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Abstract—Enabling robots to learn novel visuomotor skills
in a data-efficient manner remains an unsolved problem with
myriad challenges. A popular paradigm for tackling this problem
is through leveraging large unlabeled datasets that have many
behaviors in them and then adapting a policy to a specific task
using a small amount of task-specific human supervision (i.e.
interventions or demonstrations). However, how best to leverage
the narrow task-specific supervision and balance it with offline
data remains an open question. Our key insight in this work is
that task-specific data not only provides new data for an agent to
train on but can also inform the type of prior data the agent should
use for learning. Concretely, we propose a simple approach that
uses a small amount of downstream expert data to selectively
query relevant behaviors from an offline, unlabeled dataset
(including many sub-optimal behaviors). The agent is then jointly
trained on the expert and queried data. We observe that our
method learns to query only the relevant transitions to the task,
filtering out sub-optimal or task-irrelevant data. By doing so, it
is able to learn more effectively from the mix of task-specific and
offline data compared to naı̈vely mixing the data or only using the
task-specific data. Furthermore, we find that our simple querying
approach outperforms more complex goal-conditioned methods
by 20% across simulated and real robotic manipulation tasks
from images. See https://sites.google.com/view/behaviorretrieval
for videos and code.

I. INTRODUCTION

One of the promises of deep learning applied to robotics is
the ability to learn control from sensor observations in a data-
efficient manner, a prerequisite to deploying robots in rich real-
world settings like homes. Towards accomplishing this goal,
a number of prior methods have explored leveraging broad,
unlabeled data to capture general knowledge and a small
amount of task-specific data to adapt to a particular task. A
natural form for this task-specific data to take is human expert
data (e.g. demonstrations or online interventions), which can
be imitated to efficiently adapt the agent to the target task.
While this data is convenient to learn from, it comes at
a cost: expensive human-in-the-loop supervision for every
target task. Thus, even with pre-training data providing general
knowledge, learning a performant task-specific policy without
substantial human effort remains an open challenge.

Unlike the many works that study different techniques for
offline pre-training from sub-optimal data, from visual pre-
training [32, 30, 42] to multi-task imitation [20, 9, 39], in this
work we focus instead on how to best use the sub-optimal
offline data in fine-tuning a policy from small amount of expert
data. Critically, most prior work do not make use of the offline
data during fine-tuning, and those that do [9] tend to use
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Fig. 1: Using Task-Specific Data to Query Offline Datasets.
Using a small amount of task-specific human expert feedback (i.e.
interventions or demonstrations) (blue), our method learns to select
the relevant portions (green) of a broad, unlabeled offline dataset
(red) to efficiently learn the target task. In this example the task is
to have the robot place the square on the right peg (shown with
the initial and final frame in blue). While the broader dataset might
include irrelevant data (initial and final frame shown in red) where
the robot is placing the square on the left peg, it includes useful data
providing diversity in terms of how the square needs to be placed
on the right peg (shown with initial and final frame in green). Our
algorithm identifies these relevant data from the broader dataset and
learns from them while ignoring the irrelevant data.

simple heuristics that often fail to effectively balance offline
and task-specific expert data, or focus on using the offline
data for skills instead of low-level control [31]. The interesting
question to ask is why balancing these data sources tend to be
difficult. On one hand, fine-tuning the policy only on a small
amount of downstream expert data can be unstable, diverging
significantly from the pre-trained policy and losing much of
the knowledge gained during pre-training. On the other hand,
jointly training the agent on the online expert data and the
offline pre-training data can be highly sub-optimal, as much of
the pre-training data may be irrelevant or damaging to learning
the target task. We study precisely this tradeoff, and seek to
understand how best to balance task-specific human expert
data and broad unlabeled data in learning control policies.

Our key insight in this work is that the small amount of task-
specific human expert data not only provides new data for an
agent to train on but also informs what prior data the agent
should retrieve for learning. That is, when a human provides
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supervision to the agent through for example an intervention
(a state-action tuple), the agent should not solely fine-tune on
the tuple. Rather, the agent can learn to retrieve many relevant
state-action tuples from a broad offline dataset and instead
fine-tune on the larger combined data.

Concretely, we propose behavior retrieval, a method for
training a policy on a small amount of human expert data
(interventions or demonstrations), while simultaneously lever-
aging a broad, unlabeled dataset that may include sub-optimal,
task-irrelevant, and task-adversarial behaviors. Our method
begins by using the unlabeled dataset to pre-train a state-action
similarity metric measuring the similarity between any two
state-action pairs. Then, when adapting the policy with a small
amount of human expert data, we retrieve relevant experience
from the unlabeled dataset using our learned similarity metric,
and jointly fine-tune the policy on the expert and queried
data (See Figure 1). In a set of simulated and real-world
robotic manipulation tasks from both low-dimensional states
and image observations, we find that selectively sampling from
offline data for joint fine-tuning with our method leads to
more stable and performant learning than only finetuning on
the human expert data or using hand-designed heuristics for
balancing offline and task-specific data. Moreover, we find
our proposed approach outperforms multi-task pre-training and
finetuning by over 20% by using its simple retrieval strategy.

II. RELATED WORK

Towards the goal of data-efficient policy learning, there are
many relevant works spanning few-shot learning from experts
which studies learning with just a few demos, offline pre-
training which aims to learn priors from broad datasets, and
meta-learning which learns policies that can adapt efficiently.

Few-shot Learning from Experts. Learning behaviors
from human expert data through imitation learning is a long-
studied problem in robotics [34, 37, 36, 22, 33, 1, 5, 15]. More
recently, the emphasis for such imitation learning methods has
been on learning efficiently, minimizing the effort placed on
the human expert. For example, many works have explored
how a policy might be pre-trained on demonstrations then fine-
tuned with online expert feedback [36, 24, 28, 22, 41, 19].
Similarly, many works have explored how to learn from broad
data with many tasks and fine-tune on a new task given a
small amount task-specific data [9, 27]. Rather than simply
fine-tuning on expert interventions or demos, our method
leverages retrieval, filtering only the relevant prior experience
and jointly training on the combined data. In our experiments,
we compare to all of these prior methods and find that our
approach behavior retrieval outperforms them by selectively
retrieving and training on offline data.

