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Abstract—Large-scale data is an essential component of machine
learning as demonstrated in recent advances in natural language
processing and computer vision research. However, collecting
large-scale robotic data is much more expensive and slower as
each operator can control only a single robot at a time. To
make this costly data collection process efficient and scalable, we
propose Policy Assisted TeleOperation (PATO), a system which
automates part of the demonstration collection process using a
learned assistive policy. PATO autonomously executes repetitive
behaviors in data collection and asks for human input only
when it is uncertain about which subtask or behavior to execute.
We conduct teleoperation user studies both with a real robot
and a simulated robot fleet and demonstrate that our assisted
teleoperation system reduces human operators’ mental load while
improving data collection efficiency. Further, it enables a single
operator to control multiple robots in parallel, which is a first
step towards scalable robotic data collection. For code and video
results, see clvrai.com/pato.

I. INTRODUCTION

Recently, many works have shown impressive robot learn-
ing results from diverse, human-collected demonstration
datasets [34, 8, 32, 14, 7]. They underline the importance of
scalable robot data collection. Yet, such human demonstration
collection through “teleoperation” is tedious and costly: tasks
need to be demonstrated repeatedly and each operator can
control only a single robot at a time. Research in teleoperation
has focused on exploring different interfaces, such as VR
controllers [52] and smart phones [34], but does not address
the aforementioned bottlenecks to scaling data collection. Thus,
current teleoperation systems are badly equipped to deliver the
scalability required by modern robot learning pipelines.

Our goal is to improve the scalability of robotic data
collection by providing assistance to the human operator during
teleoperation. We take inspiration from other fields of machine
learning, such as semantic segmentation, where costly labeling
processes have been substantially accelerated by providing
human annotators with learned assistance systems, e.g., in the
form of rough segmentation estimates, that drastically reduce
the labeling burden [9, 1].

Similarly, we propose to train an assistive policy that can
automate control of repeatedly demonstrated behaviors and
ask for user teleoperation only when facing a novel situation
or when unsure which behavior to execute. Thereby, we aim
to reduce the mental load of the human operator and enable
scalable teleoperation by allowing a single operator to perform
data collection with multiple robots in parallel.
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Fig. 1: Policy Assisted TeleOperation (PATO) enables large-
scale data collection by minimizing human operator inputs and
mental efforts with an assistive policy, which autonomously
performs repetitive subtasks. This allows a human operator to
simultaneously manage multiple robots.

In order to build an assistive system for robotic data
collection, we need to solve two key challenges: (1) we need
to learn assistive policies from diverse human-collected data,
which is known to be challenging [37], and (2) we need to learn
when to ask for operator input while keeping such interventions
at a minimum. To address these challenges, we propose to
(1) use a powerful hierarchical policy architecture that can
effectively learn from diverse multi-modal human data, and
(2) train a stochastic policy and use its output distribution to
estimate its uncertainty about how to act in the current scene
and which task to pursue. We then use this estimate to elicit
operator input only if the assistive policy is uncertain about
how to proceed.

The main contribution of this paper is a novel Policy
Assisted TeleOperation (PATO) system, which enables scalable
robotic data collection using a hierarchical assistive policy. We
evaluate the effectiveness of our approach in a user study in
which operators collect datasets of diverse kitchen-inspired
manipulation tasks with a real robot. We find that our proposed
assisted teleoperation approach reduces operators’ mental load
and improves their demonstration throughput. We further
demonstrate that our approach allows a single operator to
manage data collection with multiple robots simultaneously in
a simulated manipulation environment – a first step towards
more scalable robotic data collection.

https://clvrai.com/pato


II. RELATED WORK

Robot Teleoperation. Demonstrations have played a key
role in robot learning for many decades [44, 6, 4]; thus, many
approaches have been explored for collecting such demonstra-
tions. While initially kinesthetic teaching was common [2] in
which a human operator directly moves the robot, more recently
teleoperation has become the norm [52, 34, 18, 14, 30], since
separating the human operator and the robot allows for more
comfortable human control inputs and is crucial for training
policies with image-based inputs. Research in teleoperation
systems has focused on exploring different interfaces, like VR
headsets [52, 14], joysticks [8] and smartphones [34]. Yet, none
of these works explores active assistance of the human operator
during teleoperation. Others have investigated controlling high-
DoF manipulators via low-DoF interfaces through learned
embedding spaces [31, 25] to allow people with disabilities to
control robotic arms. In contrast, our approach trains assistive
policies that automate part of the teleoperation process with
the goal of enabling more scalable data collection.

