Supplementary: Structured World Models
from Human Videos

A. Videos

Videos of our results can be found at: https://
human-world-model.github.io, or in the zip folder.

B. Implementation Details

1) Robot Setup

We use two robots: Franka Emika and Stretch RE1 from
Hello-Robot. Both robots are controlled in end-effector space
as well as a rotation (roll for the Stretch, and roll + pitch for
the Franka). The Franka roll and pitch, as well as the Stretch
roll are sampled from [0, —F,—7] (randomly at first). The
robots run open loop trajectories. The camera observations are
coming from D415 Intel Realsense RGBD cameras. We use
a low-level impedance controller for the Franka to reach the
desired high level actions.

2) Tasks and Environments

Our setup consists of six tasks, three (veggies, knife and
cabinet) of which are in a Play Kitchen from Ebert et al. [3],
and we have three in the wild tasks that involve opening the
dishwasher, lifting the garbage can handle or pulling out a
drawer. These are everyday tasks that we found. Videos of

each task can be seen at https://human-world-model.

github.io.

3) Data Collection

We perform data collection by executing the affordance
model G, at first, and then set mode m; = 1, and use
Ay, as Cartesian end-effector deltas. These are sampled from
N(0,0.05). We sample from Gy, in the following manner: we
obtain the 2D pixel from the model, and find the depth at that
point. For the grasp part of the affordance, we simply pass
this depth to our controller (which has hand-eye calibration).
For post grasp trajectory, we sample a depth with d as the
center, with a bias towards moving away from the surface (as
we usually have a wall right behind the object, or the depth
camera). For each of the baselines, we use the underlying
action space to sample actions, and append Ay, to the end.
Our trajectory, during the robot sampling stage, consists of
3-4 actions with m; = 0, and 6-10 actions with m; = 1. The
overall data collection process takes about 25 to 45 minutes
depending on how long resets takes.

4) Human Videos

Our human video dataset is obtained from Epic-Kitchens
[2]. We take semantically pre-anotated action clips, and apply
the 100 Days of Hands (100 DoH) [11] hand-object model to
get annotations for when and where the contact happened, and
how the hand moved post contact, all in normalized (0, 1) pixel
space. To obtain the contact points, we use a similar pipeline

to Liu et al. [7], where we find the intersection of the hand
bounding box and the interacted object’s bounding box, and
look for skin outline in that region. We use a skin segmentation
(similarly to Liu et al. [7]) to get the external grasp points.
We obtain about 55K such clips to train on. Each sequence
is of length 4, with m; = 0O for all ¢. For the rotation and the
depth values, we randomly sample these values during training,
from one of the feasible rotations, or within 50cm of the
environment surface respectively. We train a ResNetl8 based
encoder-decoder architecture for our grasp point prediction.
We perform a spatial softmax on the decoder deconvolutional
output to obtain the grasp keypoints. The post-grasp trajectory
head is a Transformer [13] with 6 self-attention layers that
have 8 heads, inspired from Liu et al. [7].

5) World Model

Our world model architecture is the same as that of Hafner
et al. [4], excluding the visual encoders or decoders. We do
not tune any of the world model hyper-parameters, and use the
default Dreamer[4] settings. We use the NVAE [12, 1] encoder
and decoder used in FitVid [1] to better handle high dimensional
image prediction. We use only one cell per block instead of
two, due to GPU memory restrictions and to train with larger
batch sizes. We do not have any residual connections between
the encoder and the decoders, to force the latent of the world
model, z, to be an information bottleneck. The dimension of z
is 650 (the determisitic component of the RSSM[4] is size 600,
and the stochastic component is size 50). The model is trained
in Tensorflow, and each image is of the size 128x128x3. In the
experiments that use reward prediction, we reqgress ¢, (the
reward decoder) to the distance to goal in the space of R3M
[8] features (the ResNetl8 [5] version) of the weights. The
reward predictor network consists of a 2 layer MLP with 400
hidden units which takes the world model feature z as input.

6) Baselines

Every baseline that uses a world model uses the same code

as SWIM, with either a different pre-training setup or different
action space.

e MBRL-Affordance: This is the same exact setup as
SWIM in terms of the world model and the execution of
the affordance model, but we do not use any pre-trained
weights when training on robot data.

e MBRL-Pix: The action type is the same as
MBRL-Affordance, but the pixel locations are
chosen at random, and not from the human-centric
affordance model. The actions are sampled uniformly in
the 2D crop around the object.

e MBRL: Here all of the actions are with m; = 1.


https://human-world-model.github.io
https://human-world-model.github.io
https://human-world-model.github.io
https://human-world-model.github.io

e BC-Affordance: This is a filtered-behavior cloning
[9, 10] strategy. We rank trajectories based on distance in
R3M [8] space to goal. We fit a Gaussian Mixture Model
with 2 centers to the top actions, and sample from those,
at execution time.

e BC-Pix: We fit a GMM top trajectories just like
BC-Affordance. The sampling space is uniform in
the crop around the object.