Additionally, several works have explored designing action
spaces or planning trajectories in a way that enables more
efficient learning [44, 21, 17, 16]. Behavior retrieval instead
proposes a method for sampling from offline data, and in
principle can be combined with any such action spaces in
a straightforward manner. Recent approaches also attempt to
be transparent about what type of data the imitation learning

algorithm requires and further influence the demonstrator
through interactive data collection to provide informative, in-
distribution data [12, 38]. Such methods are complementary
to our approach, and the two could be naturally combined to
influence the demonstrator for better interventions which then
enables even more effective retrieval from offline data using
behavior retrieval. Finally, our work is not the first to consider
retrieval in imitation learning. Nasiriany et al. has explored
learning skills from offline data and retrieving relevant skills
for long-horizon tasks. Unlike this work, we learn low-level
control policies, and focus on retrieving individual state-
action tuples rather than high-level skills [31]. This allows
us to leverage offline data to learn more performant low-level
policies, as opposed to being tied to a high-level skill space.
Other works like Goyal et al. [13] also explore the use of
retrieval, however focus on sample efficient RL using retrieval
from the replay buffer, rather than imitation from unstructured
datasets like we consider in this work.

Robotic Pre-training. While our approach focuses on re-
trieving behaviors as a way of leveraging offline data, there
exist many alternative methods for pre-training from offline
data. For example, one line of work studies pre-training visual
representations [32, 30, 42, 35, 26] that can then be used
frozen or finetuned for more efficient downstream imitation or
reinforcement learning. This approach is particularly effective
at using data that does not contain action labels, like videos
of humans. Another line of work focuses on using robot data
with actions, and pre-training multi-task (e.g. goal-conditioned
or language conditioned) policies through imitation learning
[6, 25, 3, 4, 9, 20] or offline reinforcement learning [23]. Like
our work, some prior work also explores selectively sampling
or weighting expert data [45, 2]. However, the focus of these
works is on learning from a mix of sub-optimal experts for
a particular task, while we instead focus on retrieving from a
broad offline dataset during task-specific fine-tuning. In total,
all of these works are complementary to the direction we study
in this work, as any of the above pre-training schemes can
leverage the behavior retrieval approach to efficiently finetune.

Meta-Imitation Learning. Towards the goal of few-shot
learning of control policies for new tasks and environments,
another well-studied approach is that of meta-learning. Meta-
imitation learning methods [11, 7, 18, 43, 46] train to produce
effective policies using a few demonstrations of many tasks,
such that given just a few demos of a new task they can
perform well. Critically all of these methods require a large
dataset of well-defined, labeled tasks for meta-training, which
can be expensive. Our approach is instead able to learn from
unlabeled “play” data without annotated task boundaries and
use it for few-shot imitation learning.

III. BEHAVIOR RETRIEVAL: IMITATION LEARNING BY
QUERYING UNLABELED DATASETS

A. Problem Setup

In this work, we consider the problem setting of learning a
target task from a small amount of task-specific expert data and
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Fig. 2: The Behavior Retrieval Method. Our approach has 3 main steps. (A) Using the unlabeled offline data Dprior we pre-train a state-
action embedding. (B) We use the pre-trained embedding to look up similar transitions in the offline data Dprior that are relevant to the task
data Dt. (C) We then train a policy with behavior cloning on the mix of the task-specific and retreived data.

a large amount of sub-optimal, unlabeled data, where all the
data shares a state space S and an action space A. Concretely,
for a particular target task t in the space of all tasks T , we
assume access to:

1) Dt: a dataset of expert (s, a) tuples for the target task
t, which may come either from online interventions or
small set (∼ 10) of demonstrations.

2) Dprior: which contains an unsegmented mix of data from
tasks in the space of T , which may include everything
from random data to near-expert data for task t to sub-
optimal data for any task other than t.

In practice, we expect the prior data to have some data that is
relevant to task t and some that is not relevant. Given these
data sources, the final goal is to learn a policy πt : S → A that
is performant on task t, and to do so in a way that leverages
the prior data to get better performance. In the extreme case
where none of the prior data is relevant, the optimal method
should ideally not be harmed by the prior data and learn a
policy as good purely learning form Dt.
B. Overview

In behavior retrieval, we explore going beyond the standard
approach of pre-training a policy on the prior dataset Dprior and
fine-tuning on the task-specific dataset Dt. Our key insight is
that Dt not only provides data to train on but also informs
what data from Dprior is relevant for learning. Moreover,
we can learn the metric for measuring this relevance from
Dprior. Concretely, our method, behavior retrieval, first learns
a (s, a)-similarity metric from Dprior, then given Dt uses the
similarity metric to retrieve relevant (s, a) tuples from Dprior,
and finally trains πt on the union of Dt and the retrieved
data with imitation learning (See Figure 2). We cover the
similarity metric training in Section III-C, the filtering process
in Section III-D, and the policy training in Section III-E. See
Algorithm 1 for a summary of the behavior retrieval method.

C. Similarity Metric Pre-training

To effectively retrieve behaviors from Dprior relevant to
Dt, we need some way of measuring the similarity between
two (s, a) tuples, a non-trivial problem for high-dimensional
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Fig. 3: Training the State-Action Embedding. We train a varia-
tional auto-encoder jointly on states and actions to produce our state-
action embedding zsa.

state spaces like images. Critically, because Dprior may have
behaviors from completely different tasks than the target
task, its not sufficient to simply pull transitions with similar
states, as the actions may be poorly-suited to the target task.
Therefore, we want to learn a function F : S×A×S×A → R
which takes as input two state-action pairs and predicts a
scalar score measuring their functional similarity. The first
component of our method is learning F using Dprior.

At a high level, we do so by learning a low dimensional
(s, a) embedding using Dprior, and instantiate F as the distance
between the embeddings of (s1, a1) ∼ Dprior and (s2, a2) ∼
Dt tuples. There are many possible approaches to learn
these (s, a) embeddings, ranging from contrastive learning to
compression via an auto-encoder. In our experiments we find
that compressing states and actions with a VAE provides a
simple approach with the best performance (See Figure 3).