Shared and Traded Autonomy. The idea of sharing efforts
between humans and robots when solving tasks has a rich
history in the human-robot interaction community [24, 47,
5, 43, 17, 40, 26, 3, 15, 16]. The literature differentiates
between shared autonomy approaches (human and robot act
concurrently, [12, 13, 49]) and traded autonomy approaches
like ours (human and robot alternate control, [28, 42, 41]).
Such approaches typically rely on a pre-defined set of goals
and aim to infer the intent of the human operator to optimally
assist them. Crucially, in the context of data collection, we
cannot assume that all goals are known a priori, since a core
goal of data collection is to collect previously unseen behaviors.
Thus, instead of inferring the operator’s intent over a fixed goal
set, we leverage the model’s estimate over its own uncertainty
to determine when to assist and when to rely on operator input.

Interactive Human Robot Learning. In the field of robot
learning, many approaches have explored leveraging human
input in the learning loop and focused on different ways to
decide when to leverage such input. Based on the DAgger
algorithm [45], many works have investigated having the human
themselves decide when to intervene [27], using ensemble-
based support estimates [38], using discrepancies between
model output and human inputs [51, 23], or risk estimates
based on predicted future returns [22]. Yet, all these approaches
focus on training a policy for a single task, not on collecting
a diverse dataset. Thus, they are not designed to learn from
multi-modal datasets or estimate uncertainty about the desired
task. We show in our user study that these are crucial for
enabling scalable robot data collection.

Assisted Robot Data Collection. Clever et al. [10] aims
to assist in robot demonstration collection via a learned
policy. They visualize the projected trajectory of the assistive
policy to enable the human operator to intervene if necessary.
However, they focus on collection of single-task, short-horizon
demonstrations and require the operator to constantly monitor
the robot to decide when to intervene. In contrast, our system
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Fig. 2: PATO is hierarchical: a high-level subgoal predictor
p(sg|s, z) and a low-level subgoal-reaching policy πLL(a|s, sg).
To decide when to follow the assistive policy, we measure
uncertainty of both high-level (subgoal predictor) and low-
level (subgoal-reaching policy) decisions. The task uncertainty
is estimated using the subgoal predictor’s variance, and the
policy uncertainty is estimated as a disagreement among an
ensemble of subgoal-reaching policies.

can collect diverse, multi-task datasets and learn when to ask
the user for input, enabling more scalable data collection, e.g.,
with multiple robots in parallel.

III. APPROACH

In this paper, we aim to improve the scalability of robotic
data collection by learning an assistive policy to automate part
of teleoperation when possible (in Section III-B) and ask for
user inputs only when necessary (in Section III-C).

A. Problem Formulation

To enable scalable data collection of a dataset D, we propose
to automate control of repetitive behaviors using an assistive
policy. The assistive policy controls the robot and minimize
required human inputs, which allows the human operator to
divert attention away from the robot over contiguous intervals,
e.g., to attend to other robotic agents collecting data in parallel.
The assistive policy can be defined as π(a|s), which produces
actions a, e.g., robot end-effector displacements, given states
s, e.g., raw RGB images.

To train the assistive policy π, we assume access to a pre-
collected dataset Dpre of diverse agent experience, e.g., from
scripted policies, previously collected data on different tasks or
human play [33]. Crucially, we explicitly require our approach
to handle scenarios in which the newly collected dataset D
contains behaviors that are not present in Dpre. Thus, it is not
possible to fully automate data collection given the pre-training
dataset Dpre. Instead, the system needs to request human input
for unseen behaviors while providing assistance for known
behaviors.

B. Learning Assistive Policies from Multi-Modal Data

Learning the assistive policy π(a|s) from the diverse, multi-
task data Dpre is challenging since the data is often highly multi-
modal and long-horizon to imitate [37]. Thus, our assistive
policy is built up on prior work in imitation of long-horizon,
multi-task human data [35, 18, 33].
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Fig. 3: Our hierarchical assistive policy is trained using
a pre-collected dataset Dpre. From a sampled trajectory
(s1, a1, . . . , aH−1, sH) of length H, a subgoal predictor
p(sg|s1, z) is trained as a conditional VAE to cover a multi-
modal subgoal distribution, where sg = sH. Then, an ensemble
of subgoal-reaching policies π

(k)
LL(at|st, sg) are trained to

predict the ground truth actions. The gray dashed lines represent
supervision for the prediction tasks of the subgoal predictor
and subgoal-reaching policies.

Our hierarchical assistive policy consists of a (high-level)
subgoal predictor p(sg|s, z) and a (low-level) subgoal-reaching
policy πLL(at|st, sg), as illustrated in Figure 2. Given a state
s, the subgoal predictor first generates a subgoal sg. Then,
given the subgoal and the current state, the subgoal-reaching
policy outputs an action for next L timesteps, leading the agent
toward the subgoal.

