot of
the Likert item responses of the Distilled Policy on all 425
dressing trials (not just the 85 trial subset shown in Fig. 8).

the participant’s shoulder is covered by the garment, (3) if the
policy is not making any progress in 15 consecutive time steps,
and (4) if the participant wishes to have trial stopped. After the
trial terminates, we measure dressing distances to compute our
evaluation metrics. Finally, at the end of each trial, we provide
the participant with a single 7-point Likert item statement “The
robot successfully dressed the garment onto my arm”, which
ranges from 1=‘Strongly Disagree’ to 7=‘Strongly Agree’.
More details on the human study procedure can be found in
Appendix Section C.

D. Human Study Results and Analysis

We first compare the performance of the Distilled Policy
against the No Distillation baseline in Table IV. The compar-
ison is made on the 85 dressing trials for which both methods
are evaluated on the same poses and garments. As shown,
the Distilled Policy outperforms the No Distillation baseline
by a large margin under all metrics. Fig. 8 shows the Likert
item response distributions of our distilled policy versus the
baseline. Overall, participants agreed at higher rates that the
distilled policy successfully dressed the garment, as compared
to the baseline. On average, our distilled policy achieves a
median response of 6.0, meaning that the participants “Agree”
that the robot successfully dressed the garment onto their arm,
while the No Distillation baseline achieves a median response
of 3.0, meaning the participants “Somewhat disagree.” Let
d be the difference between the Distilled Policy’s Likert
item response and the No Distillation baseline’s Likert item
response. We perform the Wilcoxon signed rank test to test if
the distribution of d is stochastically greater than a distribution
symmetric about zero. We obtain a p-value of p = 0.03125;
hence we find a statistically significant difference (p < 0.05)
between our distilled policy and the baseline, and the median
of the difference is positive.

We now analyze our policy’s performance over all 425
dressing trials from the 17 participants. Table V shows the

Whole: 0
Upper: 0

Whole: 0.1
Upper: 0

Whole: 0.3
Upper: 0

Whole: 0.6
Upper: 0.1

Whole: 0.85
Upper: 0.7

Whole: 1
Upper: 1

Fig. 10: An illustration of the dressed ratios during a trial.

Fig. 11: Performance of our distilled policy on different
garments. The dashed red line shows the average over all
garments.

Distilled Policy’s performance under all metrics. On average,
our policy is able to dress 86% of the participant’s whole
arm, and 71% of the participant’s upper arm, achieving a final
dressing state similar to the 5th sub-image in Fig. 10. Fig. 1
shows snapshots of the dressing trajectories of our policy. In
terms of Likert item responses, as shown in Fig. 9, our distilled
policy achieves a median response of 5.0 (“Somewhat Agree”
that the robot successfully dressed the garment onto the arm).
Note that the metrics and Likert item responses are different
from those in Table IV and Fig. 8 because here the numbers
are averaged across all dressing trials, as opposed to the 85
trial subset used for the baseline comparison.

Fig. 11 shows the performance of our method across dif-
ferent garments. It is interesting to see a consistent ordering
of the garments under all metrics. Such ordering aligns with
human intuitions based on the garment geometry & materials
(see Fig. 5): the vest is sleeveless and thus the easiest to
perceive and dress (even though the sleeveless vest has never
been trained in simulation). The green and purple cardigans,
however, have longer sleeves and are harder in terms of both
perception and dressing. Meanwhile, although the pink cardi-
gan and the gown have similar sleeve length, the material of
the pink cardigan is much more elastic than the hospital gown.
This provides some allowance in the end-effector trajectories
during the dressing process, leading to better performance.
This also holds true for the purple versus green cardigan –
although the opening of the purple cardigan is larger, it is
less elastic, which results in the garment getting caught on the
participants’ arm more frequently, leading to a failure.

Finally, we analyze the performance of our distilled policy
on different poses in Fig. 12. We notice that some poses are
harder than others. For example, the fifth pose with sharp



Fig. 12: Whole arm dressed ratio of our distilled policy on
different poses. The dashed red line represents the average over
all poses. Other metrics can be found in Appendix Section C.

bends at the shoulder and elbow has the lowest performance.
On the other hand, the first pose, which does not have a
sharp bend at either shoulder nor elbow, achieves the highest
performance. Such a difference is likely due to the fact that
sharp bends require more complex end-effector trajectories,
and the garment is also more likely to get caught at sharp
bends. We also note that although the first pose in the human
study is similar to the pose of the manikin in Fig. 6, the success
rate on this pose in the human study is lower than the one
achieved on the manikin shown in Table III. We speculate that
such a difference could be due to the diversity of the arm shape
and sizes in the human study, as some participants’ arm sizes
and shapes might be out of our training distribution, resulting
in lower performance. Another reason could be that compared
to the manikin, real people unconsciously move their arms
during the dressing trial, which violates our assumption that
the human holds a static arm pose.