Concretely, we simply learn a joint variational autoencoder
for the states and actions, which are trained to maximize the
evidence lower bound (ELBO)

Eqϕ(zsa|s,a)[log pθ(s, a|zsa)]− βDKL[qϕ(zsa|s, a)||p(zsa)]
(1)

on state-action pairs sampled from Dprior, where β is a tuned
hyperparameter. The state and action are encoded separately
then combined through a multi-layer perception (MLP) to
form the state-action embedding. The action is additionally
concatenated to this state-action embedding as z = [zsa, a],
which we found to help with behavior separability.

Finally given the two tuples (s1, a1) and (s2, a2) we pro-



Task-Specific 
Demonstrations

Accept Transitions
Close to Demos

Reject Transitions 
Far From Demos

δ

Fig. 4: Retrieving from the Unlabeled Dataset. Using our pre-
trained state-action embedder, we compute the embeddings for the
offline dataset Dprior and the small number of task-specific demos
Dt. Then, we select transitions in the offline dataset within a certain
distance of the task-specific demos, in embedding space.

duce z1 and z2. The distance function, F , is then simply the
negative L2 distance between the two embeddings:

F(s1, a1, s2, a2) = −||z1 − z2||2 (2)

D. Filtering Relevant Data

Given the pre-trained F , how might we retrieve relevant data
from Dprior using Dt? While there are many valid strategies
from upweighing losses to importance sampling, we hypothe-
size that transitions in Dprior where the expert is taking similar
actions in similar states will be useful to imitate for the target
task, and thus should be leveraged. Therefore, if a transition in
Dprior is relevant to any transition in Dt, we choose to retrieve
it and learn from it with behavior cloning.

Concretely, let the upper bound on similarity F+ =
max(s∗,a∗)∈Dprior max(s,a)∈Dt

F(s∗, a∗, s, a) and the lower
bound F− = min(s∗,a∗)∈Dprior max(s,a)∈Dt

F(s∗, a∗, s, a).
Then, for any transition (s∗, a∗) ∈ Dprior, we retrieve it if:

max(s,a)∈Dt
F(s∗, a∗, s, a)−F−

F+ −F− > δ (3)

We take this minmax normalization across F to account
for varying magnitudes of embeddings. In our experiments,
we use δ ∈ [0.6, 0.8], although we show in section IV-D that
our method is robust to changes in δ. Since we retrieve the top
1 − δ% of Dprior that we think is most relevant, when using
behavior retrieval, a user should choose δ to be one minus the
percent of Dprior likely to be relevant. For instance, if almost
none of Dprior is expected to be relevant, δ should be set close
to 1, and if all of Dprior is relevant δ should be set close to 0.
See Figure 4 for visual illustration of the filtering process.

E. Training with Retrieved Data

Finally, given the retrieved data, Dret, we then train the agent
to jointly imitate Dret and Dt with a behavior cloning loss. That
is, we train πψ with the objective:

min
ψ

E(s,a)∼Dt
[− log πψ(a|s)]+

E(s,a)∼Dret [− log πψ(a|s)]
(4)

Algorithm 1 Behavior Retrieval

1: Input: Prior dataset Dprior = [(s1, a1), ..., (sT , aT )]1:N
2: Input: Task dataset Dt = [(s1, a1), ..., (sT , aT )]1:10
3: Initialize ψ, ϕ, θ randomly, Dret ← ∅. Batch size B.
4: /* Train VAE embedding space */
5: while VAE not converged do
6: st, at ∼ Dprior
7: Update θ, ϕ to maximize Eq. 1
8: /*Retrieve task-relevant data*/
9: for (s, a) ∈ Dprior do

10: if Eq. 3 is True for (s, a) then
11: Dret ← Dret

⋃
(s, a)

12: /* Fit policy to task data and retrieved data */
13: while πψ not converged do
14: [(s, a)]1:Bt ∼ Dt
15: [(s, a)]1:Bret ∼ Dret
16: Update ψ to maximize log πψ(a|s)

on [(s, a)]1:Bt and [(s, a)]1:Bret

We encode the observation modalities separately before
combining them into a shared state embedding for the policy.
For the policy, we use an LSTM [14] architecture, which
allows for object permanence amidst occlusion and the obser-
vation of features like object velocity. The policy outputs the
parameters to a Gaussian mixture model (GMM), and the final
actions are chosen by sampling from the GMM, which allows
for better modeling of multi-modal behavior often present in a
large multi-task datasets. See Appendix A for more details on
the policy architecture and training. Algorithm 1 summarizes
the method, with lines 5-7 describing the embedding pre-
training, lines 9-11 summarizing the filtering process, and lines
13-16 describing the policy training phase.

IV. EXPERIMENTS

The main goal of our experiments is to understand the
empirical performance of behavior retrieval, both in terms
of how it works and how well it works. After describing
the experimental set-up (Section IV-A), we will first examine
what data is retrieved by our method in both simulated and
real robotic manipulation tasks (Section IV-B). We will then
analyze the performance of behavior retrieval in comparison to
pre-training with finetuning (Section IV-C1), in comparison to
other retrieval strategies (Section IV-C2), and in evaluations
on a physical robot (Section IV-C3) using a heterogenous
large-scale dataset collected in prior work [9]. Beyond final
performance, we also study the robustness of behavior retrieval
(Section IV-D) and ablate design choices and hyperparame-
ters (Section IV-E). In the appendix, we additionally include
experiments that study behavior retrieval’s ability to stitch
together behaviors from short-horizon tasks into a sequential
task (Appendix D-A), its ability to be combined with other
policy pretraining methods [25] (Appendix D-B), its robust-
ness to larger and more diverse Dprior (Appendix D-C), and an
analysis of failure modes of behavior retrieval and comparisons
(Appendix D-D).
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Fig. 5: Simulation Environments. We consider three simulated
domains.In each domain we highlight the downstream task data Dt

in blue, relevant offline data from Dprior in green, and irrelevant
downstream data from Dprior in red. In RoboSuite Can Pick and
Place (left), the agent must pick an place a can into the bin, and
irrelecant data involves throwing the can randomly. In RoboSuite Nut
Assembly (middle), the agent must insert a square into the correct
peg, and irrelevant data involves putting it onto the wrong peg. In
PyBullet WidowX Office Cleanup (right), the agent must pick and
place an eraser into a specified tray, where irrelevant data involved
many actions with other objects in the scene.