To allow prediction of the full distribution of possible sub-
goals in multi-modal human demonstration data, we condition
the subgoal predictor on a stochastic latent variable z [35]. For
example, in a multi-modal dataset in which the robot moves
vegetables into the oven in half of the trajectories and places
them on a plate in the other half, z captures whether to predict
a subgoal with vegetables in the oven or on the plate.

We train the subgoal predictor p(sg|st, z) as a conditional
variational auto-encoder over subgoals [48]: given a randomly
sampled starting state st from the pre-training dataset Dpre and
a subgoal state sg = st+H H steps later in the trajectory, we
use a learned inference network q(z|st, sg) to encode st and
sg into a latent variable z. We then use the subgoal predictor
p(sg|st, z) to decode back to the original subgoal state sg . In
addition to this subgoal reconstruction objective, we apply a
latent regularization loss, which shapes the distribution of the
latent variable z to a prior distribution p(z).

The low-level subgoal-reaching policy πLL,ϕ(a|s, sg) is
trained via the behavioral cloning objective [44]. Since the
subgoal-reaching policy needs to predict a sequence of actions
given a subgoal, we opt for a recurrent policy implemented
using an LSTM [21], which autoregressively predicts the
actions for the next L steps using st and sg .

We summarize the components of our training model in

Figure 3. Our final training objective is:

max
θ,ϕ,µ

E(s,a,sg)∼Dpre
z∼q(·|s,sg)

pθ(sg|s, z)︸ ︷︷ ︸
subgoal reconstruction

+πLL,ϕ(a|s, sg)︸ ︷︷ ︸
behavioral cloning

− βDKL
(
qµ(z|s, sg), p(z)

)︸ ︷︷ ︸
latent regularization

. (1)

Here, a represents the sequence of actions from current state
until sg. We use θ, ϕ, µ to denote the parameters of the
subgoal predictor, goal reaching policy, and inference network,
respectively. β is a regularization weighting factor, DKL denotes
the Kullback-Leibler divergence, and we use a unit Gaussian
prior p(z) over the latent variable. More implementation details
can be found in Appendix A.

To execute our assistive policy π(a|s), we first sample a
latent variable z from the unit Gaussian prior, and then generate
a subgoal by passing z and s through the subgoal predictor
p(sg|s, z). With the sampled subgoal sg, we use the goal-
reaching policy to predict an executable action πLL(a|s, sg) for
L timesteps. Every L actions, we sample a new subgoal.

C. Deciding When to Request User Input

A core requirement of our approach is that it can actively
ask for operator input while minimizing the number of such
requests. This is crucial since it allows the operator to divert
their attention to other tasks, e.g., controlling other robots,
while the assistive policy is controlling the robot. Thus, a key
question is: when should the assistive policy ask for human
inputs?

Intuitively, the assistive policy should request help when it
is uncertain about what action to take next. This can occur
in two scenarios: (1) the policy faces a situation that is not
present in the training data, so it does not know which action
to take, or (2) the policy faces a seen situation, but the training
trajectories contain multiple possible continuations and the
policy is not sure which one to pick. The latter scenario
commonly occurs during the collection of diverse datasets since
trajectories for different tasks often intersect. For example, in
a kitchen environment, multiple tasks could start by tossing
vegetables in a pan, but then diverge into putting the pan on the
stove or in the oven. During teleoperation, human inputs are
required for such situations to decide which task to continue
with. This is in contrast to single-task demonstration collection,
e.g., during DAgger training, where such uncertainty over tasks
usually does not occur.

Specifically, we let the assistive policy to ask for user
input when it has a high uncertainty due to (1) an out-of-
distribution state or (2) a multi-modal action distribution. Our
hierarchical model allows us to separately estimate both classes
of uncertainty.

First, to estimate whether a given state is unseen, we
follow prior work on out-of-distribution detection [29, 38] and
train an ensemble of K low-level subgoal-reaching policies
π
(1)
LL (a(1)|s), . . . , π(K)

LL (a(K)|s), all on the same data Dpre but
with different initializations and batch ordering. Then, the
disagreement D(a(1), . . . , a(K)) between the actions predicted
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Fig. 4: Our approach asks for human inputs when the assistive
policy is uncertain about which subtask or action to take. If
both the task uncertainty and policy uncertainty are lower than
their thresholds, our assistive policy can reliably perform a
subtask, reducing the workload of the human operator.

by this ensemble of policies, i.e., the mean of the variance of
actions in each dimension, can be used to approximate how out-
of-distribution a state is, which we call policy uncertainty. The
states with high policy uncertainty (i.e. high disagreement [29])
can be considered as unseen states. When the assistive policy
encounters unseen states, it requests a user for deciding
following actions.