7) Training, Finetuning and Deployment

For training the world model, Wy, in each iteration we train
on 100 batches of data, where each batch consists of an entire
trajectory sequence. These sequences are of length 2, 3 and
10 for the human video, hello robot and franka robot settings
respectively. We first train a model on the human data for about
6000 such iterations with a batch size of 80, which takes about
96 hours on a single RTX 3090 GPU (using 24GB of VRAM).
We then finetune this model for 300 epochs on robot data for the
joint model, and 200 iteration for the single-task models using
a batch size of 24, on a RTX 3090, which takes about 3-4 hours
of training. The batch size for robot data is smaller because
the model needs to deal with longer sequences consisting of
hybrid actions (both the affordance actions and cartesian end
effector actions). For the continual learning experiments we
subsequently train on the aggregated datasets for an additional
50 iterations. When deploying the model to perform a task,
we use CEM for planning at the beginning of the trajectory,
and then execute the optimized action sequence in an open-
loop manner. We use 3 iterations of CEM, amd 2000 action
proposals. Further, in all our experiments, we fix M = 1400
and A = 600 (M and N are defined in Alg. 2), for fixing the
ratio of biasing the proposals sent to the model for planning.

8) Evaluation

We evaluate our world model’s outputs by executing the
trajectory it outputs in the real world using open-loop control.
We use goal images that indicate objects are manipulated in
specific ways, for example an open cabinet, vegetables picked
up and in the air, the knife should be lifted up, the drawer pulled
out, the garbage can and dishwasher opened. We evaluate for
each method/ablation 25 times, presenting the average.

9) Codebases
We use the following codebases:

o https://github.com/danijar/dreamerv2 [4] for the world
model code

¢ https://github.com/ddshan/hand_object_detector for the
100DoH model [11]

o https://github.com/epic-kitchens for Epic-Kitchens [2]
processing

o https://github.com/facebookresearch/r3m for R3M [8]
model

« https://github.com/facebookresearch/fairo/tree/main/
polymetis [6] for the end-effector control code for the
Franka

o https://github.com/orgs/hello-robot/repositories for Stretch
RE-1

REFERENCES

[1] Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj
Nair, Sergey Levine, Chelsea Finn, and Dumitru Erhan.
Fitvid: Overfitting in pixel-level video prediction. arXiv
preprint arXiv:2106.13195, 2021. 1

[2] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos,
Davide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision: The
epic-kitchens dataset. In ECCV, 2018. 1, 2

[3] Frederik Ebert, Yanlai Yang, Karl Schmeckpeper,
Bernadette Bucher, Georgios Georgakis, Kostas Daniilidis,
Chelsea Finn, and Sergey Levine. Bridge data: Boosting
generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021. 1

[4] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi,
and Jimmy Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020. 1, 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.
03385. 1

[6] Yixin Lin, Austin S. Wang, Giovanni Sutanto, Ak-
shara Rai, and Franziska Meier. Polymetis. https:
/[facebookresearch.github.io/fairo/polymetis/, 2021. 2

[7] Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and
Xiaolong Wang. Joint hand motion and interaction
hotspots prediction from egocentric videos. In CVPR,
2022. 1

[8] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 1, 2

[9] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey

Levine. Advantage-weighted regression: Simple and

scalable off-policy reinforcement learning. arXiv preprint

arXiv:1910.00177, 2019. 2

Jan Peters and Stefan Schaal. Reinforcement learning by

reward-weighted regression for operational space control.

In ICML, 2007. 2

Dandan Shan, Jiaqi Geng, Michelle Shu, and David F

Fouhey. Understanding human hands in contact at internet

scale. In CVPR, pages 9869-9878, 2020. 1, 2

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical

variational autoencoder. NeurIPS, 33:19667-19679, 2020.

1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. NeurlPS,

2017. 1

(10]

(11]

[12]

[13]


https://github.com/danijar/dreamerv2
https://github.com/ddshan/hand_object_detector
https://github.com/epic-kitchens
https://github.com/facebookresearch/r3m
https://github.com/facebookresearch/fairo/tree/main/polymetis
https://github.com/facebookresearch/fairo/tree/main/polymetis
https://github.com/orgs/hello-robot/repositories
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://facebookresearch.github.io/fairo/polymetis/
https://facebookresearch.github.io/fairo/polymetis/