A. Experimental Domains

We study behavior retrieval and comparisons in three sim-
ulated domains with 7DOF end-effector control and three real
robot domains with 4DOF end-effector control, visualized
in Figures 5 and 6 respectively. The task data Dt for all
environments contain 10 expert demos for the target task.
Sim: CanPick. In this RoboSuite environment [47, 29], the
task is for a simulated Franka robot to pick and place a coke
can from one bin to another. Dprior contains a mix of 400
human-collected demos [29] where half complete the task and
half fail by randomly throwing the can out of the bin.
Sim: NutAssembly. The modified RoboSuite [47, 29] task is
for a simulated Franka robot to pick and insert a square into
the right peg. Dprior contains a mix of 400 machine-generated
demos where half complete the task and, in the other half, the
robot puts the square onto the wrong (left) peg.
Sim: Office. The third task is for a simulated Widowx robot
in an office environment [40] to pick an eraser and place it
into a specified tray. Dprior contains 1200 machine-generated
demos of 8 separate pick-place behaviors. Out of these, Dprior
contains 150 demos of the target eraser-tray task.
Real: NutAssembly Analogous to the simulated nut assembly
task, a real WidowX robot needs to pick up a blue square
hole and insert it onto the red peg. As constructed, the hole
and peg have a narrow tolerance, requiring precise control
for successful insertion. Dprior contains a mix of 160 human-
collected demos where half complete the task and half fail by
inserting the peg onto the green peg.
Real: Pickle The second real-world task is for a real WidowX
robot to pick up a pickle from the table and place it into
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Fig. 6: WidowX Robot Environments.We consider three robot
domains. In each domain we highlight the downstream task data Dt

in blue, relevant offline data from Dprior in green, partially relevant
offline data from Dprior in orange, and irrelevant offline data from
Dprior in red. In Nut Assembly (left), the agent must insert a square
into the correct peg, and irrelevant data involves putting it onto the
wrong peg (like the task in simulation). In Pickle in Cup (middle),
the agent must pick and place a pickle in a cup, and Dprior is a large
subset of the Bridge Dataset collected in a similar tabletop setting[9].
In Soap in Sink (right), the agent must pick and place a soap in sink,
a totally novel task, and again Dprior is a large subset of the Bridge
Dataset collected in a similar sink setting. [9].

a cup randomly placed within the robot’s visual field. Dprior
is a subset of the Bridge Data [9] that contains tabletop
manipulations, totalling to 285 demos. Out of these demos, 45
correspond to an analogous pickle-cup task, although there are
significant shifts in lighting, table color, and distractor objects.
Real: Soap The final task is for a real Widowx robot to pick
up a detergent container from the dish rack of a toy kitchen
sink and place it, standing up, on a red plate in the sink.
Dprior is a subset of the Bridge Dataset [8] that contains all
the 485 trajectories collected on a copy of this sink. There
is no analogous task in the Bridge Dataset, although there
are trajectories involving the detergent bottle, as well as sub-
trajectories that pull other objects from the dish rack or place
other objects into the sink.

B. What Data Does Behavior Retrieval Retrieve?

In our first experiment, we qualitatively analyze what type
of behaviors are retrieved in the Sim: NutAssembly and Real:
Pickle tasks. In Figure 7, we show example states from Dt,
and three randomly sampled states from the top-25 highest
ranked transitions in Dprior according to behavior retrieval and
three randomly sampled states from the lowest 25 transitions in
Dprior according to behavior retrieval. We observe that indeed
the states ranked highly by behavior retrieval are relevant to
the target task in Dt, and the lowest ranked transitions are
visibly from different or adversarial tasks (e.g. moving the
nut to the wrong peg).

In our next experiment, we quantitatively evaluate how
well behavior retrieval separates task relevant and irrelevant
data, particularly looking at the NutAssembly task in both
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Fig. 8: Demonstration of Embedding Separation. We measure how
behavior retrieval scores data from Dprior for the target task. Green is
the ground truth relevant data, while red is the ground truth irrelevant
demos. We see that behavior retrieval learns to make use of the part
of the irrelevant demos that are useful to the target task (grasping), but
only highly scores the relevant demos afterwards. This highlights that
behavior retrieval is able to make use of all relevant transitions, from
both relevant and irrelevant tasks, but effectively discards transitions
that aren’t useful to the target task.

simulation and the real robot (other environments in the
Appendix C). Concretely, we plot the average embedding
similarity for the ground truth relevant data (green) and for
the ground truth irrelevant data (red) (See Figure 8). For
example, in the nut assembly task data from Dprior that puts
the square on the correct peg is green, and on the incorrect
peg is red. While the agent is grasping the square, behavior
retrieval retrieves data from both sources as the grasp is always
relevant to the downstream task. However, once the agent
has grasped, we see the score for the task-irrelevant data
drop significantly. This highlights behavior retrieval’s ability
to make use of all transitions in Dprior that are useful for the
target task, while effectively filtering out those that are not
useful, a valuable property for being able to leverage large,
heterogeneous datasets as Dprior.

GCBC Dprior GCBC Dprior Ours
+ FT Dt

CanPick (Image) 68± 14% 62± 2% 74 ± 1%
CanPick (State) 33± 1% 45± 1% 73 ± 1%

NutAssembly (Image) 22± 4% 10± 1% 58 ± 9%
NutAssembly (State) 15± 1% 10± 1% 75 ± 5%

Office (Image) 0± 0% 10 ± 4% 64 ± 3%
Office (State) 76± 5% 76± 1% 85 ± 4%

Average 35 ± 4% 36 ± 2% 72 ± 2%

TABLE I: Comparing Behavior Retrieval to Pre-training +
Finetuning in Simulation. We report the success rate on our three
simulated tasks across 100 trials (averaged over 3 random seeds
with standard error shown) of behavior retrieval compared to goal-
conditioned behavior cloning (GCBC) on Dprior and with finetuning
on Dt. We see that both with and without fine-tuning multi-task
pre-training struggles and behavior retrieval performs best across all
settings, improving performance by over 30% on average.