Even if we determine that a state is seen in the training data,
we further identify whether there are multiple possible task
options in the current state before proceeding to follow the
assistive policy. To estimate the task uncertainty, the assistive
policy’s uncertainty about the task, we propose to compute the
inter-subgoal variance V ar(s

(1)
g , . . . , s

(N)
g ), where the subgoals

are sampled from the subgoal predictor pθ(s
(i)
g |s, z(i)). If there

is only one task to perform from a given state, the sampled
subgoals will be similar to each other and thus, the variance of
the sampled subgoals will be nearly 0. On the other hand, in
cases with multiple possible task continuations, this variance
will be high since the distribution of possible subgoals will
widen. If the task uncertainty is high, the policy should also
stop and ask a user to choose which task to perform next.

In summary, we leverage both policy and task uncertainty
estimates to decide on whether the assistive policy should
continue controlling the robot or whether it should stop
and ask for human input. We found a simple thresholding
scheme sufficient, with threshold parameters γ, ω for the
policy uncertainty (i.e. ensemble disagreement) and task
uncertainty (i.e. subgoal variance), respectively. Future work
can investigate more advanced mixing schemes, e.g., with
auto-tuned thresholds [22] or hysteresis between switching
from robot to human and back [23]. We also include a human
override Ht that allows the human to actively take control at
any point during the teleoperation, e.g., in order to demonstrate
a new task from a seen state, in which case the assistive policy
would not ask for human input automatically. By combining
the policy uncertainty, task uncertainty, and human override,
we decide to continue executing the assistive policy if:

Assist = ¬ (D(a(1), . . . , a(K)) > γ)︸ ︷︷ ︸
unseen state

(2)

∧ ¬ (V ar(s(1)g , . . . , s(N)
g ) > ω)︸ ︷︷ ︸

uncertain task

∧ ¬ Ht︸︷︷︸
human override

.
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Fig. 5: User study setup. (left) A Kinova Jaco arm, front-view
and in-hand cameras, and objects for kitchen-inspired tasks
are placed on the workspace. (right) A human operator can
watch a monitor, which shows either the camera inputs or a
side task. The operator uses a gamepad to control the robot,
and uses a keyboard to solve the side task.

In our experiments, we compute the values of γ and ω
by plotting the policy uncertainty and task uncertainty over
about 5 trajectories in the pre-training dataset, similar to the
plots in Figure 8. We then choose the thresholds that correctly
differentiate between the high and low uncertainty regions with
the highest margin.

IV. EXPERIMENTS

This paper proposes PATO, an assistive policy for teleopera-
tion that reduces user’s mental load during data collection as
well as enable one user to handle multiple robots simultaneously.
In this section, we aim to answer the following questions:
(1) Does PATO reduce the mental load of human operators?
(2) Does it allow the operators to divert their attention to other
tasks during teleoperation? (3) Can PATO scale robotic data
collection by allowing a single operator to teleoperate multiple
robotic systems in parallel? To answer these questions, we
perform two user studies in which (1) users teleoperate a real
robot arm to perform diverse manipulation tasks (Section IV-A),
and (2) users teleoperate multiple simulated robotic arms
simultaneously (Section IV-B). For implementation details of
our policy architecture and used training hyperparameters, see
Appendix, Section A.

A. Reducing Mental Load during Data Collection

To evaluate the effectiveness of PATO, we conduct a user
study (N = 16) in which users teleoperate a Kinova Jaco 2
robot arm to collect diverse robot manipulation demonstrations
for kitchen-inspired long-horizon tasks, e.g., “place ingredients
in bowl and place bowl in oven”.

Real-World Kitchen Environment. As illustrated in
Figure 5, we evaluate our algorithm and the baselines in a
real-world kitchen environment with a Kinova Jaco 2 robot
arm. The observations are 224× 224× 3 cropped RGB images
recorded from a Logitech Pro Webcam C920 for front-view
and an Intel RealSense D435 for wrist-view (see Figure 7).
In addition to images, the neural net policies have access to



(a) Side task is hidden when participant operates robot

(b) Robot view is hidden when participant performs the side task

Fig. 6: Participant’s screen. (a) When a user teleoperates
the robot, the side task is not visible. (b) Similarly, while
performing the side task, the robot observation screen is hided.
Users can switch between robot teleoperation and side task by
pressing a button on a controller.

robot end-effector position, velocity, and gripper state. We use
a Dual Shock 4 gamepad to control the robot’s end-effector
position. The action space for all policies is the delta in end-
effector position and the gripper opening / closing commands.
The actions are communicated at a rate of 10Hz and translated
into desired joint poses using the inverse kinematics module
of PyBullet [11].