E. Failure Cases

Visual examples of failure cases can be found in our project
webpage and also in Appendix Section C. The first failure case
is that the policy gets stuck and cannot output actions that
make further progress for the task, e.g., the policy oscillates
between moving up and down and does not move forward.
This might be due to that the arm pose of the participant is out
of the training distribution, or other aspects of the observation
cause a sim2real gap. Another failure case is the cloth getting
caught on the arm. This usually happens when the participant
unintentionally moves their arm too much in the dressing
process, the policy actions move the gripper too high above
the participant’s arm, or the policy actions turn too early at the
elbow. Due to limited fidelity of the simulator, the garment in
simulation is more elastic and can still be dressed even if the
robot is pulling high above the arm. However, the garments
we test in the real world are less elastic than the simulated
ones and they experience greater friction and get caught more
easily. We believe that fine-tuning the policy in the real world
can help address both failure cases. Since it is difficult to
visually detect if a garment is undergoing high friction or has
gotten caught on the body, we believe incorporating force-
torque sensing can help alleviate these issues. We leave both

as future work.

VII. OUT-OF-DISTRIBUTION EVALUATION AND
GENERALIZATION OF THE SYSTEM

We conducted a preliminary out of distribution evaluation
of our system by relaxing the static arm assumption, i.e., the
participants can move their arm during the dressing process.
With experiments in both simulation and real world, we ob-
serve our system to be robust to small arm movements. We first
evaluate how our system performs if the participants change
their shoulder or elbow joint angles after we capture the initial
arm point cloud. The simulation experiments are conducted
on 1 pose sub-region, and the results show that our system is
robust to 8.6 degrees of change in shoulder and elbow joint
angles (averaged across 3 types of joint angle changes and 5
garments) while maintaining 75% of the original performance.
Please refer to Appendix Section D for detailed experimental
results. We also conducted 4 real-world dressing trials with
one participant changing their joint angles, including lowering
down the shoulder joint for 5 degrees, lowering down the
elbow joint for 5 degrees, bending the elbow joint inwards
for 5 degrees, and bending the elbow joint inwards for 10
degrees. Our system succeeds in the first 3 trials, and fails for
the last trial since the elbow joint angle change is too large.
We also evaluate our system with one participant performing
constant arm motions during the dressing process in the real
world. The participant is asked to perform 4 different kinds
of arm motions during dressing, including constantly moving
their forearm horizontally, constantly moving their forearm in
a spherical motion, constantly moving their forearm up and
down, and constantly moving their shoulder up and down.
The maximum displacement of the arm during the motion was
±10 centimeters. Our system succeeds in all 4 kinds of arm
motions. Please see our website for videos of these real-world
evaluations.

We also evaluate the generalization of the system towards
dual-arm dressing. With the same single-arm dressing assump-
tions (static arm pose and robot already grasping the garment),
our system generalizes to dual-arm dressing. The primary
change is to control two robotic arms, one for each sleeve
of the garment, which our Dense Transformation policy can
handle well by extracting actions corresponding to both of
the robot gripper points. We verified this in simulation with
preliminary experiments where we successfully train policies
to perform dual arm dressing of a hospital gown and a cardigan
on a fixed pose (see visualizations on our project website).
We note that dressing over a person’s head, such as with a
t-shirt, is more complex, due to the need for more dexterous
trajectories and awareness of safety considerations. We leave
such an extension to future work.

VIII. CONCLUSION

In this work, we develop a robot-assisted dressing system
that is able to dress diverse garments on people with diverse
poses from partial point cloud observations, based on a learned



policy. We show that with careful design of the policy ar-
chitecture, reinforcement learning (RL) can be used to learn
effective policies with partial point cloud observations that
work well for dressing diverse garments. We further leverage
policy distillation to combine multiple policies trained on
different ranges of human arm poses into a single policy that
works over a wide variety of different poses. We propose
guided domain randomization for effective and robust sim2real
transfer. We perform comprehensive real-world evaluations of
our system on a manikin, and in a human study with 17
participants of varying body size, poses, and dressed garments.
On average, our system is able to dress 86% of the length of
the participants’ whole arm, and 71% of the length of the
participants’ upper arm across 425 dressing trials. We hope
this work will serve as a foundation for future research to
develop more robust and effective dressing systems.
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