C. Does Behavior Retrieval Improve Performance ...

1) Over Other Pre-training+Finetuning Schemes?: First,
we aim to understand how behavior retrieval compares to other
techniques that use pre-training and adapt the policy on a target
dataset. A conventional approach is to perform multi-task pre-
training of Dprior, followed by fine-tuning on the target task
data Dt. We begin by comparing behavior retrieval (Ours) to
such methods in simulation: pre-training with goal-conditioned
behavior cloning on Dprior (GCBC Dprior), as well as with
additional finetuning of the goal-conditioned policy on bal-
anced batches of Dt and Dprior (GCBC Dprior +FT Dt).
See Appendix A for more details on the implementation of
GC and GC+Finetune. In Table I we observe that across all
three simulated tasks, behavior retrieval improves over goal-
conditioned BC, with and without finetuning, improving the
success rate by 30% on average.

We hypothesize that purely offline goal-conditioned BC
struggles with underfitting, particularly in cases where goal-
states may may over-specify the task (i.e. many goal-states
can represent the same task). Similarly, adding fine-tuning can
be unstable – for example if training only on Dt the fine-
tuned policy can overfit, while if training on balanced batches
with the offline data, the underfitting issue remains. This is
particularly the case in settings where the desired change in
state only makes up a small portion of the goal-states, like
in Office (Image). Ultimately behavior retrieval is able to pull
only the relevant data from Dprior, and train on all of it without
overfitting to Dt, resulting in the best performance.

2) Over Other Retrieval Strategies?: We also compare
behavior retrieval (Ours) to other retrieval strategies across
all of our simulated environments. This includes not doing
any retrieval (Dt), training on balanced batches from Dprior
and Dt (Dprior +Dt), and using the ground-truth task label to
filter only task-relevant demos from Dprior (Ground Truth).
This last approach can be thought of as a privileged Oracle,
that does not use our learned filtering metric, but instead uses
the ground truth label to filter. This will retrieve demos from
Dprior that are known to be the same task, however will not
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Fig. 9: Comparing Behavior Retrieval to Other Retrieval Strategies. In simulation, we compare the success rate of behavior
retrieval (Ours) to other strategies for retrieval including only training on Dt (Dt), balanced batches of Dprior and Dt (Dprior + Dt), only
(Dprior) (interventions only), and using Ground Truth separation which uses privileged information. We consider both online interventions
(top) and 10 demos (bottom) as Dt. In both cases we see behavior retrieval approach the ground truth oracle performance, while significantly
outperforming the comparisons, which either overfit to only using Dt, or train too much on sub-optimal data from Dprior. All results are
computed over 100 trials (or 20 trials every episode in the intervention setting), all averaged over 3 seeds with standard error shading.

retrieve transitions from a different task that may be relevant.
We consider both the setting where downstream expert data
comes in the form of online interventions (Figure 9 (left)) and
when it comes in the form of 10 demos (Figure 9 (right)).

We observe in Figure 9 that despite the expert data coming
in very different forms, whole demos vs. online interventions,
in both settings behavior retrieval significantly improves suc-
cess rate over other retrieval strategies, by over 20% given
a small set of demos, and by around 10% given online
interventions. In the online intervention setting, the human
supervision is strong (on-policy corrections), therefore we
expect Dt to particularly useful and using Dprior to be less
important, hence why we see smaller gains from behavior
retrieval. In the setting where the agent is given a small set
of demonstrations (Figure 9 (right)), behavior retrieval nearly
matches using the oracle retrieval from Dprior, suggesting that
it is effectively capturing the relevant data to Dt.

In the case of online interventions, Dt struggles to learn
from the small amount of online expert data, and thus can
overfit significantly or experience sharp drops in performance
(Figure 9 (left), NutAssembly and CanPick (Image)). Even in
the case of a handful of target demos, Dt has larger variance
(Figure 9 (right), Office (State)). Naı̈vely using balanced
batches of Dprior and Dt can lead to training with task-
irrelevant data, leading to worse task-specific performance.

Comparing online interventions overall (Figure 9 (left)) to
full expert demos (Figure 9 (right)) for Dt, we observe that on
average performance with online expert data is slightly better,
an expected result as the human supervision is in-the-loop and
on the states the agent most needs feedback. Additionally, we
see on average that learning from low-dim state information

tends to perform slightly better than from images, with some
variation across tasks, again matching our intuition that lower-
dimensional state space of object and robot positions is easier
to learn from.

3) On a Real Robot?: While behavior retrieval performs
effectively, do the benefits translate to a physical robot?
In this experiment, we compare behavior retrieval to all of
the above comparisons from Sections IV-C1 and IV-C2 on
a real WidowX robot. We test on three real robot tasks,
NutAssembly, Pickle, and Soap, as described in Section IV-A,
where Dprior for the Pickle and Soap tasks involve using a
subset the pre-existing Bridge Dataset [9].

In our results (Figure 10), we again see that behavior
retrieval improves over both other retrieval strategies and pre-
training + finetuning by more than 20% in success rate. In fact,
we see that because it is able to use useful transitions even
from irrelevant tasks in the offline data, behavior retrieval ex-
ceeds using only prior data from the same task (Ground Truth),
which uses privileged information in the form of task labels.

Additionally, we note that like in our simulation experi-
ments, only using Dt tends to be unstable, completely failing
on some tasks like NutAssembly. Unlike our simulation exper-
iments, we see that adding finetuning to the goal-conditioned
pre-training has a much more significant impact on perfor-
mance, improving over GCBC by over 30%. We suspect this
is the case because there is a large shift from the Bridge Data
Dprior to the downstream task specific environment, so fine-
tuning is much more important.
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Fig. 10: Real Robot Comparisons. Across our three robot tasks, we compare the success rate given 10 target demos across 40 evaluations
of behavior retrieval, other retrieval methods, and pre-training and fine-tuning (top). We again see that behavior retrieval improves over the
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behavior retrieval exceeds using the ground truth filtering which uses only data from Dprior from the same exact task. We show the robot
setup for each task (bottom), as well as the camera capturing observations highlighted in the white box.

Dt Ours

Different Cup Color 1/10 6/10
Real Pickle 0/10 4/10
Distractors 0/10 4/10

Physical Perturbation 3/10 4/10

TABLE II: Robustness to Distribution Shifts. We test behavior
retrieval’s robustness to distribution shifts at test time, including
changing the cup color. We find effectively using Dprior to improve
robustness , maintaining performance close to a 50% success rate
while using only task-specific data (Dt) drops considerably to around
a 10% success rate.

D. How Robust is Behavior Retrieval?

In our next experiment, we study how robust behavior re-
trieval is with respect to distribution shifts, embedding spaces,
and hyperparameters.