The environment contains 8 long-horizon kitchen tasks com-
posed by combining sub-tasks: {cook meat, serve meat}x{cook
vegetables, serve vegetables}x{2 starting locations}. Each sub-
task itself may involve the chaining of several skills. For
example the sub-task cook meat requires sequential execution
of the skills pick meat from table and put meat in oven.

Baseline and Prior Approach. To train our method,
PATO, we collect a pre-training dataset of 120 demonstrations.
Crucially, during the user study the operators need to collect
unseen long-horizon tasks. We compare PATO to (1) human
teleoperation with no assistance, the current standard approach
to collecting robot demonstration data and (2) ThriftyDAg-
ger [22], the closest prior work to ours for interactive human-
robot data collection. ThriftyDAgger is designed to minimize
human inputs during single-task demonstration collection by
requesting human input only in critical states where a learned
value function estimates low probability for reaching the goal.
We initially implemented ThriftyDAgger with a flat policy as
in the original work, but found it could not learn to model
the multi-modal trajectories in our training dataset, leading to
poor performance. Thus, we compare to an improved version
of ThriftyDAgger that uses the same hierarchical policy as
ours, which we found better suited to learn from the multi-
modal data. We train all policies directly from raw RGB inputs
without requiring additional state estimation.

User Study Design. We recruited 16 (M = 13, F =

3) participants from the graduate student population of our
university. Participants were compensated with a 25 USD gift
card. The study protocol was approved by the Institutional
Review Board (IRB) at our university.

All participants teleoperate the robot’s end-effector via
joystick and buttons on a standard gamepad controller. We
give each participant 5 minutes of unassisted training time
before starting the experiment and an additional training task
for each of the assisted methods (PATO and ThriftyDAgger) so
that participants can familiarize themselves with the behavior of
the policy. During the experiment, the participants are required
to perform 3 randomly sampled long horizon tasks from a list
of 8 possible tasks using each method. We counterbalance the
order of the methods to guard against any sequencing effects.

The users are also asked to solve simple side tasks during
teleoperation to measure their ability to divert attention and
conduct other tasks. Specifically, they are shown a string of
randomly selected characters, one of which is different from
the others (e.g., 000100), and asked to specify the index of
the odd character (e.g., 4 in the example above). As soon as
the participant provides an answer, we present them with the
next string. We leave it up to the participant how to allocate
time between the robot manipulation task and the side task.

To ensure that the users can only attend to teleoperation or
the side task at a time, they perform teleoperation purely via a
live-stream video of the robot setup, without being able to see
the physical robot (see Figure 5). Crucially, they can only see
either the video stream or the side task and can switch between
the two views with a button press, as shown in Figure 6.

To measure the user’s mental workload during teleoperation,
after each teleoperation session, we administer the NASA
TLX survey [19, 20], which measures the user’s perceived
workload. We aggregate the responses to obtain a single score
for each user. Participants also answer a survey adopted from
previous work [40], which assesses their perception of the
robot’s intelligence, their satisfaction and trust in the system
(Table I).

Comparison of Assisted Methods with Unassisted Base-
line. We first compare the standard unassisted teleoperation
baseline to the two methods with assistance in Table II. The

TABLE I: Post-execution survey (Likert scales with 7-option
response format)

Trust:
Q1. I trusted the robot to do the right thing at the right time.

Robot intelligence (α = 0.95):
Q2. The robot was intelligent.
Q3. The robot perceived accurately what my goals are.
Q4. The robot and I worked towards mutually agreed upon goals.
Q5. The robot’s actions were reasonable.
Q6. The robot did the right thing at the right time.

Human satisfaction (α = 0.91):
Q7. I was satisfied with the robot and my performance.
Q8. The robot and I collaborated well together.
Q9. The robot was responsive to me.
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Fig. 7: Visualization of the front view (top) and wrist view (bottom) of a (serve meat, serve vegetables) task trajectory in the
real-world kitchen environment.
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Fig. 8: Visualization of PATO on a task from the real-robot user study: place red block in bowl; place bowl on plate; put green
block in oven. PATO autonomously executes familiar behaviors, but asks for user input in frames (2) and (4) to determine
where to place bowl and green block (white vs. yellow arrow). In these cases, the task uncertainty surpasses the threshold ω
since the subgoal predictor produces subgoals for both possible targets. Further, PATO asks for user input in frame (3) since
the required transition between placing the bowl and picking up the green block was not part of its training data. Thus, the
policy uncertainty estimate surpasses its threshold γ.

unassisted teleoperation baseline requires user’s full attention
by definition and thus, they are nearly unable to solve any side
task during teleoperation. In contrast, the assisted approaches
allow the users to solve additional side tasks without sacrificing
teleoperation speed by diverting their attention to the side
task during phases of data collection in which the policy acts
autonomously.

Comparison of PATO with ThriftyDAgger. We then
compare PATO with the prior assisted teleoperation method,
ThriftyDAgger. First, we statistically evaluate the user responses
to the surveys to elicit the participants’ trust, satisfaction and
perception of the robot’s intelligence, as well as their mental
workload when teleoperating with the two approaches.

During the study, participants agreed more strongly that
they trusted the robot to perform the correct action at the
correct time for PATO (Wilcoxon signed-rank test, p =
0.001)1. Further, they found the robot to be significantly
more intelligent with the proposed method (repeated-measures
ANOVA, F (1, 15) = 5.14, p = 0.039, Cronbach’s α = 0.95)
and were significantly more satisfied with their collaboration
with the robot (F (1, 15) = 5.05, p = 0.040, α = 0.91).
Finally, during the NASA TLX survey, participants showed a

1Following recommended practices for Likert scales in HRI [46], we use a
non-parametric Wilcoxon signed-rank test for individual Likert items, while
we assume equidistant scores and use parametric ANOVA tests in multi-item
scales.



lower mental workload using PATO compared to the baseline
(F (1, 15) = 5.52, p = 0.033).

A key factor in these strong subjective differences between
the two approaches is their ability to elicit user feedback at
appropriate times: when the robot is at a decision point between
two possible task continuations (see Figure 8, frames (2) and
(4)). ThriftyDAgger’s risk-based objective is not sensitive to
such decision points and thus, it rarely asks for user feedback.
It instead executes one of the possible subtasks at random.
In our study, we found that this leads to erroneous skill
executions in 48% of the cases. Such errors require tedious
correction by the user, deteriorating their trust in the system
and their teleoperation efficiency. In contrast, as illustrated
in Figure 8, PATO leverages its estimate of task uncertainty
to correctly elicit user feedback in 82% of cases, leading to
higher perceived levels of trust and reduced mental load. As a
result, we also find that PATO allows for more efficient data
collection (see Table II) since fewer corrections are required.

B. Scaling Data Collection to Multiple Robots

In the previous section, we showed that PATO allows users
to divert their attention to other tasks during data collection.
An important application of this is multi-robot teleoperation, in
which a single operator performs data collection with multiple
robots in parallel and periodically attends to different robots.
We test this in an environment that requires simultaneous
teleoperation of multiple simulated robots.

Simulated IKEA Furniture Assembly Environment. We
evaluate the scalability of data collection with assisted teleoper-
ation on the simulated IKEA Furniture Assembly environment
of Lee et al. [30], which builds on the MuJoCo physics
simulator [50]. We use the ground truth pose and orientation
measurements of the end-effector and the blocks provided by
the simulator as observations for all policies. They control the
robot via end-effector pose control, like in our real-world setup.
We use multiple instances of this environment to simulate data
collection on multiple robots, as illustrated in Figure 9. We use
a Dual Shock 4 gamepad to control each robot’s end-effector
position, gripper open / close state and to allow switching
between controlling the different robots with a button press.

To pre-train our assistive policy, we collect 60 demonstrations
for a block stacking task in which the middle block needs to
be stacked on either the left block or the right block. During
teleoperation time we only accept stacking on the left block as
a successful trajectory. Thus, a useful assistive policy needs to
elicit user input on which block to stack the middle block on,
left or right, and the user needs to point the policy to the left.

TABLE II: Average number of completed side tasks and
teleoperation time per demonstration during the real-robot
teleoperation user study.

Approach Avg. # completed side tasks Avg. teleop time (sec)

Unassisted 0.25 (±0.66) 109.5 (±31.4)
ThriftyDAgger++2 13.06 (±9.63) 105.9 (±29.5)

PATO (ours) 15.88 (±7.11) 85.0 (±18.2)

7. Multi-robot setup

Robot 1 Robot 2

Robot 3 Robot 4

User input required

Controlled by user

Fig. 9: We use up to four simulated robots to collect demon-
strations. The assistive policy asks for human input using
the red indicator. The small green indicator represents which
environment is being controlled by a user.

In this way we can measure both, whether the system asks for
user input at the correct times and whether it allows users to
give meaningful input to achieve their desired behavior, even
when interacting with multiple robots in parallel.

User Study Design. We give each participant (N = 10)
1 minute of training time with each of the unassisted and
assisted teleoperation approaches in a single-robot version of
the environment to allow them to familiarize themselves with
the task and the teleoperation system. During the experiment,
the participants are asked to collect as much data as possible
while controlling multiple robots simultaneously (1, 2 or 4).
Each participant completes data collection with all three robot
fleet sizes. They are given 4 minutes for each data collection
session. For 2 or more robots, the participants can switch
between which robot they want to control via a button press
and the policies can request user feedback via a visual indicator,
as illustrated in Figure 9.