First on the real robot Pickle in Cup task, we study
testing on a different colored cup than training, using a real
pickle instead of a toy pickle, visual distractors, and physical
perturbations. For visual distractors, we place four toy kitchen
items in the visual field of the robot and shuffle them for each
trial. For physical perturbations, we allow the robot to begin
the alignment process with the pickle in its grasp, and then
we move the cup to a different location.

In Table II we find that across all distribution shifts, behav-
ior retrieval is able to maintain strong performance (nearly a
50% success rate), while the model using only task-specific
data completely collapses to around a 10% success rate. We
hypothesize that retrieving broader data that is still useful to
the task makes the trained policy robust to such variation.
Moreover, behavior retrieval is able to make use of the Bridge
Data [9], which contains a WidowX250, while our evaluations
are carried out on a WidowX200 robot, further highlighting its

Ours w/ Contrastive Ours w/ VAE (default)

CanPick (Image) 47 ± 1% 74 ± 1%
CanPick (State) 55 ± 3% 73 ± 1%

NutAssembly (Image) 30 ± 3% 58 ± 9%
NutAssembly (State) 19 ± 3% 75 ± 5%

Office (Image) N/A 64 ± 3%
Office (State) 39 ± 1% 85 ± 4%

Average 38± 2% 72 ± 2%

TABLE III: Comparing State-Action Embedding Spaces for
Retrieval. In our simulation tasks we compare the success rate
over 100 trials (and 3 random seeds) of our method with different
choices for learning the state-action embedding space. We find that
using other techniques like contrastive RL to learn the state-action
embedding can be unstable, leading to worse performance than the
simple VAE in all tasks, and diverging in the case of Office (Image).

robustness to distribution shifts.

E. Ablating Components of Behavior Retrieval

In this section, we ablate different design choices and
hyperparameters in behavior retrieval, specifically the choice
of (1) (s, a) embedding space and (2) filtering threshold δ.

Ablating (s, a) Embedding. We begin by comparing our
VAE embedding space to alternative methods for learning
the (s, a) embedding. Concretely, we also explore using
contrastive RL [10], which learns an (s, a) embedding that
captures the future distribution of visited states with con-
trastive learning. In principle, this embedding should capture
a functional embedding of (s, a). We then explore using
behavior retrieval swapping in a contrastive RL embedding
instead of our default VAE (s, a) embeddings.

In Table III, we observe that the VAE embedding performs
better across all simulated tasks. While in principle contrastive
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in both simulation and the real world, we find that behavior retrieval is
generally robust to the choice of δ with the best performance in both
sim and real with δ around 0.75. Interestingly, we see performance
scales gracefully as δ decreases, but performance drops significantly
as δ increases (filtering out all of Dprior).

RL should capture more “functional” state-action embeddings,
we found it to be unstable, even diverging and failing to train
the representation effectively in the Office environment from
image observations.

Ablating δ. Additionally, we study the method’s robust-
ness to hyper-parameters, specifically the embedding distance
threshold δ for when to accept or reject samples from Dprior. In
Figure 11, we evaluate different thresholds in simulation and
on the real robot. First we see that, across domains, a threshold
of around δ = 0.75 works best. Interestingly, we find that
the method is robust to lower values of δ, and performance
degrades gracefully. Intuitively, this means that the method is
sampling more task-irrelevant data, but is still capturing all
the task-relevant data. On the other hand, performance drops
sharply with too high of a δ, which again makes sense: too
high of a δ will throw out all of Dprior including useful data.

V. DISCUSSION

Summary. We have presented behavior retrieval, a method
for leveraging large, unlabeled offline datasets to efficiently
learn target tasks from a small amount of expert data. Our key
insight is that rather than simply pre-training and finetuning,
we can learn to selectively retrieve only the useful data from
the prior dataset to improve task-specific training. behavior
retrieval presents a simple technique for tackling this problem,
and in our experimental evaluations outperforms both multi-
task pre-training and finetuning approaches as well as other
retrieval strategies. Moreover, we see qualitatively that be-
havior retrieval indeed retrieves task-relevant transitions while
discarding those that are irrelevant.
Limitations and Future Work. While we are excited about
the potential of behavior retrieval, a number of important
limitations remain. First, a major limitation is that our current
lookup relies on similarity in a compressed embedding space
of states and actions. While this has worked effectively in our
experiments, it focuses on general visual similarity and may
not capture the task-relevant components of a state and action

in all scenarios, e.g. in cases where Dprior is visually very dif-
ferent from Dt. Behavior retrieval also relies on access to the
prior dataset when learning the new task, which may prevent
its applicability to memory-limited scenarios where using only
a pre-trained model is feasible. Finally, while we suspect that
behavior retrieval can be naturally combined with many other
directions of research towards more efficient imitation learning
(like pre-trained representations, restricted action spaces, and
large-scale pre-training), we have yet to experimentally verify
that this is the case. Combining behavior retrieval with these
methods and seeing if the benefits compound is an exciting
direction for future research.
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APPENDIX A
MODEL DETAILS

A. Data Modalities

We include a third-person camera view (84 x 84 x 3), an
eye-in-hand camera view (84 x 84 x 3), end-effector position
(3-dim), end-effector orientation (4-dim), and gripper state (2-
dim). For state-only experiments in simulation, we use the
provided object states and the same proprioception.

For real robot experiments, we use the end-effector position
and a third-person camera view, either mounted facing the
front of the robot (nut assembly task) or looking directly down
at robot’s work area (tasks from the Bridge data)

B. Policy Architecture

We used a memory-augmented GMM policy. Images are
processed with independent ResNet-18 encoders with a mod-
ified spatial softmax pooling and last layer to give a 64-
vector embedding for each image. These embeddings are then
concatenated with the proprioceptive lowdim data before being
encoded in a two-layer LSTM with a horizon of 10 and a
hidden dimension size of 1000.

To compute the action, the LSTM-encoded state represen-
tation is passed through an MLP to yield the parameters of
a GMM with 5 modes. The model is trained through log-
likelihood. During inference, we sample from the GMM with
a scaled-down variance. The policy is trained end-to-end,
including the visual embedders.

C. VAE Embedding Architecture

Similar to the policy modality encoder, the VAE embedder
uses a ResNet-18 to encode all images, and concatenates
the lowdim proprioceptive and/or object states to the image
embeddings. In addition, the action is treated as a lowdim
modality and concatenated to the image embeddings.

From this modality embedding, the VAE runs an MLP
encoder consisting of two hidden layers (300, 400) and output
a latent 128-vector. We use a fixed gaussian prior, and we use
a β weight of 0.0001 on the KL loss.

During training, we reconstruct the input through the VAE
embedding. Low-dimensional states are recreated directly us-
ing MLPs, and the images are recreated using a ResNet-18
structure with transposed convolutions and upsampling.

For the real robot tasks on Bridge data, we preloaded R3M
[30] weights on the ResNet-18 encoders, which were helpful
in getting the model to adapt to the visually diverse data.

D. Tuning and Training

For the VAE Images, we train for 500k steps with batch size
50. For the VAE lowdim, we train for 500k steps with batch
size 100. We can monitor the progress of VAE training by
examining the quality of its image reconstruction. In practice,
this was sufficient to tune the main hyperparameter β, although
we also made use of plots like those in Figure 8.

The plots like Figure 8 also allowed us to estimate the best
δ, although in practice, the exact δ is not critical, as long as
it is not too high.

For policies on images, we train for 300k steps with
batch size 16. We use random crop augmentation on the
sim environments, and we also use color jitter for the real
environments. For policies on state, we train for 600k steps
with batch size 100.

For our method, all data, and goal-conditioned fine-tuned,
we sample from two datasets (offline, task-specific) and so the
batch sizes are doubled.

E. Goal Conditioned
We construct the goal-conditioned baseline by treating the

last state in the demonstration as an input to the policy. We
train only on the offline data, and during inference, we take
the last state from a trajectory sampled from Dt, which we
assume access to during test-time.

F. Goal Conditioned Fine Tune
To fine-tune the goal-conditioned policy, we load the pre-

trained goal-conditioned model and then train on a balanced
batch of offline and task-specific data.

G. Data Selection
We precompute the embeddings for the offline and task

dataset, and then compute the batch negative L2 distance.
Because we use a memory-augmented policy, we implicitly

assume that the past 10 steps of a selected transition are also
relevant. This is not a very strong assumption, as any sequence
of state-actions that get us to a task-relevant state should be
considered by our task policy.

H. Our Method on Interventions
The core of our method stays the same with the HG-DAgger

experiments, except that the task-relevant data comes from the
last 1000 transitions where the expert has intervened.

The expert policy is either a machine policy or a policy
trained on a larger dataset of task data. Every step, we take
the L2 distance of the apprentice policy action and the expert
action. If the L2 distance is above a certain threshold, we take
the expert action and mark the transition as an intervention.
Otherwise, we take the apprentice policy action.

We pre-train the policy with the whole offline dataset. While
this yields a policy that does not know which location to place
the peg or the soda can, the pre-training gave the policy the
ability to grasp objects and also gave it features that made it
adapt relatively quickly to the interventions.

APPENDIX B
ENVIRONMENT DETAILS

A. Generating the Offline and Expert Data in Sim
For the NutAssembly and Office simulation tasks, machine

policies were used to generate the offline dataset. For Nu-
tAssembly, we use a hand-coded algorithm to grasp the Nut
piece, rotate it to align the peg, and then plunge onto the peg.
We add gaussian noise to the actions, and we randomly select
the peg to insert onto.

For Office, we use the provided Roboverse machine policy
[40]. We used four objects and two bins, totaling to eight
separate pick-place tasks.



B. Real Robot Setup

We used a Widowx 200 with 3DoF delta control running at
3Hz. The images come from a Logitech C920 camera secured
in place during collection and testing. The testing location had
consistent lighting during all trials.

Task-relevant data and the offline data (for the nut assembly
environment) were collected using a PS3 controller. For con-
sistency, only one experienced human demonstrator was used.
The 10 task-relevant data took around 10 minutes to collect.

C. Real NutAssembly Task Setup

This setup was constructed to mimic the simulation task.
Two wooden coathanger pegs were secured into a wooden base
and painted red and green. The nut was constructed from MDF
Plywood and painted blue. An additional piece of wood was
glued to the top of the plywood to allow for easier grasping.
The hole has a ∼ 4mm tolerance on the peg, and the peg has
a larger head that makes it likely that a poorly aligned hole
will fall to the side.

D. Pickle Task Setup

This setup was constructed to mimic the pickle cup task
found in the bridge data. The same red cup and a similar pickle
was used in the task demonstration. The red cup was randomly
placed in 20 cm x 8 cm region for every demonstration and
evaluation. The pickle was placed in 10 cm x 4 cm region
for every demonstration and evaluation. While the bridge
data contains distractors and multiple colors of cups, the task
demonstrations only contained the pickle and the red cup.

For a run to be counted as a success, the pickle must be
completely inside the cup. We exclude the rare cases where
the pickle rests on top of the cup.

E. Real Soap Task Setup

This setup was constructed to mimic the sink tasks found in
the bridge data. The blue sink is placed at roughly the same
position as that of the Bridge Data, with a collection of toy
kitchen items like cups, plates, and toy foods. The soap is
placed in the corner of the dish rack, and the red plate target
is placed randomly in the sink for every demonstration and
evaluation. The distractor items are randomized for every trial
as well.

For a run to be counted as a success, the soap must be on
the red plate and standing up by itself. In the rare cases where
the plastic gets stuck to the robot gripper, we redo the trial.

F. Using the Bridge Data

For the pickle-cup task, we selected the tabletop manipu-
lation trajectories from the bridge data, which consisted of
manipulations on three different colors of tables with various
objects. For the soap in sink task, we selected all of the
trajectories that are performed on this particular sink.

For both tasks, we set up our environment to match that
of the bridge data as closely as possible. This included
approximating the position of the fixed camera, and we also
applied an approximate transformation in the proprioceptive

data to match our setup. Because we were using only 3DoF
control, we discarded the orientation in the proprioception and
actions of the bridge data.

APPENDIX C
ADDITIONAL VISUALIZATIONS

NutAssembly T-SNE Embeddings

Fig. 12: Visualizing the Embedding Space: Using a T-SNE
projection and access to ground-truth task labels (which determine
the color of the point), we are able to see how trajectories follow
paths in the projection, and how the different task types find natural
clusterings.