Multi-Robot Data Collection Results. We compare the
number of collected demonstrations with increasing numbers
of simultaneously teleoperated robots in Figure 10a. Our
approach enables strong scaling of data collection throughput.
As expected, the scaling is not linearly proportional, i.e.,
four robots do not lead to four times more demonstrations
collected. This is because simultaneous teleoperation of a
larger fleet requires more context switches between the robots,
reducing the effective teleoperation time. Yet, PATO enables
effective parallel teleoperation, leading to higher demonstration

2ThirftyDAgger [22] using our improved, hierarchical policy architecture.



(a) Scaling experiment (b) Ablation study

Fig. 10: Average number of demonstrations collected in
4 minutes using multiple robots in simulation. (a) With
PATO, users can manage multiple robots simultaneously and
collect more demonstrations with four robots. (b) The ablated
systems with four robots show inferior demonstration collection
throughput.

TABLE III: Average success rate of behavior cloning policy
trained on data from single-robot vs. multi-robot teleoperation.

No. of robots Time Taken # Traj. Collected Success Rate (%)

1-robot 4 mins 11 34.6 (±8.3)
1-robot ~10 mins 28 61.0 (±9.3)
4-robot 4 mins 28 56.8 (±13.0)

throughput with larger robot fleets. In contrast, with standard
unassisted teleoperation, a single operator can only control a
single robot. Thus, the demonstration throughput would not
increase even if a larger fleet of robots was available.

Figure 10a clearly shows that with the same amount of
human time and effort, we can collect a larger number of
demonstrations with multiple robots via our approach. We
additionally verify the quality of demonstrations collected by
our parallel data collection pipeline. To this end, we train a
behavioral cloning (BC) policy on the data from the multi-robot
teleoperation experiment, and compare its success rates to a BC
policy trained on single-robot teleoperation data. In Table III,
we first compare the performance of BC on data collected in
4 minutes by unassisted single-robot teleoperation and assisted
multi-robot teleoperation using PATO. The larger demonstration
throughput with four robots results in a policy with higher
performance using the same amount of human teleoperator
effort. Additionally, we compare the BC performance on the
same number of trajectories collected using single- and multi-
robot teleoperation and demonstrate that the quality of data
collected using PATO does not deteriorate as we increase the
number of robots while only taking approximately a third of
the teleoperation time. This exhibits the potential of assisted
teleoperation systems to drastically increase the effectiveness
of a team of operators simply by intelligently automating
redundant teleoperation sequences.

Ablation Study. Our approach, PATO, has two key
components: the hierarchical policy (Section III-B) and the
uncertainty-based requesting of user input (Section III-C).

To evaluate the importance of each component, we perform
ablation studies in the simulated IKEA Furniture Assembly
Environment with the 4-robot teleoperation setup described
above. We compare our full method against two ablated
methods: (1) PATO w/o hierarchy, which trains an ensemble of
flat stochastic policies π(a|s), and (2) PATO w/o uncertainty,
which removes the uncertainty-based requesting of user input.
The flat policy ablation, “PATO w/o hierarchy”, uses the
ensemble disagreement and action distribution variance (instead
of subgoal distribution variance in PATO) to determine policy
and task uncertainty, respectively.

We report the number of collected demonstrations per method
within 4 minutes averaged across N = 10 users in Figure 10b.
Both ablated methods show much smaller throughputs than
PATO. Specifically, we find that the flat policy in “PATO w/o
hierarchy” is neither able to accurately model the multi-modal
training data nor to accurately estimate the task uncertainty. As
a result, the assistive policy does not ask for user input in critical
decision states and exhibits frequent control failures, leading
to reduced teleoperation throughput. Similarly, the ablation
without uncertainty estimation, “PATO w/o uncertainty”, does
not elicit user input in critical states and thus, requires the
user to correct it whenever it tries to complete an incorrect
task. As a result, the demonstrations collected with the ablated
methods are less optimal, requiring an average 398 and 375
steps until task completion for “PATO w/o hierarchy” and
“PATO w/o uncertainty”, respectively, compared to 322 steps
for our method.

V. CONCLUSION

A large-scale robot demonstration dataset is key to enabling
the next breakthrough in robot learning. As a step towards large-
scale robot data, we propose an efficient and scalable system
for robotic data collection, which automates part of human
teleoperation using a learned assistive policy and actively asks
for human input in critical states. This allows a human operator
to handle multiple robots simultaneously and significantly
improve data collection throughput. The user study supports
that our assisted teleoperation system requires infrequent inputs
from users and users feel less mental burden when collecting
robot demonstrations. We further show significantly improved
data collection throughput of our system in the multi-robot
control experiments, which leads to higher downstream policy
performance for the same amount of human operator effort.

For simplicity, we assume access to pre-collected data Dpre
to train the assistive policy. However, our assistive policy can,
in theory, be learned from scratch and continuously improved as
more data is collected. In this way, operators can also teach the
assistive policy new skills over time and tailor its capabilities
to their needs. We leave an investigation of such continually
evolving assistance systems as an exciting direction for future
work. Moreover, deploying our multi-robot data collection in
the real world is a plausible avenue for future work.
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APPENDIX

A. Implementation Details

Here we provide a detailed overview of the model archi-
tecture and used hyperparameters (for a detailed listing of all
hyperparameters, see Table IV).

1) Sub-goal Predictor: The conditional-VAE for the sub-
goal predictor consists of an encoder and a decoder, both
implemented with 5-layer MLPs with 128 hidden units in each
layer, batch norm and LeakyReLU activations. The input to the
encoder is the state and goal H steps in the future, where H
is the goal horizon. For image observations in the real-world
kitchen environment we first run the inputs through a pre-
trained visual encoder, R3M [39], to obtain a 2048-dimensional
vector representation. The output of the encoder is the mean
and log standard deviation of a 128-dimensional multivariate
Gaussian latent space. The decoder uses the current state and
a sample from the encoder’s output distribution to generate a
goal prediction. During inference, we generate goals with the
decoder by sampling the latent vector from a standard Gaussian
prior. H is set to 35 for the real-world kitchen environment
and 7 for the IKEA Furniture Assembly environment.

To model the task uncertainty when deciding whether to
request human input, we sample N = 1024 goals and measure
the variance between the end-effector positions of the robot.
In case of high task uncertainty, the goals predicted by the
sub-goal predictor diverge, leading to high variance. When the
variance is higher than a threshold τtask, we query the human
to disambiguate which task to perform next.

2) Low-level Sub-goal Reaching Policy: The inputs to the
sub-goal reaching policy is the current state st and the goal
state st+H where H is the goal horizon used in the sub-goal
predictor. The policy is implemented as a LSTM [21] with
256-dimensional hidden units, which autoregressively predicts
the actions for the next L steps using st and st+H. Notice
that in prior works [36] skill horizon L and goal horizon H
are set to the same value. However, in our experiments we
noticed that setting a higher goal horizon helps model the
task uncertainty better but a higher skill horizon would reduce
the decision frequency of the policy. Hence, in this work, we
decouple the two and show that the goal horizon H can be
much greater than the skill horizon L without affecting the
policy performance. The state and goal are processed by input
MLPs separately and concatenated before being processed by
the LSTM. The hidden state of the LSTM is processed by an
output MLP to generate actions.

To model policy uncertainty, we use an ensemble of K=5
sub-goal reaching policies. Similar to Menda et al. [38], we
measure the variance between the actions predicted by each of
the policies. When the state input to the policies is seen in the
training data, we expect the action predictions of the ensemble
policies to agree, leading to a low variance. When the state
input is outside the distribution of seen training data, the policy
predictions diverge, leading to a high variance. When variance
is higher than a threshold τpolicy, the policy queries human
help.

TABLE IV: PATO hyperparameters. Parameters that differ
between environments are marked in red.

Hyperparameters Kitchen IKEA Assembly

Sub-goal Predictor

train iterations 200 500
batch size 16 16
learning rate 0.001 0.001
optimizer Adam(0.9, 0.999) Adam(0.9, 0.999)
encoder-mlp (width x depth) 128x5 128x5
decoder-mlp (width x depth) 128x5 128x5
latent dimension 128 128
normalization batch batch
activation LeakyReLU(0.2) LeakyReLU(0.2)
goal horizon (H) 35 7
loss ELBO ELBO

Low-level Sub-goal Reaching Policy

train iterations 300 4000
batch size 16 16
learning rate 0.001 0.001
optimizer Adam(0.9, 0.999) Adam(0.9, 0.999)
input-mlp (width x depth) 256x3 256x3
output-mlp (width x depth) 256x3 256x3
lstm hidden dimension 256 256
normalization batch batch
activation LeakyReLU(0.2) LeakyReLU(0.2)
no. of ensemble policies 5 5
skill horizon (L) 15 7
loss - delta EEF positions MSE MSE
loss - gripper CE Loss CE Loss

3) Q-Function (ThriftyDAgger): The ThriftyDAgger base-
line [22] uses a risk measure derived from a trained Q-function
for choosing when to request human input. The Q-function
is modeled using a 3-layer MLP with 128 hidden units and
LeakyReLU(0.2) activation. More details on training the Q-
funtion and using it for risk calculation can be found in [22].
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