Figure 12 shows a projection of the embeddings for 100
NutAssembly simulation trajectories. We see curves in the
embedding plot which consist of individual or grouped transi-
tions. Furthermore, we see how there are distinct clusterings
of trajectory types, and we also see overlaps of trajectories,
which we understand to be the shared sub-trajectories.

Figure 13 shows all of the separation plot for the six
simulation configurations and the two real robot tasks with
ground truth task labels. As can be seen, our VAE embeddings
create a separation between relevant and irrelevant tasks. For
the CanPick and NutAssembly (both sim and real), we see an
overlapping of similarities where there is a shared grasping of
the target object.

Figure 14 visualizes some of the selected and rejected data
while running behavior retrieval on all of our six environ-
ments. As can be seen, the most similar transitions have
correspondences to the desired task, and the least similar
transitions typically contain irrelevant states. We note that for
most environments, the grasping process is found in the top
25 transitions. This is desirable, as it shows that our method
can make use of shared sub-trajectories.

APPENDIX D
ADDITIONAL EXPERIMENTS

A. Can Behavior Retrieval Perform Task Stitching?

In our next experiment, we seek to understand if behavior
retrieval is capable of performing task-stitching in the simu-
lated WidowX office environment. That is, we consider the
case where Dprior only contains short-horizon behaviors (e.g.
picking a single object and placing it in a container), but
test on a target task Dt which requires picking and placing
two objects in sequence. We see in Table IV that in this
setting behavior retrieval is the only method able to achieve a
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Fig. 13: Embedding Separation Plots: We show the embedding
separation plots for all of the environments with ground truth task
labels.

success rate above 10%. behavior retrieval is able to pull the
useful transitions from each of the short horizon trajectories
in the offline data, and jointly finetune on it with Dt to more
effectively tackle the sequential task.

Dt (Dprior +Dt) GCBC Dprior GCBC Dprior Ours
+FT Dt

5± 3% 0 0 3± 2% 20± 2%

TABLE IV: Robustness to Task Horizon. We study if behavior
retrieval can perform task-stitching, that is, leveraging short horizon
trajectories in Dprior to learn a sequential task in Dt. We see that
behavior retrieval is the only method to get a success rate that is not
near zero, due to it’s ability to pull the relevant parts of short-horizon
trajectories help learn the multi-step task.

B. Can Behavior Retrieval Be Combined with Other Pre-
Training Methods?

In this experiment, we investigate if behavior retrieval can
be combined with other methods than vanilla behavior cloning
for pre-training policies. Concretely, we combine behavior
retrieval finetuning with the LMP approach proposed in Lynch
et al. [25], which learns a skill embedding space by encod-
ing trajectories which the policy is then conditioned on. In
Table V we look at success rates in the Robosuite CanPick

CanPick

NutAssembly SimOffice
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Fig. 14: Visualizing Retrieved Data for All Environments: We
show samples from the top 25 and the bottom 25 transitions when we
apply our method to the offline data collected in each environment.

environment, comparing LMP trained on Dprior, LMP trained
on Dprior and naively finetuned on Dt, and LMP trained on
Dprior and finetuned with behavior retrieval on Dprior. We
observe that naively finetuning the LMP policy on Dt helps
performance slightly, but using behavior retrieval finetuning
leads to more than a 10% improvement in success rate. This
suggests that behavior retrievalas a finetuning method can be
naturally combined with different policy training approaches.

LMP (Dprior) LMP (Dprior) + FT (Dt) LMP (Dprior) + FT (Ours)

55± 2% 56± 2% 67± 4%

TABLE V: Combining Behavior Retrieval with LMP. We study
if behavior retrieval can be combined with other policy pre-trainined
methods like LMP [25]. We find that it can, producing over a 10%
improvement in success rate.

C. Using the Full Bridge Dataset.

In the original Pickle and Soap real robot tasks above, we
set Dprior to only be a subset of the full Bridge Dataset that was
captured in visually similar scenes to the target environment.
As a result, Dprior only consisted of 10-20% of the full Bridge
Dataset. To test if behavior retrieval can handle the full, more
visually diverse dataset, we ran an additional experiment on
the task of picking and placing a cup, where Dprior consisted of
the full Bridge Dataset, including mostly data from different
scenes. We found that out of 20 trials, behavior retrieval had
a 55% success rate at the task, while Dt only has a 30%
success rate, and Dprior + Dt has a 35% success rate. Thus,
even when only a small portion of a visually diverse Dprior is



relevant to the task, with the correct choice of δ (0.9 in this
case), behavior retrieval can still provide significant benefits
to performance.

D. Failure Mode Analysis

Grasp Intermediate Alignment / Place

Ground Truth 52% 0% 58%
Ours 54% 2% 44%

Task-Specific Only 60% 9% 31%
All Data 22% 31% 47%

GC 83% 5% 12%
GC + Finetuned 15% 0% 85%

TABLE VI: Failure Mode Analysis. Averaged across all of our real
robot tasks (40 trials each), we measure the percentage of each type
of failure for each of the methods including our own. We observe that
the distribution of failures is similar to Ground Truth, suggesting that
with effective retrieval, methods tend to only fail at the challenging
bottleneck regions of the task (grasping and placing).

For the real robot experiments, we kept track of the types
and frequencies of failures on the tasks. We grouped these
failures into three categories relevant to the three tasks we con-
sider: grasp, intermediate, and alignment / place. Intermediate
failures include anything between the grasping of the object
and the final alignment process, like the premature release of
the object.

We plot the percentage of each failure type for each method
in Table VI, averaged across the three tasks and 40 trials.

Averaged across the three tasks, the failure distribution of
behavior retrieval is comparable to the ground truth. Namely,
most of the failures are at the bottleneck regions of grasping
and placing. When all the data is included, the robot experi-
ences more intermediate failures, as the offline dataset contains
irrelevant and even adversarial demonstrations, like in the case
of the two pegs in Nut Assembly.

Finally, with the goal-conditioned models, the significant
distribution shift between the offline and task-specific demon-
strations often yielded policies that failed to successfully grasp
the object. The grasping is fixed with fine-tuning, although
perhaps due to the complexity of the goal state, the robot
struggles with the higher precision alignment part of the task.
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